1
|
Yan R, Zou C, Yang X, Zhuang W, Huang Y, Zheng X, Hu J, Liao L, Yao Y, Sun X, Hu WW. Nebulized inhalation drug delivery: clinical applications and advancements in research. J Mater Chem B 2025; 13:821-843. [PMID: 39652178 DOI: 10.1039/d4tb01938e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Nebulized inhalation administration refers to the dispersion of drugs into small droplets suspended in the gas through a nebulized device, which are deposited in the respiratory tract by inhalation, to achieve the local therapeutic effect of the respiratory tract. Compared with other drug delivery methods, nebulized inhalation has the advantages of fast effect, high local drug concentration, less dosage, convenient application and less systemic adverse reactions, and has become one of the main drug delivery methods for the treatment of respiratory diseases. In this review, we first discuss the characteristics of nebulized inhalation, including its principles and influencing factors. Next, we compare the advantages and disadvantages of different types of nebulizers. Finally, we explore the clinical applications and recent research developments of nebulized inhalation therapy. By delving into these aspects, we aim to gain a deeper understanding of its pivotal role in contemporary medical treatment.
Collapse
Affiliation(s)
- Ruyi Yan
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Chang Zou
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xiaohang Yang
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Weihua Zhuang
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Yushi Huang
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xiuli Zheng
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jie Hu
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Lingni Liao
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Yongchao Yao
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xuping Sun
- High Altitude Medical Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Wenchuang Walter Hu
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
2
|
O'Neil JA, Villasmil-Urdaneta LA. A path forward in the development of new aerosol drug delivery devices for pediatrics. Respir Med 2023; 211:107210. [PMID: 36907367 DOI: 10.1016/j.rmed.2023.107210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/24/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
Inhaled medications are widely accepted as being the optimal route for treating pediatric respiratory diseases, a leading cause of hospitalization and death. Despite jet nebulizers being the preferred inhalation device for neonates and infants, current devices face performance issues with most of the drug never reaching the target lung location. Previous work has aimed to improve pulmonary drug deposition, yet nebulizer efficiency remains low. The development of an inhalant therapy that is efficacious and safe for pediatrics depends on a well-designed delivery system and formulation. To accomplish this, the field needs to rethink the current practice of basing pediatric treatments on adult studies. The rapidly evolving pediatric patient (i.e. neonates to eighteen) needs to be considered because they are different from adults with respect to airway anatomy, breathing patterns, and adherence. Previous research approaches to improve deposition efficiency have been limited due to the complexity of combining physics, which drives aerosol transport and deposition, and biology, especially within the area of pediatrics. To address these critical knowledge gaps, we need a better understanding of how patient age and disease state affect deposition of aerosolized drugs. The complexity of the multiscale respiratory system makes scientific investigation very challenging. The authors have simplified the complex problem into five components with these three areas as ones to address first: how the aerosol is (i) generated in a medical device, (ii) delivered to the patient, and (iii) deposited inside the lung. In this review, we discuss the technological advances and innovations made from experiments, simulations, and predictive models in each of these areas. In addition, we discuss the impact on patient treatment efficacy and recommend a clinical direction, with a focus on pediatrics. In each area, a series of research questions are posed and steps for future research to improve efficacy in aerosol drug delivery are outlined.
Collapse
Affiliation(s)
- Jennifer A O'Neil
- College of Engineering Technology, Department of Manufacturing and Mechanical Engineering Technology, Rochester Institute of Technology, 78 Lomb Memorial Drive, Golisano Hall 1361, Rochester, NY, USA.
| | - Larry A Villasmil-Urdaneta
- College of Engineering Technology, Department of Manufacturing and Mechanical Engineering Technology, Rochester Institute of Technology, Rochester, NY, USA
| |
Collapse
|
3
|
Yadav D, Wairagu PM, Kwak M, Jin JO, Jin JO. Nanoparticle-Based Inhalation Therapy for Pulmonary Diseases. Curr Drug Metab 2022; 23:882-896. [PMID: 35927812 DOI: 10.2174/1389200223666220803103039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/04/2022] [Accepted: 04/29/2022] [Indexed: 01/05/2023]
Abstract
The lung is exposed to various pollutants and is the primary site for the onset of various diseases, including infections, allergies, and cancers. One possible treatment approach for such pulmonary diseases involves direct administration of therapeutics to the lung so as to maintain the topical concentration of the drug. Particles with nanoscale diameters tend to reach the pulmonary region. Nanoparticles (NPs) have garnered significant interest for applications in biomedical and pharmaceutical industries because of their unique physicochemical properties and biological activities. In this article, we describe the biological and pharmacological activities of NPs as well as summarize their potential in the formulation of drugs employed to treat pulmonary diseases. Recent advances in the use of NPs in inhalation chemotherapy for the treatment of lung diseases have also been highlighted.
