1
|
Development of Robust Tablet Formulations with Enhanced Drug Dissolution Profiles from Centrifugally-Spun Micro-Fibrous Solid Dispersions of Itraconazole, a BCS Class II Drug. Pharmaceutics 2023; 15:pharmaceutics15030802. [PMID: 36986664 PMCID: PMC10053999 DOI: 10.3390/pharmaceutics15030802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
Fibre-based oral drug delivery systems are an attractive approach to addressing low drug solubility, although clear strategies for incorporating such systems into viable dosage forms have not yet been demonstrated. The present study extends our previous work on drug-loaded sucrose microfibres produced by centrifugal melt spinning to examine systems with high drug loading and investigates their incorporation into realistic tablet formulations. Itraconazole, a model BCS Class II hydrophobic drug, was incorporated into sucrose microfibres at 10, 20, 30, and 50% w/w. Microfibres were exposed to high relative humidity conditions (25 °C/75% RH) for 30 days to deliberately induce sucrose recrystallisation and collapse of the fibrous structure into powdery particles. The collapsed particles were successfully processed into pharmaceutically acceptable tablets using a dry mixing and direct compression approach. The dissolution advantage of the fresh microfibres was maintained and even enhanced after humidity treatment for drug loadings up to 30% w/w and, importantly, retained after compression into tablets. Variations in excipient content and compression force allowed manipulation of the disintegration rate and drug content of the tablets. This then permitted control of the rate of supersaturation generation, allowing the optimisation of the formulation in terms of its dissolution profile. In conclusion, the microfibre-tablet approach has been shown to be a viable method for formulating poorly soluble BCS Class II drugs with improved dissolution performance.
Collapse
|
2
|
Rao L, Bhardwaj BY, Chugh M, Sharma A, Shah R, Minocha N, Pandey P. Enhanced Efficacy of Carvedilol by Utilization of Solid Dispersion and Other Novel Strategies: A Review. Cardiovasc Hematol Disord Drug Targets 2023; 23:141-156. [PMID: 37953616 DOI: 10.2174/011871529x247622231101075854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/04/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023]
Abstract
Carvedilol is classified as a second class drug of Biopharmaceutical classification system (BCS), and it is an excellent beta blocker and vasodilating agent. It is used in a diverse range of disease states. Despite having tremendous advantages, the drug cannot be used effectively and productively due to aquaphobicity and poor bioavailability. To overcome this limitation, numerous novel approaches and tactics have been introduced over the past few years, such as Selfmicro emulsifying drug delivery systems (SMEDDS), nanoparticles, solid dispersions and liposomal drug delivery. The present review aims to accentuate the role of solid dispersion in improving the dissolution profile and aqua solubility of carvedilol and also to emphasize other novel formulations of carvedilol proposed to prevail the limitations of carvedilol. Solid dispersion and other novel approaches were found to play a significant role in overcoming the drawbacks of carvedilol, among which solid dispersion is the most feasible and effective approach being used worldwide. Reduced particle size, more wettability, and large surface area are obtained by the implementation of solid dispersion technique, hence improving carvedilol solubility and bioavailability.
