1
|
Jouini N, Cardinale J, Mindt TL. Evaluation of a Radiolabelled Macrocyclic Peptide as Potential PET Imaging Probe for PD-L1. ChemMedChem 2022; 17:e202200091. [PMID: 35388635 PMCID: PMC9320808 DOI: 10.1002/cmdc.202200091] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Indexed: 11/16/2022]
Abstract
The interaction between the immune checkpoint PD‐1 and PD−L1 promotes T‐cell deactivation and cancer proliferation. Therefore, immune checkpoint inhibition therapy, which relies on prior assessment of the target, has been widely used for many cancers. As a non‐invasive molecular imaging tool, radiotracers bring novel information on the in vivo expression of biomarkers (e. g., PD−L1), enabling a personalized treatment of patients. Our work aimed at the development of a PD−L1‐specific, peptide‐based PET radiotracer. We synthesized and evaluated a radiolabeled macrocyclic peptide adapted from a patent by Bristol Myers Squibb. Synthesis of [68Ga]Ga‐NJMP1 yielded a product with a radiochemical purity>95 % that was evaluated in vitro. However, experiments on CHO−K1 hPD−L1 cells showed very low cell binding and internalization rates of [68Ga]Ga‐NJMP1 in comparison to a control radiopeptide (WL12). Non‐radioactive cellular assays using time‐resolved fluorescence energy transfer confirmed the low affinity of the reported parent peptide and the DOTA‐derivatives towards PD−L1. The results of our studies indicate that the macrocyclic peptide scaffold reported in the patent literature is not suitable for radiotracer development due to insufficient affinity towards PD−L1 and that C‐terminal modifications of the macrocyclic peptide interfere with important ligand/receptor interactions.
Collapse
Affiliation(s)
- Nedra Jouini
- Ludwig Boltzmann Institute Applied Diagnostics, Imaging Biomarkers, AUSTRIA
| | - Jens Cardinale
- Ludwig Boltzmann Institute Applied Diagnostics, Imaging Biomarker, AUSTRIA
| | - Thomas L Mindt
- Ludwig Boltzmann Institute Applied Diagnostics, Imaging Biomarker, Währinger Gürtel 18-20, AKH, c/o Sekretariat Nuklearmedizin, 1090, Vienna, AUSTRIA
| |
Collapse
|
2
|
Sorbitol as a Polar Pharmacological Modifier to Enhance the Hydrophilicity of 99mTc-Tricarbonyl-Based Radiopharmaceuticals. Molecules 2020; 25:molecules25112680. [PMID: 32527027 PMCID: PMC7321340 DOI: 10.3390/molecules25112680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 02/08/2023] Open
Abstract
The organometallic technetium-99m tricarbonyl core, [99mTc][Tc(CO)3(H2O)3]+, is a versatile precursor for the development of radiotracers for single photon emission computed tomography (SPECT). A drawback of the 99mTc-tricarbonyl core is its lipophilicity, which can influence the pharmacokinetic properties of the SPECT imaging probe. Addition of polar pharmacological modifiers to 99mTc-tricarbonyl conjugates holds the promise to counteract this effect and provide tumor-targeting radiopharmaceuticals with improved hydrophilicities, e.g., resulting in a favorable fast renal excretion in vivo. We applied the "Click-to-Chelate" strategy for the assembly of a novel 99mTc-tricarbonyl labeled conjugate made of the tumor-targeting, modified bombesin binding sequence [Nle14]BBN(7-14) and the carbohydrate sorbitol as a polar modifier. The 99mTc-radiopeptide was evaluated in vitro with PC-3 cells and in Fox-1nu mice bearing PC-3 xenografts including a direct comparison with a reference conjugate lacking the sorbitol moiety. The glycated 99mTc-tricarbonyl peptide conjugate exhibited an increased hydrophilicity as well as a retained affinity toward the Gastrin releasing peptide receptor and cell internalization properties. However, there was no significant difference in vivo in terms of pharmacokinetic properties. In particular, the rate and route of excretion was unaltered in comparison to the more lipophilic reference compound. This could be attributed to the intrinsic properties of the peptide and/or its metabolites. We report a novel glycated (sorbitol-containing) alkyne substrate for the "Click-to-Chelate" methodology, which is potentially of general applicability for the development of 99mTc-tricarbonyl based radiotracers displaying an enhanced hydrophilicity.
