1
|
Higginbotham T, Meier K, Ramírez J, Garaizar A. Predicting Drug-Polymer Compatibility in Amorphous Solid Dispersions by MD Simulation: On the Trap of Solvation Free Energies. Mol Pharm 2025; 22:760-770. [PMID: 39585959 DOI: 10.1021/acs.molpharmaceut.4c00810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Amorphous solid dispersions (ASDs) are a prevalent method for increasing the bioavailability and apparent solubility of poorly soluble drugs. Consequently, extensive research, encompassing both experimental and computational approaches, has been dedicated to developing methods for assessing the key factors influencing their stability, notably drug-polymer interactions. A common computational approach to rank the compatibility of a drug with a set of solvents or polymers is to compare thermodynamic observables, such as solvation free energies at infinite dilution. However, the impact of the molecular weight of the polymer excipient on these interactions remains underexplored. This study delves into this impact through atomistic simulations of Indomethacin in PVP(-VA) and HPMC, and through simulations using a coarse-grained model, emphasizing its critical importance. First, we demonstrate that the molecular weight of the polymer plays a pivotal role in determining the solvation free energy of the drug, at times exerting a more significant influence than the specific chemical identity of the polymer. Additionally, our simulations suggest that higher molecular weight polymers lead to lower solvation free energies and, thus, suggest better compatibility with the drug. Yet, the lower free energy of solvation of the drug in longer polymers does not translate into a higher solubility. This work highlights the subtle role polymer molecular weight plays when measuring thermodynamic observables in amorphous solid dispersions, a role which must be considered when optimizing pharmaceutical formulations.
Collapse
Affiliation(s)
- T Higginbotham
- Department of Chemical Engineering, Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, Madrid 28006, Spain
| | - K Meier
- Drug Discovery Sciences, Bayer AG, Aprather Weg 18a, Wuppertal 42113, Germany
| | - J Ramírez
- Department of Chemical Engineering, Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, Madrid 28006, Spain
| | - A Garaizar
- Drug Discovery Sciences, Bayer AG, Aprather Weg 18a, Wuppertal 42113, Germany
- Computational Life Science, Bayer AG, Alfred-Nobel-Straße 50, Monheim am Rhein 40789, Germany
| |
Collapse
|
2
|
Zhong H, Lu T, Wang R, Ouyang D. Quantitative Analysis of Physical Stability Mechanisms of Amorphous Solid Dispersions by Molecular Dynamic Simulation. AAPS J 2024; 27:9. [PMID: 39638916 DOI: 10.1208/s12248-024-01001-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024] Open
Abstract
Amorphous solid dispersions (ASDs) represent a promising strategy for enhancing the solubility of poorly soluble drugs. However, the mechanisms underlying the physical stability of ASDs remain insufficiently understood. This study aims to investigate these mechanisms and propose quantitative thresholds to predict the maximum stable drug loading using molecular dynamics simulations. Poly(vinylpyrrolidone) (PVP) and poly (vinylpyrrolidone-co-vinyl acetate) (PVPVA64) are selected as polymeric carriers, while naproxen and acetaminophen serve as model drugs, resulting in the formulation of 18 distinct ASDs across four types for comparison with experimental results. Our findings indicate that the molecular mobility of active pharmaceutical ingredients (APIs) is the primary determinant of solid dispersion stability. High polymer concentrations limit drug molecular mobility through spatial structural constraints and ASD viscosity. As drug loading increases, the polymer concentration reaches a critical threshold (C*), beyond which drug-rich regions form, leading to potential aggregation, rearrangement, and recrystallization of drug molecules into more energetically stable forms. Notably, both the interaction energy and diffusion coefficient show sharp fluctuations at the maximum stable drug loading, which can serve as predictive indicators for ASD stability. Additionally, a search strategy is used to identify potential pre-crystalline sites. By integrating kinetic, thermodynamic, and pre-crystalline analyses through molecular dynamics simulations, this study provides a foundation for more accurate predictions of ASD stability, significantly aiding future formulation development.
Collapse
Affiliation(s)
- Hao Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078, Macau, China
| | - Tianshu Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078, Macau, China
- Institute of Applied Physics and Materials Engineering, University of Macau, 999078, Macau, China
| | - Ruifeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078, Macau, China
| | - Defang Ouyang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078, Macau, China.