Collapse
Affiliation(s)
- Lakshita Rao
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram - 122018, Haryana, India
| | - Bigul Yogeshver Bhardwaj
- Institute of Pharmaceutical Sciences, Shoolini University, Solan - 173229, Himachal Pradesh, India
| | - Mahek Chugh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak - 124001, Haryana, India
| | - Ashish Sharma
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram - 122018, Haryana, India
| | - Rashmi Shah
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak - 124001, Haryana, India
| | - Neha Minocha
- Chitkara School of Pharmacy, Chitkara University, Baddi - 174103, Himachal Pradesh, India
| | - Parijat Pandey
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram - 122018, Haryana, India
| |
Collapse
|
3
|
Nambiar AG, Singh M, Mali AR, Serrano DR, Kumar R, Healy AM, Agrawal AK, Kumar D. Continuous Manufacturing and Molecular Modeling of Pharmaceutical Amorphous Solid Dispersions. AAPS PharmSciTech 2022; 23:249. [PMID: 36056225 DOI: 10.1208/s12249-022-02408-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
Amorphous solid dispersions enhance solubility and oral bioavailability of poorly water-soluble drugs. The escalating number of drugs with poor aqueous solubility, poor dissolution, and poor oral bioavailability is an unresolved problem that requires adequate interventions. This review article highlights recent solubility and bioavailability enhancement advances using amorphous solid dispersions (ASDs). The review also highlights the mechanism of enhanced dissolution and the challenges faced by ASD-based products, such as stability and scale-up. The role of process analytical technology (PAT) supporting continuous manufacturing is highlighted. Accurately predicting interactions between the drug and polymeric carrier requires long experimental screening methods, and this is a space where computational tools hold significant potential. Recent advancements in data science, computational tools, and easy access to high-end computation power are set to accelerate ASD-based research. Hence, particular emphasis has been given to molecular modeling techniques that can address some of the unsolved questions related to ASDs. With the advancement in PAT tools and artificial intelligence, there is an increasing interest in the continuous manufacturing of pharmaceuticals. ASDs are a suitable option for continuous manufacturing, as production of a drug product from an ASD by direct compression is a reality, where the addition of multiple excipients is easy to avoid. Significant attention is necessary for ongoing clinical studies based on ASDs, which is paving the way for the approval of many new ASDs and their introduction into the market.
Collapse
Affiliation(s)
- Amritha G Nambiar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Maan Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Abhishek R Mali
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | | | - Rajnish Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Anne Marie Healy
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Dinesh Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India.
| |
Collapse
|
4
|
Ren J, Mao S, Lin J, Xu Y, Zhu Q, Xu N. Research Progress of Raman Spectroscopy and Raman Imaging in Pharmaceutical Analysis. Curr Pharm Des 2022; 28:1445-1456. [PMID: 35593344 DOI: 10.2174/1381612828666220518145635] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/03/2022] [Indexed: 11/22/2022]
Abstract
The analytical investigation of the pharmaceutical process monitors the critical process parameters of the drug, beginning from its development until marketing and postmarketing, and appropriate corrective action can be taken to change the pharmaceutical design at any stage of the process. Advanced analytical methods, such as Raman spectroscopy, are particularly suitable for use in the field of drug analysis, especially for qualitative and quantitative work, due to the advantages of simple sample preparation, fast, nondestructive analysis speed, and effective avoidance of moisture interference. Advanced Raman imaging techniques have gradually become a powerful alternative method for monitoring changes in polymorph distribution and active pharmaceutical ingredient distribution in drug processing and pharmacokinetics. Surface-enhanced Raman spectroscopy (SERS) has also solved the inherent insensitivity and fluorescence problems of Raman, which has made good progress in the field of illegal drug analysis. This review summarizes the application of Raman spectroscopy and imaging technology, which are used in the qualitative and quantitative analysis of solid tablets, quality control of the production process, drug crystal analysis, illegal drug analysis, and monitoring of drug dissolution and release in the field of drug analysis in recent years.
