1
|
Izat N, Kaplan O, Çelebier M, Sahin S. An Isolated Perfused Rat Liver Model: Simultaneous LC-MS Quantification of Pitavastatin, Coproporphyrin I, and Coproporphyrin III Levels in the Rat Liver and Bile. ACS OMEGA 2024; 9:19250-19260. [PMID: 38708282 PMCID: PMC11064166 DOI: 10.1021/acsomega.4c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024]
Abstract
The isolated perfused rat liver (IPRL) model provides a mechanistic understanding of the organic-anion-transporting polypeptide (OATP/Oatp)-mediated pharmacokinetics in the preclinical evaluation, which often requires the use of control substrates (i.e., pitavastatin) and monitoring endogenous biomarkers (coproporphyrin I and III). This study aimed to develop and validate an LC-MS method allowing the simultaneous quantification of pitavastatin, coproporphyrin I (CPI), and coproporphyrin III (CPIII) in rat liver perfusion matrices (perfusate, liver homogenate, bile). The analysis was performed on a C18 column at 60 °C with 20 μL of sample injection. The mobile phases consisted of water with 0.1% formic acid and acetonitrile with 0.1% formic acid with a gradient flow of 0.5 mL/min. The assay was validated according to the ICH M10 Bioanalytical Method Validation Guideline (2022) for selectivity, calibration curve and range, matrix effect, carryover, accuracy, precision, and reinjection reproducibility. The method allowing the simultaneous quantification of pitavastatin, CPI, and CPIII was selective without having carryover and matrix effects. The linear calibration curves were obtained within various calibration ranges for three analytes in different matrices. Accuracy and precision values fulfilled the required limits. After 60 min perfusion with pitavastatin (1 μM), the cumulative amounts of pitavastatin in the liver and bile were 5.770 ± 1.504 and 0.852 ± 0.430 nmol/g liver, respectively. CPIII was a more dominant marker than CPI in both liver (0.028 ± 0.017 vs 0.013 ± 0.008 nmol/g liver) and bile (0.016 ± 0.011 vs 0.009 ± 0.007 nmol/g liver). The novel and validated bioanalytical method can be applied in further IPRL preparations investigating Oatp-mediated pharmacokinetics and DDIs.
Collapse
Affiliation(s)
- Nihan Izat
- Department
of Pharmaceutical Technology, Hacettepe
University Faculty of Pharmacy, Ankara 06800, Turkey
| | - Ozan Kaplan
- Department
of Analytical Chemistry, Hacettepe University
Faculty of Pharmacy, Ankara 06100, Turkey
| | - Mustafa Çelebier
- Department
of Analytical Chemistry, Hacettepe University
Faculty of Pharmacy, Ankara 06100, Turkey
| | - Selma Sahin
- Department
of Pharmaceutical Technology, Hacettepe
University Faculty of Pharmacy, Ankara 06800, Turkey
| |
Collapse
|
2
|
Leuenberger M, Häusler S, Höhn V, Euler A, Stieger B, Lochner M. Characterization of Novel Fluorescent Bile Salt Derivatives for Studying Human Bile Salt and Organic Anion Transporters. J Pharmacol Exp Ther 2021; 377:346-357. [PMID: 33782042 DOI: 10.1124/jpet.120.000449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/23/2021] [Indexed: 11/22/2022] Open
Abstract
Bile salts, such as cholate, glycocholate, taurocholate, and glycochenodeoxycholate, are taken up from the portal blood into hepatocytes via transporters, such as the Na+-taurocholate-cotransporting polypeptide (NTCP) and organic anion-transporting polypeptides (OATPs). These bile salts are later secreted into bile across the canalicular membrane, which is facilitated by the bile salt export pump (BSEP). Apart from bile salt transport, some of these proteins (e.g., OATPs) are also key transporters for drug uptake into hepatocytes. In vivo studies of transporter function in patients by using tracer compounds have emerged as an important diagnostic tool to complement classic liver parameter measurements by determining dynamic liver function both for diagnosis and monitoring progression or improvement of liver diseases. Such approaches include use of radioactively labeled bile salts (e.g., for positron emission tomography) and fluorescent bile salt derivatives or dyes (e.g., indocyanine green). To expand the list of liver function markers, we synthesized fluorescent derivatives of cholic and chenodeoxycholic acid by conjugating small organic dyes to the bile acid side chain. These novel fluorescent probes were able to block substrate transport in a concentration-dependent manner of NTCP, OATP1B1, OATP1B3, OATP2B1, BSEP, and intestinal apical sodium-dependent bile salt transporter (ASBT). Whereas the fluorescent bile acid derivatives themselves were transported across the membrane by OATP1B1, OATP1B3, and OATP2B1, they were not transport substrates for NTCP, ASBT, BSEP, and multidrug resistance-related protein 2. Accordingly, these novel fluorescent bile acid probes can potentially be used as imaging agents to monitor the function of OATPs. SIGNIFICANCE STATEMENT: Synthetic modification of common bile acids by attachment of small organic fluorescent dyes to the bile acid side chain resulted in bright, fluorescent probes that interact with hepatic and intestinal organic anion [organic anion-transporting polypeptide (OATP) 1B1, OATP1B3, OATP2B1], bile salt uptake (Na+-taurocholate-cotransporting polypeptide, apical sodium-dependent bile salt transporter), and bile salt efflux (bile salt export pump, multidrug resistance-related protein 2) transporters. Although the fluorescent bile salt derivatives are taken up into cells via the OATPs, the efflux transporters do not transport any of them but one.