- Faculty of Health Sciences, University of Macau, 999078, Macau, China.
| |
Collapse
|
3
|
Jin Z, Wei Z. Molecular simulation for food protein-ligand interactions: A comprehensive review on principles, current applications, and emerging trends. Compr Rev Food Sci Food Saf 2024; 23:e13280. [PMID: 38284571 DOI: 10.1111/1541-4337.13280] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 01/30/2024]
Abstract
In recent years, investigations on molecular interaction mechanisms between food proteins and ligands have attracted much interest. The interaction mechanisms can supply much useful information for many fields in the food industry, including nutrient delivery, food processing, auxiliary detection, and others. Molecular simulation has offered extraordinary insights into the interaction mechanisms. It can reflect binding conformation, interaction forces, binding affinity, key residues, and other information that physicochemical experiments cannot reveal in a fast and detailed manner. The simulation results have proven to be consistent with the results of physicochemical experiments. Molecular simulation holds great potential for future applications in the field of food protein-ligand interactions. This review elaborates on the principles of molecular docking and molecular dynamics simulation. Besides, their applications in food protein-ligand interactions are summarized. Furthermore, challenges, perspectives, and trends in molecular simulation of food protein-ligand interactions are proposed. Based on the results of molecular simulation, the mechanisms of interfacial behavior, enzyme-substrate binding, and structural changes during food processing can be reflected, and strategies for hazardous substance detection and food flavor adjustment can be generated. Moreover, molecular simulation can accelerate food development and reduce animal experiments. However, there are still several challenges to applying molecular simulation to food protein-ligand interaction research. The future trends will be a combination of international cooperation and data sharing, quantum mechanics/molecular mechanics, advanced computational techniques, and machine learning, which contribute to promoting food protein-ligand interaction simulation. Overall, the use of molecular simulation to study food protein-ligand interactions has a promising prospect.
Collapse
Affiliation(s)
- Zihan Jin
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zihao Wei
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
4
|
Zhuo X, Foderà V, Larsson P, Schaal Z, Bergström CAS, Löbmann K, Kabedev A. Analysis of stabilization mechanisms in β-lactoglobulin-based amorphous solid dispersions by experimental and computational approaches. Eur J Pharm Sci 2024; 192:106639. [PMID: 37967658 DOI: 10.1016/j.ejps.2023.106639] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/17/2023]
Abstract
Our previous work shows that β-lactoglobulin-stabilized amorphous solid dispersion (ASD) loaded with 70 % indomethacin remains stable for more than 12 months. The stability is probably due to hydrogen bond networks spread throughout the ASD, facilitated by the indomethacin which has both hydrogen donors and acceptors. To investigate the stabilization mechanisms further, here we tested five other drug molecules, including two without any hydrogen bond donors. A combination of experimental techniques (differential scanning calorimetry, X-ray power diffraction) and molecular dynamics simulations was used to find the maximum drug loadings for ASDs with furosemide, griseofulvin, ibuprofen, ketoconazole and rifaximin. This approach revealed the underlying stabilization factors and the capacity of computer simulations to predict ASD stability. We searched the ASD models for crystalline patterns, and analyzed diffusivity of the drug molecules and hydrogen bond formation. ASDs loaded with rifaximin and ketoconazole remained stable for at least 12 months, even at 90 % drug loading, whereas stable drug loadings for furosemide, griseofulvin and ibuprofen were at a maximum of 70, 50 and 40 %, respectively. Steric confinement and hydrogen bonding to the proteins were the most important stabilization mechanisms at low drug loadings (≤ 40 %). Inter-drug hydrogen bond networks (including those with induced donors), ionic interactions, and a high Tg of the drug molecule were additional factors stabilizing the ASDs at drug loading greater than 40 %.
Collapse
Affiliation(s)
- Xuezhi Zhuo
- Department of Pharmacy, University of Copenhagen, Copenhagen 2100, Denmark
| | - Vito Foderà
- Department of Pharmacy, University of Copenhagen, Copenhagen 2100, Denmark
| | - Per Larsson
- Department of Pharmacy, Uppsala University, Uppsala 75123, Sweden
| | - Zarah Schaal
- Department of Pharmacy, University of Copenhagen, Copenhagen 2100, Denmark
| | | | - Korbinian Löbmann
- Department of Pharmacy, University of Copenhagen, Copenhagen 2100, Denmark; Zerion Pharma A/S, Birkerød 3460, Denmark
| | - Aleksei Kabedev
- Department of Pharmacy, Uppsala University, Uppsala 75123, Sweden.
| |
Collapse
|
5
|
Pajzderska A, Gonzalez MA. Molecular Dynamics Simulations of Selected Amorphous Stilbenoids and Their Amorphous Solid Dispersions with Poly(Vinylpyrrolidone). J Pharm Sci 2023; 112:2444-2452. [PMID: 36965843 DOI: 10.1016/j.xphs.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/06/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
Amorphous solid dispersions (ASDs) are one of the promising strategies to improve the solubility and dissolution rate of poorly soluble compounds. In this study, Molecular Dynamics simulations were used to investigate the interactions between three selected stilbenoids with important biological activity (resveratrol, pinostilbene and pterostilbene) and poly(vinylpyrrolidone). The analysis of the pair distribution functions and hydrogen bond distributions reveals a significant weakening of the hydrogen bond network of the stilbenoids in ASDs compared to the pure (no polymer) amorphous systems. This is accompanied by an increase in the mobility of the stilbenoid molecules in the ASDs, both in the translational dynamics determined from the molecular mean square displacements, and in the molecular reorientations followed by analysing several torsional distributions.