Collapse
Affiliation(s)
- Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan 38541, South Korea
| | - Peninah M Wairagu
- Department of Biochemistry and Biotechnology, The Technical University of Kenya, Nairobi, Kenya
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan 48513, Korea
| | - Jun-O Jin
- Department of Microbiology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jun-O Jin
- Department of Biotechnology, ITM University, Gwalior, Madhya Pradesh, 474011, India.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
4
|
Kamel R, EL-Deeb NM, Abbas H. Development of a potential anti-cancer pulmonary nanosystem consisted of chitosan-doped LeciPlex loaded with resveratrol using a machine learning method. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Kaur R, Dennison SR, Burrow AJ, Rudramurthy SM, Swami R, Gorki V, Katare OP, Kaushik A, Singh B, Singh KK. Nebulised surface-active hybrid nanoparticles of voriconazole for pulmonary Aspergillosis demonstrate clathrin-mediated cellular uptake, improved antifungal efficacy and lung retention. J Nanobiotechnology 2021; 19:19. [PMID: 33430888 PMCID: PMC7798018 DOI: 10.1186/s12951-020-00731-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/07/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Incidence of pulmonary aspergillosis is rising worldwide, owing to an increased population of immunocompromised patients. Notable potential of the pulmonary route has been witnessed in antifungal delivery due to distinct advantages of direct lung targeting and first-pass evasion. The current research reports biomimetic surface-active lipid-polymer hybrid (LPH) nanoparticles (NPs) of voriconazole, employing lung-specific lipid, i.e., dipalmitoylphosphatidylcholine and natural biodegradable polymer, i.e., chitosan, to augment its pulmonary deposition and retention, following nebulization. RESULTS The developed nanosystem exhibited a particle size in the range of 228-255 nm and drug entrapment of 45-54.8%. Nebulized microdroplet characterization of NPs dispersion revealed a mean diameter of ≤ 5 μm, corroborating its deep lung deposition potential as determined by next-generation impactor studies. Biophysical interaction of LPH NPs with lipid-monolayers indicated their surface-active potential and ease of intercalation into the pulmonary surfactant membrane at the air-lung interface. Cellular viability and uptake studies demonstrated their cytocompatibility and time-and concentration-dependent uptake in lung-epithelial A549 and Calu-3 cells with clathrin-mediated internalization. Transepithelial electrical resistance experiments established their ability to penetrate tight airway Calu-3 monolayers. Antifungal studies on laboratory strains and clinical isolates depicted their superior efficacy against Aspergillus species. Pharmacokinetic studies revealed nearly 5-, 4- and threefolds enhancement in lung AUC, Tmax, and MRT values, construing significant drug access and retention in lungs. CONCLUSIONS Nebulized LPH NPs were observed as a promising solution to provide effective and safe therapy for the management of pulmonary aspergillosis infection with improved patient compliance and avoidance of systemic side-effects.
Collapse
Affiliation(s)
- Ranjot Kaur
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014, India
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Sarah R Dennison
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Andrea J Burrow
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | | | - Rajan Swami
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014, India
| | - Varun Gorki
- Department of Zoology, Panjab University, Chandigarh, India, 160 014
| | - O P Katare
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014, India
| | - Anupama Kaushik
- Dr SSB University Institute Chem Engineering and Technology, Panjab University, Chandigarh, India, 160 014
| | - Bhupinder Singh
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014, India.
- UGC Centre for Excellence in Nano-Biomedical Applications, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160 014, India.
| | - Kamalinder K Singh
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK.
- UCLan Research Centre for Smarts Materials, University of Central Lancashire, Preston, PR1 2HE, UK.
- UCLan Research Centre for Drug Design and Development, University of Central Lancashire, Preston, PR1 2HE, UK.