Collapse
Affiliation(s)
- Michele Leuenberger
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland (M.Le., M.Lo.); Department of Clinical Pharmacology and Toxicology, University Hospital Zürich, Zürich, Switzerland (S.H., V.H., A.E., B.S.); and Swiss National Center of Competence in Research, NCCR TransCure, Bern, Switzerland (M.Le., S.H., A.E., B.S., M.Lo.)
| | - Stephanie Häusler
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland (M.Le., M.Lo.); Department of Clinical Pharmacology and Toxicology, University Hospital Zürich, Zürich, Switzerland (S.H., V.H., A.E., B.S.); and Swiss National Center of Competence in Research, NCCR TransCure, Bern, Switzerland (M.Le., S.H., A.E., B.S., M.Lo.)
| | - Vera Höhn
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland (M.Le., M.Lo.); Department of Clinical Pharmacology and Toxicology, University Hospital Zürich, Zürich, Switzerland (S.H., V.H., A.E., B.S.); and Swiss National Center of Competence in Research, NCCR TransCure, Bern, Switzerland (M.Le., S.H., A.E., B.S., M.Lo.)
| | - Adriana Euler
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland (M.Le., M.Lo.); Department of Clinical Pharmacology and Toxicology, University Hospital Zürich, Zürich, Switzerland (S.H., V.H., A.E., B.S.); and Swiss National Center of Competence in Research, NCCR TransCure, Bern, Switzerland (M.Le., S.H., A.E., B.S., M.Lo.)
| | - Bruno Stieger
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland (M.Le., M.Lo.); Department of Clinical Pharmacology and Toxicology, University Hospital Zürich, Zürich, Switzerland (S.H., V.H., A.E., B.S.); and Swiss National Center of Competence in Research, NCCR TransCure, Bern, Switzerland (M.Le., S.H., A.E., B.S., M.Lo.)
| | - Martin Lochner
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland (M.Le., M.Lo.); Department of Clinical Pharmacology and Toxicology, University Hospital Zürich, Zürich, Switzerland (S.H., V.H., A.E., B.S.); and Swiss National Center of Competence in Research, NCCR TransCure, Bern, Switzerland (M.Le., S.H., A.E., B.S., M.Lo.)
| |
Collapse
|
3
|
Bezençon J, Saran C, Hussner J, Beaudoin JJ, Zhang Y, Shen H, Fallon JK, Smith PC, Meyer Zu Schwabedissen HE, Brouwer KLR. Endogenous Coproporphyrin I and III are Altered in Multidrug Resistance-Associated Protein 2-Deficient (TR -) Rats. J Pharm Sci 2021; 110:404-411. [PMID: 33058892 PMCID: PMC7767637 DOI: 10.1016/j.xphs.2020.10.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023]
Abstract
Recent studies have focused on coproporphyrin (CP)-I and CP-III (CPs) as endogenous biomarkers for organic anion transporting polypeptides (OATPs). Previous data showed that CPs are also substrates of multidrug resistance-associated protein (MRP/Mrp) 2 and 3. This study was designed to examine the impact of loss of Mrp2 function on the routes of excretion of endogenous CPs in wild-type (WT) Wistar compared to Mrp2-deficient TR- rats. To exclude possible confounding effects of rat Oatps, the transport of CPs was investigated in Oatp-overexpressing HeLa cells. Results indicated that CPs are substrates of rodent Oatp1b2, and that CP-III is a substrate of Oatp2b1. Quantitative targeted absolute proteomic (QTAP) analysis revealed no differences in Oatps, but an expected significant increase in Mrp3 protein levels in TR- compared to WT rat livers. CP-I and CP-III concentrations measured by LC-MS/MS were elevated in TR- compared to WT rat liver, while CP-I and CP-III estimated biliary clearance was decreased 75- and 840-fold in TR- compared to WT rats, respectively. CP-III concentrations were decreased 14-fold in the feces of TR- compared to WT rats, but differences in CP-I were not significant. In summary, the disposition of CPs was markedly altered by loss of Mrp2 and increased Mrp3 function as measured in TR- rats.
