1
|
Batool A, Kopp I, Kubeil M, Bachmann M, Andrews PC, Stephan H. Targeted bismuth-based materials for cancer. Dalton Trans 2025; 54:5614-5639. [PMID: 40040450 DOI: 10.1039/d5dt00163c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The use of bismuth and its compounds in biomedicine has developed rapidly in recent years. Due to their unique properties, there are great opportunities for the development of new non-invasive strategies for the early diagnosis and effective treatment of cancers. This perspective highlights key fabrication methods to generate well-defined and clinically relevant bismuth materials of varying characteristics. On the one hand, this opens up a wide range of possibilities for unimodal and multimodal imaging. On the other hand, effective treatment strategies, which are increasingly based on combinatorial therapies, are given a great deal of attention. One of the biggest challenges remains the selective tumour targeting, whether active or passive. Here we present an overview on new developments of bismuth based materials moving forward from a simple enrichment at the tumour site via uptake by the mononuclear phagocytic system (MPS) to a more active tumour specific targeting via covalent modification with tumour-seeking molecules based on either small or antibody-derived molecules.
Collapse
Affiliation(s)
- Amna Batool
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia.
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| | - Ina Kopp
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| | - Manja Kubeil
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| | - Philip C Andrews
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia.
| | - Holger Stephan
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| |
Collapse
|
2
|
Bunda S, Kálmán-Szabó I, Lihi N, Képes Z, Szikra D, Peline Szabo J, Timári I, Szücs D, May NV, Papp G, Trencsényi G, Kálmán FK. Diagnosis of Melanoma with 61Cu-Labeled PET Tracer. J Med Chem 2024; 67:9342-9354. [PMID: 38753457 DOI: 10.1021/acs.jmedchem.4c00479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Until the recent years, substances containing radioactive 61Cu were strongly considered as potential positron-emitting radiopharmaceuticals for use in positron emission tomography (PET) applications; however, due to their suitably long half-life, and generator-independent and cost-effective production, they seem to be economically viable for human imaging. Since malignant melanoma (MM) is a major public health problem, its early diagnosis is a crucial contributor to long-term survival, which can be achieved using radiolabeled α-melanocyte-stimulating hormone analog NAPamide derivatives. Here, we report on the physicochemical features of a new CB-15aneN5-based Cu(II) complex ([Cu(KFTGdiac)]-) and the ex vivo and in vivo characterization of its NAPamide conjugate. The rigid chelate possesses prompt complex formation and suitable inertness (t1/2 = 18.4 min in 5.0 M HCl at 50 °C), as well as excellent features in the diagnosis of B16-F10 melanoma tumors (T/M(SUVs) (in vivo): 12.7, %ID/g: 6.6 ± 0.3, T/M (ex vivo): 22).
Collapse
Affiliation(s)
- Szilvia Bunda
- Department of Physical Chemistry, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary
| | - Ibolya Kálmán-Szabó
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
- Gyula Petrányi Doctoral School of Clinical Immunology and Allergology, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Norbert Lihi
- HUN-REN-UD Mechanisms of Complex Homogeneous and Heterogeneous Chemical Reactions Research Group, Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Zita Képes
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Dezső Szikra
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Judit Peline Szabo
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - István Timári
- Department of Organic Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
- HUN-REN-UD Molecular Recognition and Interaction Research Group, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Dániel Szücs
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Nóra V May
- Centre for Structural Science, Research Centre for Natural Sciences, Hungarian Research Network (HUN-REN), Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Gábor Papp
- Department of Physical Chemistry, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary
| | - György Trencsényi
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
- Gyula Petrányi Doctoral School of Clinical Immunology and Allergology, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Ferenc K Kálmán
- Department of Physical Chemistry, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary
| |
Collapse
|
3
|
Fele-Paranj A, Saboury B, Uribe C, Rahmim A. Physiologically based radiopharmacokinetic (PBRPK) modeling to simulate and analyze radiopharmaceutical therapies: studies of non-linearities, multi-bolus injections, and albumin binding. EJNMMI Radiopharm Chem 2024; 9:6. [PMID: 38252191 PMCID: PMC10803696 DOI: 10.1186/s41181-023-00236-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND We aimed to develop a publicly shared computational physiologically based pharmacokinetic (PBPK) model to reliably simulate and analyze radiopharmaceutical therapies (RPTs), including probing of hot-cold ligand competitions as well as alternative injection scenarios and drug designs, towards optimal therapies. RESULTS To handle the complexity of PBPK models (over 150 differential equations), a scalable modeling notation called the "reaction graph" is introduced, enabling easy inclusion of various interactions. We refer to this as physiologically based radiopharmacokinetic (PBRPK) modeling, fine-tuned specifically for radiopharmaceuticals. As three important applications, we used our PBRPK model to (1) study the effect of competition between hot and cold species on delivered doses to tumors and organs at risk. In addition, (2) we evaluated an alternative paradigm of utilizing multi-bolus injections in RPTs instead of prevalent single injections. Finally, (3) we used PBRPK modeling to study the impact of varying albumin-binding affinities by ligands, and the implications for RPTs. We found that competition between labeled and unlabeled ligands can lead to non-linear relations between injected activity and the delivered dose to a particular organ, in the sense that doubling the injected activity does not necessarily result in a doubled dose delivered to a particular organ (a false intuition from external beam radiotherapy). In addition, we observed that fractionating injections can lead to a higher payload of dose delivery to organs, though not a differential dose delivery to the tumor. By contrast, we found out that increased albumin-binding affinities of the injected ligands can lead to such a differential effect in delivering more doses to tumors, and this can be attributed to several factors that PBRPK modeling allows us to probe. CONCLUSIONS Advanced computational PBRPK modeling enables simulation and analysis of a variety of intervention and drug design scenarios, towards more optimal delivery of RPTs.
Collapse
Affiliation(s)
- Ali Fele-Paranj
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Babak Saboury
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, US
| | - Carlos Uribe
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Functional Imaging, BC Cancer, Vancouver, BC, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Arman Rahmim
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada.
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|