Collapse
Affiliation(s)
- Jie Ren
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, People\'s Republic of China
| | - Shijie Mao
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, People\'s Republic of China
| | - Jidong Lin
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, People\'s Republic of China
| | - Ying Xu
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, People\'s Republic of China
| | - Qiaoqiao Zhu
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, People\'s Republic of China
| | - Ning Xu
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, People\'s Republic of China
| |
Collapse
|
5
|
Szabó E, Záhonyi P, Gyürkés M, Nagy B, Galata DL, Madarász L, Hirsch E, Farkas A, Andersen SK, Vígh T, Verreck G, Csontos I, Marosi G, Nagy ZK. Continuous downstream processing of milled electrospun fibers to tablets monitored by near-infrared and Raman spectroscopy. Eur J Pharm Sci 2021; 164:105907. [PMID: 34118411 DOI: 10.1016/j.ejps.2021.105907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/30/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
Electrospinning is a technology for manufacture of nano- and micro-sized fibers, which can enhance the dissolution properties of poorly water-soluble drugs. Tableting of electrospun fibers have been demonstrated in several studies, however, continuous manufacturing of tablets have not been realized yet. This research presents the first integrated continuous processing of milled drug-loaded electrospun materials to tablet form supplemented by process analytical tools for monitoring the active pharmaceutical ingredient (API) content. Electrospun fibers of an amorphous solid dispersion (ASD) of itraconazole and poly(vinylpyrrolidone-co-vinyl acetate) were produced using high speed electrospinning and afterwards milled. The milled fibers with an average fiber diameter of 1.6 ± 0.9 µm were continuously fed with a vibratory feeder into a twin-screw blender, which was integrated with a tableting machine to prepare tablets with ~ 10 kN compression force. The blend of fibers and excipients leaving the continuous blender was characterized with a bulk density of 0.43 g/cm3 and proved to be suitable for direct tablet compression. The ASD content, and thus the API content was determined in-line before tableting and at-line after tableting using near-infrared and Raman spectroscopy. The prepared tablets fulfilled the USP <905> content uniformity requirement based on the API content of ten randomly selected tablets. This work highlights that combining the advantages of electrospinning (e.g. less solvent, fast and gentle drying, low energy consumption, and amorphous products with high specific surface area) and the continuous technologies opens a new and effective way in the field of manufacturing of the poorly water-soluble APIs.
Collapse
Affiliation(s)
- Edina Szabó
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Petra Záhonyi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Martin Gyürkés
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Brigitta Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Dorián L Galata
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Lajos Madarász
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Edit Hirsch
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Attila Farkas
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Sune K Andersen
- Oral Solids Development, Janssen R&D, B-2340 Beerse, Turnhoutseweg 30, Belgium
| | - Tamás Vígh
- Oral Solids Development, Janssen R&D, B-2340 Beerse, Turnhoutseweg 30, Belgium
| | - Geert Verreck
- Oral Solids Development, Janssen R&D, B-2340 Beerse, Turnhoutseweg 30, Belgium
| | - István Csontos
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - György Marosi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Zsombor K Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary.
| |
Collapse
|
6
|
Liu M, Lai Z, Zhu L, Ding X, Tong X, Wang Z, Bi Q, Tan N. Novel amorphous solid dispersion based on natural deep eutectic solvent for enhancing delivery of anti-tumor RA-XII by oral administration in rats. Eur J Pharm Sci 2021; 166:105931. [PMID: 34256100 DOI: 10.1016/j.ejps.2021.105931] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 02/08/2023]
Abstract
At present, oral chemotherapy showing the advantages of non-invasiveness, convenience, and high patient compliance, is gradually replacing traditional intravenous chemotherapy to treat patients with cancer. RA-XII, a unique natural cyclopeptide, exhibits various biological activities, such as anti-tumor, anti-angiogenic, and anti-metastatic activities. Designing an orally available formulation of RA-XII is of great importance in the development of clinically useful anticancer agents. However, RA-XII shows low oral bioavailability in rats due to its poor solubility and low permeability. To overcome these limitations, in this work, a natural deep eutectic solvent (NADES) was designed to efficiently deliver RA-XII by oral administration. A novel NADES composed of betaine and mandelic acid in the molar ratio of 1:1 (Bet-Man NADES) was successfully prepared based on a binary phase diagram of Bet and Man. Acute toxicity studies indicated that Bet-Man NADES was well tolerated with acceptable toxicity. In Bet-Man NADES solutions, the solubility of RA-XII was increased by up to 17.54-fold, and the diffusion and permeability of RA-XII carried out in a Franz cell was also significantly improved 10.35 times. In terms of biopharmaceutical classification this is translated into a change for RA-XII from class IV to class II systems. More importantly, Bet-Man NADES was transferred into the solid formulation by the inclusion of a polymer, and amorphous solid dispersions based on Bet-Man NADES (PVP K30/NADES/RA-XII, ASDs) were successfully prepared to improve uniformity, apparent solubility, dissolution, and cytotoxicity in vitro. Consequently, the oral bioavailability of RA-XII in NADES solutions and ASDs was enhanced by approximately 11.58 and 7.56 times compared with that of pure RA-XII in 0.5% CMCNa. Thus, it can be seen that a natural deep eutectic solvent and its modified amorphous solid dispersions are appropriate novel strategies for improving dissolution rate and bioavailability of poor soluble natural products such as RA-XII.