Collapse
|
3
|
Abstract
Single photon emission computed tomography (SPECT) is the state-of-the-art imaging modality in nuclear medicine despite the fact that only a few new SPECT tracers have become available in the past 20 years. Critical for the future success of SPECT is the design of new and specific tracers for the detection, localization, and staging of a disease and for monitoring therapy. The utility of SPECT imaging to address oncologic questions is dependent on radiotracers that ideally exhibit excellent tissue penetration, high affinity to the tumor-associated target structure, specific uptake and retention in the malignant lesions, and rapid clearance from non-targeted tissues and organs. In general, a target-specific SPECT radiopharmaceutical can be divided into two main parts: a targeting biomolecule (e.g., peptide, antibody fragment) and a γ-radiation-emitting radionuclide (e.g., 99mTc, 123I). If radiometals are used as the radiation source, a bifunctional chelator is needed to link the radioisotope to the targeting entity. In a rational SPECT tracer design, these single components have to be critically evaluated in order to achieve a balance among the demands for adequate target binding, and a rapid clearance of the radiotracer. The focus of this chapter is to depict recent developments of tumor-targeted SPECT radiotracers for imaging of cancer diseases. Possibilities for optimization of tracer design and potential causes for design failure are discussed and highlighted with selected examples.
Collapse
|
4
|
Vraka C, Dumanic M, Racz T, Pichler F, Philippe C, Balber T, Klebermass EM, Wagner KH, Hacker M, Wadsak W, Mitterhauser M. A new method measuring the interaction of radiotracers with the human P-glycoprotein (P-gp) transporter. Nucl Med Biol 2018. [PMID: 29529532 DOI: 10.1016/j.nucmedbio.2018.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In drug development, biomarkers for cerebral applications have a lower success rate compared to cardiovascular drugs or tumor therapeutics. One reason is the missing blood brain barrier penetration, caused by the tracer's interaction with efflux transporters such as the P-gp (MDR1 or ABCB1). Aim of this study was the development of a reliable model to measure the interaction of radiotracers with the human efflux transporter P-gp in parallel to the radiolabeling process. LigandTracer® Technology was used with the wildtype cell line MDCKII and the equivalent cell line overexpressing human P-gp (MDCKII-hMDR1). The method was evaluated based on established PET tracers with known interaction with the human P-gp transporter and in nanomolar concentration (15 nM). [11C]SNAP-7941 and [18F]FE@SNAP were used as P-gp substrates by comparing the real-time model with an uptake assay and μPET images. [11C]DASB [11C]Harmine, [18F]FMeNER,[18F]FE@SUPPY and [11C]Me@HAPTHI were used as tracers without interactions with P-gp in vitro. However, [11C]Me@HAPTHI shows a significant increase in SUV levels after blocking with Tariquidar. The developed real-time kinetic model uses directly PET tracers in a compound concentration, which is reflecting the in vivo situation. This method may be used at an early stage of radiopharmaceutical development to measure interactions to P-gp before conducting animal experiments.
Collapse
Affiliation(s)
- Chrysoula Vraka
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria; Department for Nutritional Science, University of Vienna, Vienna, Austria
| | - Monika Dumanic
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Teresa Racz
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Florian Pichler
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria; Department of Engineering, University of Applied Sciences Wiener Neustadt, Austria
| | - Cecile Philippe
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Theresa Balber
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria; Department of Pharmaceutical Technology and Biopharmaceuticals (PTB), University of Vienna, Vienna, Austria
| | - Eva-Maria Klebermass
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Karl-Heinz Wagner
- Department for Nutritional Science, University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria; Department of Inorganic Chemistry, University of Vienna, Vienna, Austria; CBmed, Graz, Austria
| | - Markus Mitterhauser
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria; Department of Pharmaceutical Technology and Biopharmaceuticals (PTB), University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria.
| |
Collapse
|
5
|
Vultos F, Fernandes C, Mendes F, Marques F, Correia JDG, Santos I, Gano L. A Multifunctional Radiotheranostic Agent for Dual Targeting of Breast Cancer Cells. ChemMedChem 2017. [PMID: 28628723 DOI: 10.1002/cmdc.201700287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A straightforward synthetic route for a new multifunctional 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) derivative is described. To demonstrate the versatility of this pro-chelator for the preparation of radiolabeled hybrid compounds containing two different biological targeting moieties, an antitumor agent (e.g., a DNA-intercalating agent) and an estrogen receptor (ER) ligand (e.g., LXXLL-based peptide) were regiospecifically conjugated to the DOTA derivative. The bifunctional probe was radiolabeled with the auger electron emitter indium-111, and the resulting radioconjugate was demonstrated to induce DNA damage in vitro, which, along with the nuclear internalization exhibited in breast cancer cells, might enhance its therapeutic activity. This favorable in vitro performance suggests that these hybrid compounds could be attractive probes for theranostic applications.