Collapse
Affiliation(s)
- Aleksandra Pajzderska
- A. Mickiewicz University, Faculty of Physics, Uniwersytetu Poznanskiego 2, Poznan, Poland.
| | | |
Collapse
|
6
|
Zupančič O, Spoerk M, Paudel A. Lipid-based solubilization technology via hot melt extrusion: promises and challenges. Expert Opin Drug Deliv 2022; 19:1013-1032. [PMID: 35943158 DOI: 10.1080/17425247.2022.2112173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Self-emulsifying drug delivery systems (SEDDS) are a promising strategy to improve the oral bioavailability of poorly water-soluble drugs (PWSD). The excipients of SEDDS enable permeation through the mucus and gastro-intestinal barrier, inhibiting efflux transporters (e.g. P-glycoprotein) of drugs. Poor drug loading capacity and formulation instability are the main setbacks of traditional SEDDS. The use of polymeric precipitation inhibitors was shown to create supersaturable SEDDS with increased drug payload, and their solidification can help to overcome the instability challenge. As an alternative to several existing SEDDS solidification technologies, hot melt extrusion (HME) holds the potential for lean and continuous manufacturing of supersaturable solid-SEDDS. Despite being ubiquitously applied in solid lipid and polymeric processing, HME has not yet been widely considered for the preparation of SEDDS. AREAS COVERED The review begins with the rationale why SEDDS as the preferred lipid-based delivery systems (LBDS) is suitable for the oral delivery of PWSD and discusses the common barriers to oral administration. The potential of LBDS to surmount them is discussed. SEDDS as the flagship of LBDS for PWSD is proposed with a special emphasis on solid-SEDDS. Finally, the opportunities and challenges of HME from the lipid-based excipient (LBE) processing and product performance standpoint are highlighted. EXPERT OPINION HME can be a continuous, solvent-free, cost-effective, and scalable technology for manufacturing solid supersaturable SEDDS. Several critical formulations and process parameters in successfully preparing SEDDS via HME are identified.
Collapse
Affiliation(s)
- Ožbej Zupančič
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Martin Spoerk
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria.,Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010 Graz, Austria
| |
Collapse
|
7
|
Zhang S, Zhang X, Meng J, Lu L, Du S, Xu H, Wu S. Study on the Effect of Polymer Excipients on the Dispersibility, Interaction, Solubility, and Scavenging Reactive Oxygen Species of Myricetin Solid Dispersion: Experiment and Molecular Simulation. ACS OMEGA 2022; 7:1514-1526. [PMID: 35036814 PMCID: PMC8756572 DOI: 10.1021/acsomega.1c06329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/23/2021] [Indexed: 05/12/2023]
Abstract
Although the preparation of amorphous solid dispersions can improve the solubility of crystalline drugs, there is still a lack of guidance on the micromechanism in the screening and evaluation of polymer excipients. In this study, a particular method of experimental characterization combined with molecular simulation was attempted on solubilization of myricetin (MYR) by solid dispersion. According to the analysis of the dispersibility and hydrogen-bond interaction, the effectiveness of the solid dispersion and the predicted sequence of poly(vinyl pyrrolidone) (PVP) > hypromellose (HPMC) > poly(ethylene glycol) (PEG) as the polymer excipient were verified. Through the dissolution, cell viability, and reactive oxygen species (ROS)-level detection, the reliability of simulation and micromechanism analysis was further confirmed. This work not only provided the theoretical guidance and screening basis for the miscibility of solid dispersions from the microscopic level but also served as a reference for the modification of new drugs.
Collapse
Affiliation(s)
- Sidian Zhang
- State
Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xue Zhang
- Institute
of Basic Medical Sciences, Chinese Academy
of Medical Sciences & Peking Union Medical College, Beijing 100005, P. R. China
| | - Jie Meng
- Institute
of Basic Medical Sciences, Chinese Academy
of Medical Sciences & Peking Union Medical College, Beijing 100005, P. R. China
| | - Ling Lu
- State
Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Shanda Du
- State
Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Haiyan Xu
- Institute
of Basic Medical Sciences, Chinese Academy
of Medical Sciences & Peking Union Medical College, Beijing 100005, P. R. China
| | - Sizhu Wu
- State
Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
8
|
Edueng K, Kabedev A, Ekdahl A, Mahlin D, Baumann J, Mudie D, Bergström CAS. Pharmaceutical profiling and molecular dynamics simulations reveal crystallization effects in amorphous formulations. Int J Pharm 2021; 613:121360. [PMID: 34896563 DOI: 10.1016/j.ijpharm.2021.121360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/30/2021] [Accepted: 12/04/2021] [Indexed: 10/19/2022]
Abstract
Robust and reliable in vivo performance of medicines based on amorphous solid dispersions (ASDs) depend on maintenance of physical stability and efficient supersaturation. However, molecular drivers of these two kinetic processes are poorly understood. Here we used molecular dynamics (MD) simulations coupled with experimental assessments to explore supersaturation, nucleation, and crystal growth. The effect of drug loading on physical stability and supersaturation potential was highly drug specific. Storage under humid conditions influenced crystallization, but also resulted in morphological changes and particle fusion. This led to increased particle size, which significantly reduced dissolution rate. MD simulations identified the importance of nano-compartmentalization in the crystallization rate of the ASDs. Nucleation during storage did not inherently compromise the ASD. Rather, the poorer performance resulted from a combination of properties of the compound, nanostructures formed in the formulation, and crystallization.