Collapse
Affiliation(s)
- Mingyu Liu
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhixing Lai
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Lijun Zhu
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xin Ding
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiyang Tong
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhen Wang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Qirui Bi
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Ninghua Tan
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
7
|
Tran PHL, Tran TTD. Nano-sized Solid Dispersions for Improving the Bioavailability of Poorly Water-soluble Drugs. Curr Pharm Des 2021; 26:4917-4924. [PMID: 32611298 DOI: 10.2174/1381612826666200701134135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/23/2020] [Indexed: 11/22/2022]
Abstract
It has been well established that solid dispersions have a high potential to increase the release rate of poorly water-soluble drugs, resulting in high drug bioavailability. Solid dispersions have been vigorously investigated with various practical approaches in recent decades. Improvements in wettability, molecular interactions and drugs being held in an amorphous state in solid dispersions are the main mechanisms underlying the high drug release rate. Moreover, the synergistic effect of incorporating nanotechnology in solid dispersions is expected to lead to an advanced drug delivery system for poorly water-soluble drugs. However, to date, there is still a lack of reviews providing outlooks on the nano-sized solid dispersions that have been substantially investigated for improving the bioavailability of poorly water-soluble drugs. In the current review, we aim to overview key advantages and approaches for producing nano-sized solid dispersions. The classification of key strategies in developing nano-sized solid dispersions will advance the creation of even more efficient solid dispersions, which will translate into clinical studies.
Collapse
Affiliation(s)
| | - Thao T D Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
8
|
Frequency and waveform dependence of alternating current electrospinning and their uses for drug dissolution enhancement. Int J Pharm 2020; 586:119593. [PMID: 32622813 DOI: 10.1016/j.ijpharm.2020.119593] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 01/29/2023]
Abstract
The effect of different frequencies and waveforms was investigated for the first time on alternating current electrospinning (ACES). PVPVA64, a polyvinylpyrrolidone-vinyl acetate copolymer was selected for the experiments as an important matrix for amorphous solid dispersions but never processed with ACES. It has been proved that ACES could be operated in a wide range of frequencies (40-250 Hz) and using different waveforms (sinusoidal, square, triangle, saw tooth) without significant changes in fiber morphology. Nevertheless, deterioration of the fiber formation process could be also observed especially at high frequencies. The developed PVPVA64-based fibers containing small amounts of additives (polyethylene oxide (PEO) and sodium dodecyl sulfate (SDS)) served as an excellent carrier for spironolactone (SPIR), a poorly soluble antihypertensive drug. As a result of the amorphously dispersed SPIR and the large surface area of the AC electrospun fibers immediate drug release could be achieved.