Collapse
Affiliation(s)
- Filipe Vultos
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, km 139.7, 2695-066, Bobadela, LRS, Portugal
| | - Célia Fernandes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, km 139.7, 2695-066, Bobadela, LRS, Portugal
| | - Filipa Mendes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, km 139.7, 2695-066, Bobadela, LRS, Portugal
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, km 139.7, 2695-066, Bobadela, LRS, Portugal
| | - João D G Correia
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, km 139.7, 2695-066, Bobadela, LRS, Portugal
| | - Isabel Santos
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, km 139.7, 2695-066, Bobadela, LRS, Portugal
| | - Lurdes Gano
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, km 139.7, 2695-066, Bobadela, LRS, Portugal
| |
Collapse
|
6
|
Römhild K, Fischer CA, Mindt TL. Glycated 99m Tc-Tricarbonyl-Labeled Peptide Conjugates for Tumor Targeting by "Click-to-Chelate". ChemMedChem 2016; 12:66-74. [PMID: 27902882 DOI: 10.1002/cmdc.201600485] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/25/2016] [Indexed: 12/29/2022]
Abstract
Attaching polar pharmacological modifiers to molecular imaging probes is a common strategy to modulate their pharmacokinetic profiles to improve such parameters as the clearance rate of radiotracers and/or metabolites, and to enhance signal-to-background ratios. We combined the tumor-targeting peptide sequence of bombesin (BBN) with glucuronic acid and the single-photon emission computed tomography (SPECT) radionuclide 99m Tc by the "click-to-chelate" methodology. The 99m Tc-tricarbonyl-labeled glucuronated BBN conjugate was compared with a reference compound lacking the carbohydrate. The radiolabeled conjugates displayed similar characteristics in vitro (cell internalization, receptor affinity), but the hydrophilicity of the glycated version was significantly increased. While the tumor uptake of the two radioconjugates in xenografted mice was similar, the glycated peptide exhibited unexpected higher uptake in organs of the hepatobiliary excretion pathway than the more lipophilic reference compound. Control experiments suggest that this may be the result of unspecific accumulation of metabolites in which the glucuronic acid moiety does not act as an innocent pharmacological modifier.
Collapse
Affiliation(s)
- Karolin Römhild
- Division of Radiopharmaceutical Chemistry, University of Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Christiane A Fischer
- Division of Radiopharmaceutical Chemistry, University of Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Thomas L Mindt
- Division of Radiopharmaceutical Chemistry, University of Basel, Petersgraben 4, 4031, Basel, Switzerland.,Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland.,Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| |
Collapse
|
7
|
Guo M, Qu X, Qin XQ. Bombesin-like peptides and their receptors: recent findings in pharmacology and physiology. Curr Opin Endocrinol Diabetes Obes 2015; 22:3-8. [PMID: 25517020 DOI: 10.1097/med.0000000000000126] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW To highlight the research progress of roles of bombesin-like peptides and their receptors in pharmacology and physiology. RECENT FINDINGS Several new bombesin-derived radioactive or nonradioactive compounds were designed for the diagnosis and therapy of tumors that are overexpressing bombesin receptors. Both gastrin-releasing peptide receptor and neuromedin B receptor activation were shown to induce membrane depolarization and excite neurons in brain. Bombesin receptor subtype-3 was found to be downregulated in the muscle cells and myocytes from obese and type 2 diabetes patients, and its relevant cell signaling events in glucose homeostasis were also investigated. The molecular events triggered by bombesin receptors activation in different types of malignancies is being explored recently and new clues were provided for a better understanding of the biological roles of abnormal expression of bombesin receptors in tumors. Novel cross-talk between gastrin-releasing peptide receptor cell signaling and Sonic hedgehog pathways was identified in small-cell lung carcinoma. SUMMARY Increasing evidence shows bombesin-like peptides and their receptors play important roles in both physiological state and diseases. More specific and safe tumor targeting Bombesin derivatives are being developed for tumor diagnosis and therapy.
Collapse
Affiliation(s)
- Man Guo
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R. China
| | | | | |
Collapse
|
8
|
Pharmaceuticals—Special Issue on Radiopharmaceutical Chemistry between Imaging and Endoradiotherapy. Pharmaceuticals (Basel) 2014. [PMCID: PMC4113734 DOI: 10.3390/ph7070839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|