Collapse
Affiliation(s)
- Khadijah Edueng
- Department of Pharmacy, Uppsala University, Husargatan 3, 75 123 Uppsala, Sweden
| | - Aleksei Kabedev
- Department of Pharmacy, Uppsala University, Husargatan 3, 75 123 Uppsala, Sweden
| | - Alyssa Ekdahl
- Cockrell School of Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Denny Mahlin
- Department of Pharmacy, Uppsala University, Husargatan 3, 75 123 Uppsala, Sweden; AstraZeneca Operations, Forskargatan 18, 151 85 Södertälje, Sweden
| | - John Baumann
- Global Research and Development, Lonza, Bend, OR 97703, USA
| | - Deanna Mudie
- Global Research and Development, Lonza, Bend, OR 97703, USA
| | - Christel A S Bergström
- Department of Pharmacy, Uppsala University, Husargatan 3, 75 123 Uppsala, Sweden; The Swedish Drug Delivery Center, Department of Pharmacy, Uppsala University, Husargatan 3, 75123 Uppsala, Sweden.
| |
Collapse
|
9
|
Influence of excipients on thermodynamic phase behavior of pharmaceutical/solvent systems: Molecular thermodynamic model prediction. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
10
|
Tsiaxerli A, Karagianni A, Ouranidis A, Kachrimanis K. Polyelectrolyte Matrices in the Modulation of Intermolecular Electrostatic Interactions for Amorphous Solid Dispersions: A Comprehensive Review. Pharmaceutics 2021; 13:pharmaceutics13091467. [PMID: 34575543 PMCID: PMC8468962 DOI: 10.3390/pharmaceutics13091467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/04/2021] [Accepted: 09/09/2021] [Indexed: 12/05/2022] Open
Abstract
Polyelectrolyte polymers have been widely used in the pharmaceutical field as excipients to facilitate various drug delivery systems. Polyelectrolytes have been used to modulate the electrostatic environment and enhance favorable interactions between the drug and the polymer in amorphous solid dispersions (ASDs) prepared mainly by hot-melt extrusion. Polyelectrolytes have been used alone, or in combination with nonionic polymers as interpolyelectrolyte complexes, or after the addition of small molecular additives. They were found to enhance physical stability by favoring stabilizing intermolecular interactions, as well as to exert an antiplasticizing effect. Moreover, they not only enhance drug dissolution, but they have also been used for maintaining supersaturation, especially in the case of weakly basic drugs that tend to precipitate in the intestine. Additional uses include controlled and/or targeted drug release with enhanced physical stability and ease of preparation via novel continuous processes. Polyelectrolyte matrices, used along with scalable manufacturing methods in accordance with green chemistry principles, emerge as an attractive viable alternative for the preparation of ASDs with improved physical stability and biopharmaceutic performance.
Collapse
Affiliation(s)
- Anastasia Tsiaxerli
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.T.); (A.K.); (A.O.)
| | - Anna Karagianni
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.T.); (A.K.); (A.O.)
| | - Andreas Ouranidis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.T.); (A.K.); (A.O.)
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Kyriakos Kachrimanis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.T.); (A.K.); (A.O.)
- Correspondence: ; Tel.: +30-2310-997666
| |
Collapse
|
11
|
Thakore SD, Akhtar J, Jain R, Paudel A, Bansal AK. Analytical and Computational Methods for the Determination of Drug-Polymer Solubility and Miscibility. Mol Pharm 2021; 18:2835-2866. [PMID: 34041914 DOI: 10.1021/acs.molpharmaceut.1c00141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the pharmaceutical industry, poorly water-soluble drugs require enabling technologies to increase apparent solubility in the biological environment. Amorphous solid dispersion (ASD) has emerged as an attractive strategy that has been used to market more than 20 oral pharmaceutical products. The amorphous form is inherently unstable and exhibits phase separation and crystallization during shelf life storage. Polymers stabilize the amorphous drug by antiplasticization, reducing molecular mobility, reducing chemical potential of drug, and increasing glass transition temperature in ASD. Here, drug-polymer miscibility is an important contributor to the physical stability of ASDs. The current Review discusses the basics of drug-polymer interactions with the major focus on the methods for the evaluation of solubility and miscibility of the drug in the polymer. Methods for the evaluation of drug-polymer solubility and miscibility have been classified as thermal, spectroscopic, microscopic, solid-liquid equilibrium-based, rheological, and computational methods. Thermal methods have been commonly used to determine the solubility of the drug in the polymer, while other methods provide qualitative information about drug-polymer miscibility. Despite advancements, the majority of these methods are still inadequate to provide the value of drug-polymer miscibility at room temperature. There is still a need for methods that can accurately determine drug-polymer miscibility at pharmaceutically relevant temperatures.