Collapse
|
9
|
Binary polymeric amorphous carvedilol solid dispersions: In vitro and in vivo characterization. Eur J Pharm Sci 2020; 150:105343. [DOI: 10.1016/j.ejps.2020.105343] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/21/2020] [Accepted: 04/14/2020] [Indexed: 12/20/2022]
|
10
|
Dubey P, Barker SA, Craig DQM. Design and Characterization of Cyclosporine A-Loaded Nanofibers for Enhanced Drug Dissolution. ACS OMEGA 2020; 5:1003-1013. [PMID: 31984256 PMCID: PMC6977102 DOI: 10.1021/acsomega.9b02616] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Despite widespread use as an immunosuppressant, the therapeutic efficacy of the undecapeptide cyclosporine A (CyA) is compromised when given by the oral route because of the innate hydrophobicity of the drug molecule, potentially leading to poor aqueous solubility and bioavailability. The aim of this study was to develop and characterize nanofibers based on the water-miscible polymer polyvinylpyrrolidone (PVP), incorporating CyA preloaded into polymeric surfactants so as to promote micelle formation on hydration; therefore, this approach represents the novel combination of three dissolution enhancement methodologies, namely solid dispersion technology, micellar systems, and nanofibers with enhanced surface area. The preparation of the nanofibers was performed in two steps. First, mixed micelles composed of the water-soluble vitamin E derivative d-α-tocopheryl poly(ethylene glycol) 1000 succinate and the amphiphilic triblock polymer Pluronic F127 (Poloxamer 407) were prepared. The micelles were characterized in terms of size, surface charge, drug loading, and encapsulation efficiency using transmission electron microscopy, dynamic light scattering, Fourier-transform infrared spectroscopy, high-performance liquid chromatography, and scanning electron and atomic force microscopy analysis. Nanofibers composed of PVP and the drug-loaded surfactant system were then prepared via electrospinning, with accompanying thermal, spectroscopic, and surface topological analysis. Dissolution studies indicated an extremely rapid dissolution profile for the fibers compared to the drug alone, while wettability studies also indicated a marked decrease in contact angle compared to the drug alone. Overall, the new approach appears to offer a viable means for considerably improving the dissolution of the hydrophobic peptide CyA, with associated implications for improved oral bioavailability.
Collapse
|
11
|
Zhang S, Chen H, Li R, Yu Z, Lu F. Raman spectroscopy and mapping technique for the identification of expired drugs. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117407. [PMID: 31404760 DOI: 10.1016/j.saa.2019.117407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/12/2019] [Accepted: 07/20/2019] [Indexed: 06/10/2023]
Abstract
As expired medical products can be repackaged and sold by unscrupulous counterfeiters, it is essential to find a rapid and convenient method for distinguishing expired and unexpired drugs. Standard detection methods such as high-performance liquid chromatography (HPLC) and thin-layer chromatography are complex, time-consuming, and require organic solvents (that are environmentally unfriendly). Additionally, the Pharmacopoeia publications do not include information about identifying expired drugs. In this study, we proposed a novel method for identifying expired medications based on Raman spectra and verified it using >20 types of expired (Old) and unexpired (New) drugs, each type from the same manufacturer. A portable Raman spectrometer was used to collect Raman spectra of all samples and the similarities between the Old and New drugs (SN-O) were evaluated. Drugs with SN-O values <0.9 were classified directly as expired drugs. For drugs with SN-O values >0.9, the content of active pharmaceutical ingredient (API) might be so low (below or around 10 wt%) that its Raman signal is largely obscured by that of the excipients. In such cases, changes in the API content are undetectable using the portable instrument. Therefore, we adopted Raman mapping technology and established a virtual imaging map to locate areas of high API content. The similarities between the Old or New spectrum and that of the API (SO-A and SN-A, respectively) were calculated after removing the signal from the excipients. Our novel methods provide a precise, rapid, convenient, and environmentally friendly way to identify expired drugs that is more effective than the standard HPLC assay.
Collapse
Affiliation(s)
- Shuoyang Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang, Pharmaceutical University, Shenyang 110016, China
| | - Hui Chen
- Marketing Department, Shanghai Ideaoptics Corp., Ltd., Shanghai 200433, China
| | - Ruiyun Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang, Pharmaceutical University, Shenyang 110016, China
| | - Zhiguo Yu
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang, Pharmaceutical University, Shenyang 110016, China.
| | - Feng Lu
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
12
|
Tran PH, Duan W, Lee BJ, Tran TT. The use of zein in the controlled release of poorly water-soluble drugs. Int J Pharm 2019; 566:557-564. [DOI: 10.1016/j.ijpharm.2019.06.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022]
|