Collapse
Affiliation(s)
- Jacqueline Bezençon
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Chitra Saran
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA; Department of Pharmacology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Janine Hussner
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - James J Beaudoin
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Yueping Zhang
- Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb Company, Princeton, NJ, USA
| | - Hong Shen
- Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb Company, Princeton, NJ, USA
| | - John K Fallon
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Philip C Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | | | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Liao M, Jaw-Tsai S, Beltman J, Simmons AD, Harding TC, Xiao JJ. Evaluation of in vitro absorption, distribution, metabolism, and excretion and assessment of drug-drug interaction of rucaparib, an orally potent poly(ADP-ribose) polymerase inhibitor. Xenobiotica 2020; 50:1032-1042. [DOI: 10.1080/00498254.2020.1737759] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
In vitro-in vivo correlation of inhalable budesonide-loaded large porous particles for sustained treatment regimen of asthma. Acta Biomater 2019; 96:505-516. [PMID: 31265921 DOI: 10.1016/j.actbio.2019.06.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/20/2019] [Accepted: 06/27/2019] [Indexed: 12/15/2022]
Abstract
Large porous particles (LPPs) are well-known vehicles for drug delivery to the lungs. However, it remains uncertain whether or to which extent the in vitro drug release behavior of LPPs can be predictive of their in vivo performance (e.g., systemic exposure and therapeutic efficacy). With regard to this, three budesonide-loaded LPP formulations with identical composition but distinct in vitro drug release profiles were studied in vivo for their pharmacokinetic and pharmacodynamic behavior after delivery to rat lung, and finally, an in vitro/in vivo correlation (IVIVC) was established. All formulations reduced approximately 75% of the uptake by RAW264.7 macrophages compared with budesonide/lactose physical mixture and showed a drug release-dependent retention behavior in the lungs of rats. Likewise, the highest budesonide plasma concentration was measured for the formulation revealing the fastest in vitro drug release. After deconvolution of the plasma concentration/time profiles, the calculated in vivo drug release data were successfully utilized for a point-to-point IVIVC with the in vitro release profiles and the predictability of the developed IVIVC was acceptable. Finally, effective therapy was observed in an allergic asthma rat model for the sustained drug release formulations. Overall, the obtained in vitro results correlate well with the systemic drug exposure and the therapeutic performance of the investigated lung-delivered formulations, which can provide an experimental basis for IVIVC development in the pulmonary-controlled delivery system. STATEMENT OF SIGNIFICANCE: Large porous particles (LPPs) are well-known vehicles for drug delivery to the lungs. However, it remains uncertain whether or to which extent the in vitro drug release behavior of LPPs can be predicted by their in vivo performance (e.g., systemic exposure and therapeutic efficacy). With regard to this, three budesonide-loaded PLGA-based LPP formulations with identical composition but distinct in vitro drug release profiles were studied in vivo for their pharmacokinetic and pharmacodynamic behavior, and finally, an in vitro/in vivo correlation (IVIVC) was established. It was demonstrated that the influence of the in vitro drug release profile was obvious during lung retention, systemic exposure, and therapeutic efficacy measurements. An IVIVC (Level A) was successfully established for the budesonide-loaded LPPs delivered to the airspace of rats for the first time. Taken together, the present work will clearly support research and development activities in the field of controlled drug delivery to the lungs.
Collapse
|
6
|
Sjöstedt N, Salminen TA, Kidron H. Endogenous, cholesterol-activated ATP-dependent transport in membrane vesicles from Spodoptera frugiperda cells. Eur J Pharm Sci 2019; 137:104963. [PMID: 31226387 DOI: 10.1016/j.ejps.2019.104963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 06/04/2019] [Accepted: 06/17/2019] [Indexed: 12/19/2022]
Abstract
Transport proteins of the ATP-binding cassette (ABC) family are found in all kingdoms of life. In humans, several ABC efflux transporters play a role in drug disposition and excretion. Therefore, in vitro methods have been developed to characterize the substrate and inhibitor properties of drugs with respect to these transporters. In the vesicular transport assay, transport is studied using inverted membrane vesicles produced from transporter overexpressing cell lines of both mammalian and insect origin. Insect cell expression systems benefit from a higher expression compared to background, but are not as well characterized as their mammalian counterparts regarding endogenous transport. Therefore, the contribution of this transport in the assay might be underappreciated. In this study, endogenous transport in membrane vesicles from Spodoptera frugiperda -derived Sf9 cells was characterized using four typical substrates of human ABC transporters: 5(6)-carboxy-2,'7'-dichlorofluorescein (CDCF), estradiol-17β-glucuronide, estrone sulfate and N-methyl-quinidine. Significant ATP-dependent transport was observed for three of the substrates with cholesterol-loading of the vesicles, which is sometimes used to improve the activity of human transporters expressed in Sf9 cells. The highest effect of cholesterol was on CDCF transport, and this transport in the cholesterol-loaded Sf9 vesicles was time and concentration dependent with a Km of 8.06 ± 1.11 μM. The observed CDCF transport was inhibited by known inhibitors of human ABCC transporters, but not by ABCB1 and ABCG2 inhibitors verapamil and Ko143, respectively. Two candidate genes for ABCC-type transporters in the S. frugiperda genome (SfABCC2 and SfABCC3) were identified based on sequence analysis as a hypothesis to explain the observed endogenous ABCC-type transport in Sf9 vesicles. Although further studies are needed to verify the role of SfABCC2 and SfABCC3 in Sf9 vesicles, the findings of this study highlight the need to carefully characterize background transport in Sf9 derived membrane vesicles to avoid false positive substrate findings for human ABC transporters studied with this overexpression system.
Collapse
Affiliation(s)
- Noora Sjöstedt
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| | - Tiina A Salminen
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Heidi Kidron
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|