Collapse
Affiliation(s)
- Samarth D Thakore
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Junia Akhtar
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Ranjna Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering (RCPE) GmbH, Inffeldgasse 13, 8010 Graz, Austria.,Institute for Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010 Graz, Austria
| | - Arvind K Bansal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| |
Collapse
|
12
|
Walden DM, Bundey Y, Jagarapu A, Antontsev V, Chakravarty K, Varshney J. Molecular Simulation and Statistical Learning Methods toward Predicting Drug-Polymer Amorphous Solid Dispersion Miscibility, Stability, and Formulation Design. Molecules 2021; 26:E182. [PMID: 33401494 PMCID: PMC7794704 DOI: 10.3390/molecules26010182] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/20/2022] Open
Abstract
Amorphous solid dispersions (ASDs) have emerged as widespread formulations for drug delivery of poorly soluble active pharmaceutical ingredients (APIs). Predicting the API solubility with various carriers in the API-carrier mixture and the principal API-carrier non-bonding interactions are critical factors for rational drug development and formulation decisions. Experimental determination of these interactions, solubility, and dissolution mechanisms is time-consuming, costly, and reliant on trial and error. To that end, molecular modeling has been applied to simulate ASD properties and mechanisms. Quantum mechanical methods elucidate the strength of API-carrier non-bonding interactions, while molecular dynamics simulations model and predict ASD physical stability, solubility, and dissolution mechanisms. Statistical learning models have been recently applied to the prediction of a variety of drug formulation properties and show immense potential for continued application in the understanding and prediction of ASD solubility. Continued theoretical progress and computational applications will accelerate lead compound development before clinical trials. This article reviews in silico research for the rational formulation design of low-solubility drugs. Pertinent theoretical groundwork is presented, modeling applications and limitations are discussed, and the prospective clinical benefits of accelerated ASD formulation are envisioned.
Collapse
Affiliation(s)
| | | | | | | | | | - Jyotika Varshney
- VeriSIM Life Inc., 1 Sansome St, Suite 3500, San Francisco, CA 94104, USA; (D.M.W.); (Y.B.); (A.J.); (V.A.); (K.C.)
| |
Collapse
|
13
|
Abstract
Molecular dynamics (MD) simulations have become increasingly useful in the modern drug development process. In this review, we give a broad overview of the current application possibilities of MD in drug discovery and pharmaceutical development. Starting from the target validation step of the drug development process, we give several examples of how MD studies can give important insights into the dynamics and function of identified drug targets such as sirtuins, RAS proteins, or intrinsically disordered proteins. The role of MD in antibody design is also reviewed. In the lead discovery and lead optimization phases, MD facilitates the evaluation of the binding energetics and kinetics of the ligand-receptor interactions, therefore guiding the choice of the best candidate molecules for further development. The importance of considering the biological lipid bilayer environment in the MD simulations of membrane proteins is also discussed, using G-protein coupled receptors and ion channels as well as the drug-metabolizing cytochrome P450 enzymes as relevant examples. Lastly, we discuss the emerging role of MD simulations in facilitating the pharmaceutical formulation development of drugs and candidate drugs. Specifically, we look at how MD can be used in studying the crystalline and amorphous solids, the stability of amorphous drug or drug-polymer formulations, and drug solubility. Moreover, since nanoparticle drug formulations are of great interest in the field of drug delivery research, different applications of nano-particle simulations are also briefly summarized using multiple recent studies as examples. In the future, the role of MD simulations in facilitating the drug development process is likely to grow substantially with the increasing computer power and advancements in the development of force fields and enhanced MD methodologies.
Collapse
|
14
|
Jafar M, Khalid MS, Aldossari MFE, Amir M, Alshaer FI, Adrees FAA, Gilani SJ, Alshehri S, Hassan MZ, Imam SS. Formulation of Curcumin-β-cyclodextrin-polyvinylpyrrolidone supramolecular inclusion complex: experimental, molecular docking, and preclinical anti-inflammatory assessment. Drug Dev Ind Pharm 2020; 46:1524-1534. [PMID: 32808552 DOI: 10.1080/03639045.2020.1810268] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This research planned to ameliorate an aqueous solubility and dissolution of Curcumin (CUR) by the formulation of inclusion complex with β-cyclodextrin (β-CD) and polyvinylpyrrolidone (PVP). The phase solubility study was performed to assess the solubility of CUR. The prepared CUR complex assessed for dissolution study, physicochemical evaluation, in-vitro antioxidant activity, molecular modeling, and anti-inflammatory assessment. The pivotal findings of phase-solubility studies demonstrate apparent stability constant (Kc) and complexation efficiency (CE) values for CUR-β-CD and CUR-β-CD-PVP complex was 175.4 M -1, 1.15% and 833.3.2 M -1 and 5.21%, respectively. The characterization results revealed amorphization of crystalline state (CUR) into amorphous state. The maximum drug release found with the ternary CUR complex (F7), i.e. 45.41 ± 3.78% in 6 h study. The chemical shift in the NMR supports that the aromatic ring of CUR is completely complexed inside the β-CD cavity. The antioxidant activity of pure CUR was found to be 58.02 ± 2.21% and CUR ternary complex (F7) showed significantly higher activity to 96.02 ± 2.46%. The in-vivo effect of CUR complex (F7) was also found significantly higher than that of pure CUR. The molecular modeling study depicted that PVP increased the stability of the ternary complex by forming the link between CUR and β-CD. Thus, the ternary inclusion complex of CUR-β-CD-PVP could contribute as an innovative outcome in the enhancement of solubility and in-vivo activity.