| |
Collapse
|
6
|
In Vitro Performance of an Investigational Vibrating-Membrane Nebulizer with Surfactant under Simulated, Non-Invasive Neonatal Ventilation Conditions: Influence of Continuous Positive Airway Pressure Interface and Nebulizer Positioning on the Lung Dose. Pharmaceutics 2020; 12:pharmaceutics12030257. [PMID: 32178276 PMCID: PMC7151046 DOI: 10.3390/pharmaceutics12030257] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 11/25/2022] Open
Abstract
Non-invasive delivery of nebulized surfactant has been a long-pursued goal in neonatology. Our aim was to evaluate the performance of an investigational vibrating-membrane nebulizer in a realistic non-invasive neonatal ventilation circuit with different configurations. Surfactant (aerosols were generated with a nebulizer in a set-up composed of a continuous positive airway pressure (CPAP) generator with a humidifier, a cast of the upper airway of a preterm infant (PrINT), and a breath simulator with a neonatal breathing pattern. The lung dose (LD), defined as the amount of surfactant collected in a filter placed at the distal end of the PrINT cast, was determined after placing the nebulizer at different locations of the circuit and using either infant nasal mask or nasal prongs as CPAP interfaces. The LD after delivering a range of nominal surfactant doses (100–600 mg/kg) was also investigated. Surfactant aerosol particle size distribution was determined by laser diffraction. Irrespective of the CPAP interface used, about 14% of the nominal dose (200 mg/kg) reached the LD filter. However, placing the nebulizer between the Y-piece and the CPAP interface significantly increased the LD compared with placing it 7 cm before the Y-piece, in the inspiratory limb. (14% ± 2.8 vs. 2.3% ± 0.8, nominal dose of 200 mg/kg). The customized eFlow Neos showed a constant aerosol generation rate and a mass median diameter of 2.7 μm after delivering high surfactant doses (600 mg/kg). The customized eFlow Neos nebulizer showed a constant performance even after nebulizing high doses of undiluted surfactant. Placing the nebulizer between the Y-piece and the CPAP interface achieves the highest LD under non-invasive ventilation conditions.
Collapse
|
7
|
Kaur R, Kaushik A, Singh KK, Katare OP, Singh B. An Efficient and Cost-Effective Nose-Only Inhalational Chamber for Rodents: Design, Optimization and Validation. AAPS PharmSciTech 2020; 21:82. [PMID: 31989357 DOI: 10.1208/s12249-019-1608-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/11/2019] [Indexed: 11/30/2022] Open
Abstract
The mainstay treatment of pulmonary disorders lies around the direct drug targeting to the lungs using a nebulizer, metered-dose inhaler, or dry powder inhaler. Only few inhalers are available in the market that could be used for inhalational drug delivery in rodents. However, the available rodent inhalers invariably require high cost and maintenance, which limits their use at laboratory scale. The present work, therefore, was undertaken to develop a simple, reliable, and cost-effective nose-only inhalation chamber with holding capacity of three mice at a time. The nebulized air passes directly and continuously from the central chamber to mouthpiece and maintains an aerosol cloud for rodents to inhale. Laser diffraction analysis indicated volume mean diameter of 4.02 ± 0.30 μm, and the next-generation impactor studies, however, revealed mean mass aerodynamic diameter of 3.40 ± 0.27 μm, respectively. An amount of 2.05 ± 0.20 mg of voriconazole (VRC) was available for inhalation at each delivery port of the inhaler. In vivo studies indicated the deposition of 76.12 ± 19.50 μg of VRC in the mice lungs when nebulized for a period of 20 min. Overall, the developed nose-only inhalation chamber offers a reliable means of generating aerosols and successfully exposing mice to nebulization.
Collapse
|
8
|
A new paradigm for lung-conservative total liquid ventilation. EBioMedicine 2019; 52:102365. [PMID: 31447395 PMCID: PMC7033528 DOI: 10.1016/j.ebiom.2019.08.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 12/23/2022] Open
Abstract
Background Total liquid ventilation (TLV) of the lungs could provide radically new benefits in critically ill patients requiring lung lavage or ultra-fast cooling after cardiac arrest. It consists in an initial filling of the lungs with perfluorocarbons and subsequent tidal ventilation using a dedicated liquid ventilator. Here, we propose a new paradigm for a lung-conservative TLV using pulmonary volumes of perfluorocarbons below functional residual capacity (FRC). Methods and findings Using a dedicated technology, we showed that perfluorocarbon end-expiratory volumes could be maintained below expected FRC and lead to better respiratory recovery, preserved lung structure and accelerated evaporation of liquid residues as compared to complete lung filling in piglets. Such TLV below FRC prevented volutrauma through preservation of alveolar recruitment reserve. When used with temperature-controlled perfluorocarbons, this lung-conservative approach provided neuroprotective ultra-fast cooling in a model of hypoxic-ischemic encephalopathy. The scale-up and automating of the technology confirmed that incomplete initial lung filling during TLV was beneficial in human adult-sized pigs, despite larger size and maturity of the lungs. Our results were confirmed in aged non-human primates, confirming the safety of this lung-conservative approach. Interpretation This study demonstrated that TLV with an accurate control of perfluorocarbon volume below FRC could provide the full potential of TLV in an innovative and safe manner. This constitutes a new paradigm through the tidal liquid ventilation of incompletely filled lungs, which strongly differs from the previously known TLV approach, opening promising perspectives for a safer clinical translation. Fund ANR (COOLIVENT), FRM (DBS20140930781), SATT IdfInnov (project 273).
Collapse
|