Collapse
Affiliation(s)
- Mohammed Jafar
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammed Saifuddin Khalid
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mashael Fehaid Eid Aldossari
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohd Amir
- Department of Natural Products and Alternative Medicine, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Fatima Ibrahim Alshaer
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Fatima Ali Abdullah Adrees
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Sadaf Jamal Gilani
- Department of Basic Health Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,College of Pharmacy, Almaarefa University, Riyadh, Saudi Arabia
| | - Mohd Zaheen Hassan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
15
|
Alruwaili NK, Zafar A, Imam SS, Alharbi KS, Alshehri S, Elsaman T, Alomar FA, Akhtar S, Fahmy UA, Alhakamy NA, Alshammari MS. Formulation of amorphous ternary solid dispersions of dapagliflozin using PEG 6000 and Poloxamer 188: solid-state characterization, ex vivo study, and molecular simulation assessment. Drug Dev Ind Pharm 2020; 46:1458-1467. [PMID: 32729728 DOI: 10.1080/03639045.2020.1802482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The present study was designed to prepare dapagliflozin (DFG) loaded ternary solid dispersions (SDs) using the carrier blend polyethylene glycol 6000 (PEG 6000) and poloxamer 188 (PLX 188). The prepared DFG-SDs were evaluated for solubility study, physicochemical characterization and molecular simulation study. The prepared DFG-SDs showed significant higher solubility and dissolution vis-a-vis pure DFG and DFG physical mixture. The composition DFG:PEG:PLX (1:2.25:0.75 mM) showed the highest solubility (0.476 ± 0.016 mg/mL). The physicochemical characterization confirms the polymorphic transition of DFG from crystalline state to stable amorphous form. The prepared DFG-SDs showed a significantly higher dissolution (64.78 ± 2.34% to 78.41 ± 2.39%) than pure DFG (15.70 ± 3.54%). DFG-SD2 showed a significantly enhanced drug permeation (p<.05) (58.76 ± 4.65 µg/cm) as compared to pure DFG (14.97 ± 3.32 µg/cm). The molecular docking study result revealed a good hydrophobic interaction of DFG with the used carrier due to the lowest energy pose. The interaction occurs between the methylene bridges and the central hydrophobic chain of polyoxypropylene of the polymer. Therefore, DFG-SDs prepared by microwave irradiation method using hydrophilic carrier blend might be a promising strategy for improving the solubility and in vitro dissolution performance.
Collapse
Affiliation(s)
- Nabil K Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,College of Pharmacy, Almaarefa University, Riyadh, Saudi Arabia
| | - Tilal Elsaman
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia.,Faculty of Pharmacy, Omdurman Islamic University, Omdurman, Sudan
| | - Fadhel Ahmed Alomar
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Sultan Akhtar
- Department of Biophysics Research, Institute for Research and Medical Consultant, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Usama A Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Salem Alshammari
- Department of Pharmacy Practice, Unaizah College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
16
|
Matić J, Paudel A, Bauer H, Garcia RAL, Biedrzycka K, Khinast JG. Developing HME-Based Drug Products Using Emerging Science: a Fast-Track Roadmap from Concept to Clinical Batch. AAPS PharmSciTech 2020; 21:176. [PMID: 32572701 PMCID: PMC7308264 DOI: 10.1208/s12249-020-01713-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022] Open
Abstract
This paper presents a rational workflow for developing enabling formulations, such as amorphous solid dispersions, via hot-melt extrusion in less than a year. First, our approach to an integrated product and process development framework is described, including state-of-the-art theoretical concepts, modeling, and experimental characterization described in the literature and developed by us. Next, lab-scale extruder setups are designed (processing conditions and screw design) based on a rational, model-based framework that takes into account the thermal load required, the mixing capabilities, and the thermo-mechanical degradation. The predicted optimal process setup can be validated quickly in the pilot plant. Lastly, a transfer of the process to any GMP-certified manufacturing site can be performed in silico for any extruder based on our validated computational framework. In summary, the proposed workflow massively reduces the risk in product and process development and shortens the drug-to-market time for enabling formulations.
Collapse
Affiliation(s)
- Josip Matić
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria.
- Institute for Process and Particle Engineering, Graz University of Technology, Graz, Austria.
| | - Hannes Bauer
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria
| | | | | | - Johannes G Khinast
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria.
- Institute for Process and Particle Engineering, Graz University of Technology, Graz, Austria.
| |
Collapse
|
17
|
Kapourani A, Chatzitheodoridou M, Kontogiannopoulos KN, Barmpalexis P. Experimental, Thermodynamic, and Molecular Modeling Evaluation of Amorphous Simvastatin-Poly(vinylpyrrolidone) Solid Dispersions. Mol Pharm 2020; 17:2703-2720. [PMID: 32520564 DOI: 10.1021/acs.molpharmaceut.0c00413] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A crucial step for the selection of proper amorphous solid dispersion (ASD) matrix carriers is the in-depth assessment of drug/polymer physicochemical properties. In this context, the present study extends the work of previously published attempts by evaluating the formation of simvastatin (SIM)-poly(vinylpyrrolidone) (PVP) ASDs with the aid of thermodynamic and molecular modeling. Specifically, the implementation of both Flory-Huggins lattice theory and molecular dynamics (MD) simulations was able to predict the miscibility between the two components (a finding that was experimentally verified via differential scanning calorimetry (DSC) and hot stage polarized microscopy), while a complete temperature-concentration phase-transition profile was constructed, leading to the identification of the thermodynamically metastable and unstable ASD zones. Furthermore, as in the case of previously published reports, the analysis of the ASDs via Fourier transform infrared spectroscopy did not clarify the type and extent of observed molecular interactions. Hence, in the present study, a computer-based MD simulation model was developed for the first time in order to gain an insight into the properties of the observed interactions. MD amorphous assemblies of SIM, PVP, and their mixtures were initially developed, and the calculated glass transition temperatures were in close agreement with experimentally obtained results, indicating that the developed models could be considered as realistic representations of the actual systems. Furthermore, molecular interactions evaluation via radial distribution function and radius of gyration analysis revealed that increasing SIM content results in a significant PVP chain shrinkage, which eventually leads to SIM-SIM amorphous intermolecular interactions, leading to the formation of amorphous drug zones. Finally, MD-based results were experimentally verified via DSC.
Collapse
Affiliation(s)
- Afroditi Kapourani
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Melina Chatzitheodoridou
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Konstantinos N Kontogiannopoulos
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.,Ecoresources P.C., 15-17 Giannitson-Santaroza Str., Thessaloniki 54627, Greece
| | - Panagiotis Barmpalexis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
18
|
Maleki R, Afrouzi HH, Hosseini M, Toghraie D, Piranfar A, Rostami S. pH-sensitive loading/releasing of doxorubicin using single-walled carbon nanotube and multi-walled carbon nanotube: A molecular dynamics study. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 186:105210. [PMID: 31759297 DOI: 10.1016/j.cmpb.2019.105210] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Doxorubicin is one of the drugs used to treat cancer, and many studies have been conducted to control its release. In this study, carbon nanotubes have been proposed as a doxorubicin carrier, and the effect of carboxyl functional group on the controlled release of doxorubicin has been studied. METHODS This study has been done by molecular dynamics simulation and was based on changing the pH as a mechanism controller. RESULTS This work is intended to test the efficacy of this drug carrier for the release of doxorubicin. A comparison was also made between single-walled and double-walled carbon nanotubes to answer the question of which one can be a better carrier for doxorubicin. The study of DOXORUBICIN adsorption and release showed that the DOXORUBICIN adsorption on single-walled carbon nanotube and multi-walled carbon nanotube in neutral pH was stronger than it was in acidic pH, which could be due to the electrostatic interactions between the carboxyl group of nanotubes and DOXORUBICIN. Based on this and according to the investigation of hydrogen bonds, diffusion coefficients, and other results it was clear that the drug release in acidic pH was appropriate for body conditions. Since cancer tissues pH is acidic, this shows the suitability of carbon nanotube in drug delivery and DOXORUBICIN release in cancer tissues. In addition, it was shown that the blood pH (pH = 7) is suitable for DOXORUBICIN loading on the carbon nanotube and carbon nanotube-DOXORUBICIN linkage remained stable at this pH; accordingly, the carbon nanotube could deliver DOXORUBICIN in blood quite well and release it in cancerous tissues. This suggests the carbon nanotubes as a promising drug carrier in the cancer therapy which can be also investigated in experiments. CONCLUSION It was revealed that the bonds between multi-walled carbon nanotube and DOXORUBICIN was stronger and this complex had a slower release in the cancer tissues compared to the single-walled carbon nanotube; this can be regarded as an advantage over the single-walled carbon nanotube in the DOXORUBICIN delivery and release.
Collapse
Affiliation(s)
- Reza Maleki
- Department of Chemical Engineering, Shiraz University, Shiraz, Iran
| | | | - Mirollah Hosseini
- Department of Mechanical Engineering, Islamic Azad University, Qaemshahr Branch, Qaemshahr, Mazandaran, Iran
| | - Davood Toghraie
- Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran
| | - Anahita Piranfar
- Biomechanic Department, Biomedical Engineering Faculty, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Sara Rostami
- Laboratory of Magnetism and Magnetic Materials, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
19
|
Bookwala M, DeBoyace K, Buckner IS, Wildfong PLD. Predicting Density of Amorphous Solid Materials Using Molecular Dynamics Simulation. AAPS PharmSciTech 2020; 21:96. [PMID: 32103355 DOI: 10.1208/s12249-020-1632-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/29/2020] [Indexed: 11/30/2022] Open
Abstract
The true density of an amorphous solid is an important parameter for studying and modeling materials behavior. Experimental measurements of density using helium pycnometry are standard but may be prevented if the material is prone to rapid recrystallization, or preparation of gram quantities of reproducible pure component amorphous materials proves impossible. The density of an amorphous solid can be approximated by assuming it to be 95% of its respective crystallographic density; however, this can be inaccurate or impossible if the crystal structure is unknown. Molecular dynamic simulations were used to predict the density of 20 amorphous solid materials. The calculated density values for 10 amorphous solids were compared with densities that were experimentally determined using helium pycnometry. In these cases, the amorphous densities calculated using molecular dynamics had an average percent error of - 0.7% relative to the measured values, with a maximum error of - 3.48%. In contrast, comparisons of amorphous density approximated from crystallographic structures with pycnometrically measured values resulted in an average percent error of + 3.7%, with a maximum error of + 9.42%. These data suggest that the density of an amorphous solid can be accurately predicted using molecular dynamic simulations and allowed reliable calculation of density for the remaining 10 materials for which pycnometry could not be done.
Collapse
|
20
|
Cao X, Ashfaq R, Cheng F, Maharjan S, Li J, Ying G, Hassan S, Xiao H, Yue K, Zhang YS. A Tumor-on-a-Chip System with Bioprinted Blood and Lymphatic Vessel Pair. ADVANCED FUNCTIONAL MATERIALS 2019; 29:1807173. [PMID: 33041741 PMCID: PMC7546431 DOI: 10.1002/adfm.201807173] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Indexed: 05/20/2023]
Abstract
Current in vitro anti-tumor drug screening strategies are insufficiently portrayed lacking true perfusion and draining microcirculation systems, which may post significant limitation in reproducing the transport kinetics of cancer therapeutics explicitly. Herein, we report the fabrication of an improved tumor model consisting of bioprinted hollow blood vessel and lymphatic vessel pair, hosted in a three-dimensional (3D) tumor microenvironment-mimetic hydrogel matrix, termed as the tumor-on-a-chip with bioprinted blood and lymphatic vessel pair (TOC-BBL). The bioprinted blood vessel was perfusable channel with opening on both ends while the bioprinted lymphatic vessel was blinded on one end, both of which were embedded in a hydrogel tumor mass, with vessel permeability individually tunable through optimization of the composition of the bioinks. We demonstrated that systems with different combinations of these bioprinted blood/lymphatic vessels exhibited varying levels of diffusion profiles for biomolecules and anti-cancer drugs. Our TOC-BBL platform mimicking the natural pathway of drug-tumor interactions would have the drug introduced through the perfusable blood vessel, cross the vascular wall into the tumor tissue via diffusion, and eventually drained into the lymphatic vessel along with the carrier flow. Our results suggested that this unique in vitro tumor model containing the bioprinted blood/lymphatic vessel pair may have the capacity of simulating the complex transport mechanisms of certain pharmaceutical compounds inside the tumor microenvironment, potentially providing improved accuracy in future cancer drug screening.
Collapse
Affiliation(s)
- Xia Cao
- Division of Engineering in Medicine, Brigham and Women’s Hospital; Department of Medicine, Harvard Medical School Cambridge, MA, 02139; Department of Pharmaceutics and Tissue Engineering, School of Pharmacy, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Ramla Ashfaq
- Division of Engineering in Medicine, Brigham and Women’s Hospital; Department of Medicine, Harvard Medical School Cambridge, MA, 02139; National Center of Excellence in Molecular Biology, University of the Punjab, 87 West Canal Bank Rd, Thokar Niaz Baig, Lahore 53700, Pakistan
| | - Feng Cheng
- Division of Engineering in Medicine, Brigham and Women’s Hospital; Department of Medicine, Harvard Medical School Cambridge, MA, 02139
| | - Sushila Maharjan
- Division of Engineering in Medicine, Brigham and Women’s Hospital; Department of Medicine, Harvard Medical School Cambridge, MA, 02139
| | - Jun Li
- Division of Engineering in Medicine, Brigham and Women’s Hospital; Department of Medicine, Harvard Medical School Cambridge, MA, 02139
| | - Guoliang Ying
- Division of Engineering in Medicine, Brigham and Women’s Hospital; Department of Medicine, Harvard Medical School Cambridge, MA, 02139
| | - Shabir Hassan
- Division of Engineering in Medicine, Brigham and Women’s Hospital; Department of Medicine, Harvard Medical School Cambridge, MA, 02139
| | - Haiyan Xiao
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, P.R. China State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P.R. China
| | - Kan Yue
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, P.R. China State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P.R. China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Brigham and Women’s Hospital; Department of Medicine, Harvard Medical School Cambridge, MA, 02139
| |
Collapse
|