1
|
Rehan F, Karim ME, Ahemad N, Qureshi OS, Jelani S, Hua GS, Chowdhury EH. Modified Sodium Caseinate-based Nanomicelles for Enhanced Chemotherapeutics Against Breast Cancer via Improved Cellular Uptake and Cytotoxicity. Drug Dev Ind Pharm 2025:1-23. [PMID: 40265846 DOI: 10.1080/03639045.2025.2495849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 03/05/2025] [Accepted: 04/14/2025] [Indexed: 04/24/2025]
Abstract
OBJECTIVE Poor prognosis, drug resistance, and lower drug loading capacity of the delivery systems lead to therapeutic failures of breast cancers. Herein we functionalized sodium caseinate nanomicelles (NaCNs) with the divalent calcium (Ca2+) and the glucose (Glc) to increase the loading capacity of micelles for higher cellular uptake and cytotoxicity against breast cancer cells. METHODOLOGY Modification of casein micelles was confirmed through Fourier Transform Infrared Spectra (FTIR). Triple quadrupole liquid chromatography-mass spectrometry (TQOF-LCMS/MS) was utilized as a simple, rapid, and sensitive method for protein corona quantification around casein through SwissProt.Mus_musculus database and through de novo sequencing. Un-modified and modified casein micelles were further characterized through Field Emission Scanning Electron Microscope (FESEM), High Resolution-Transmission Electron Microscope (HR-TEM), and Energy Dispersive X-Ray (EDX). Whereas, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-page) was used for protein separation and analysis during micelles formation. RESULTS Calcium divalent modified sodium caseinate nanomicelles (Ca-NaCNs) and glucose-modified sodium caseinate nanomicelles (Glc-NaCNs) were successfully developed, demonstrating a significantly improved micellar stability. Glc-NaCNS-DOX showed a zeta size of 297.13 ± 15.66 nm with an improved zeta potential of -13.73 ± 0.579 with a DLE of 86% as compared to our previously published casein formulations since the modified versions involved more soluble casein in the protein micelle matrix, Whereas, Ca-NaCNS-DOX also showed an IC50 value of approximately 197.1 nm as compared to IC50 of free DOX (341.8 nm) and when compared to un modified DOX loaded formulations(p < 0.001). CONCLUSIONS Modified NaCNs exhibit the potential to be investigated further as a novel delivery system for similar active moieties to maximize their therapeutic effects.
Collapse
Affiliation(s)
- Farah Rehan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Md Emranul Karim
- Chemical Engineering Department, Massachusetts Institute of Technology, MA 02139, USA
| | - Nafees Ahemad
- Chemical Engineering Department, Massachusetts Institute of Technology, MA 02139, USA
| | - Omer Salman Qureshi
- Department of Pharmacy, Forman Christian College University, Lahore, 57400 Pakistan
| | - Seemal Jelani
- Department of Chemistry, Forman Christian College University, Lahore, 57400 Pakistan
| | - Gan Siew Hua
- Chemical Engineering Department, Massachusetts Institute of Technology, MA 02139, USA
| | - Ezharul Hoque Chowdhury
- Jeffrey Cheah School of Medicine and Health Sciences Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia
- Daffodil International University, Daffodil Smart City, Birulia 1216, Bangladesh
- Nanoflex LLC, 31756 Broadwater Ave, Leesburg, Florida 34748, USA
| |
Collapse
|
2
|
Zhang L, Lou W, Wang J. Advances in nucleic acid therapeutics: structures, delivery systems, and future perspectives in cancer treatment. Clin Exp Med 2024; 24:200. [PMID: 39196428 PMCID: PMC11358240 DOI: 10.1007/s10238-024-01463-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024]
Abstract
Cancer has emerged as a significant threat to human health. Nucleic acid therapeutics regulate the gene expression process by introducing exogenous nucleic acid fragments, offering new possibilities for tumor remission and even cure. Their mechanism of action and high specificity demonstrate great potential in cancer treatment. However, nucleic acid drugs face challenges such as low stability and limited ability to cross physiological barriers in vivo. To address these issues, various nucleic acid delivery vectors have been developed to enhance the stability and facilitate precise targeted delivery of nucleic acid drugs within the body. In this review article, we primarily introduce the structures and principles of nucleic acid drugs commonly used in cancer therapy, as well as their cellular uptake and intracellular transportation processes. We focus on the various vectors commonly employed in nucleic acid drug delivery, highlighting their research progress and applications in recent years. Furthermore, we propose potential trends and prospects of nucleic acid drugs and their carriers in the future.
Collapse
Affiliation(s)
- Leqi Zhang
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Wenting Lou
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Jianwei Wang
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, 2nd Affiliated Hospital, Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310009, China.
| |
Collapse
|
3
|
Uddin MB, Holl MMB, Chowdhury EH. Delivery of siRNAs Against Selective Ion Channels and Transporter Genes Using Hyaluronic Acid-coupled Carbonate Apatite Nanoparticles Synergistically Inhibits Growth and Survival of Breast Cancer Cells. Int J Nanomedicine 2024; 19:7709-7727. [PMID: 39099788 PMCID: PMC11297548 DOI: 10.2147/ijn.s440419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/25/2024] [Indexed: 08/06/2024] Open
Abstract
Introduction Dysregulated calcium homeostasis and consequentially aberrant Ca2+ signalling could enhance survival, proliferation and metastasis in various cancers. Despite rapid development in exploring the ion channel functions in relation to cancer, most of the mechanisms accounting for the impact of ion channel modulators have yet to be fully clarified. Although harnessing small interfering RNA (siRNA) to specifically silence gene expression has the potential to be a pivotal approach, its success in therapeutic intervention is dependent on an efficient delivery system. Nanoparticles have the capacity to strongly bind siRNAs. They remain in the circulation and eventually deliver the siRNA payload to the target organ. Afterward, they interact with the cell surface and enter the cell via endocytosis. Finally, they help escape the endo-lysosomal degradation system prior to unload the siRNAs into cytosol. Carbonate apatite (CA) nanocrystals primarily is composed of Ca2+, carbonate and phosphate. CA possesses both anion and cation binding domains to target negatively charged siRNA molecules. Methods Hybrid CA was synthesized by complexing CA NPs with a hydrophilic polysaccharide - hyaluronic acid (HA). The average diameter of the composite particles was determined using Zetasizer and FE-SEM and their zeta potential values were also measured. Results and Discussion The stronger binding affinity and cellular uptake of a fluorescent siRNA were observed for HA-CA NPs as compared to plain CA NPs. Hybrid CA was electrostatically bound individually and combined with three different siRNAs to silence expression of calcium ion channel and transporter genes, TRPC6, TRPM8 and SLC41A1 in a human breast cancer cell line (MCF-7) and evaluate their potential for treating breast cancer. Hybrid NPs carrying TRPC6, TRPM8 and SLC41A1 siRNAs could significantly enhance cytotoxicity both in vitro and in vivo. The resultant composite CA influenced biodistribution of the delivered siRNA, facilitating reduced off target distribution and enhanced breast tumor targetability.
Collapse
Affiliation(s)
- Mohammad Borhan Uddin
- Department of Pharmaceutical Sciences, School of Health and Life Sciences, North South University, Dhaka, Bangladesh
| | - Mark M Banaszak Holl
- Department of Mechanical and Materials Engineering, School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
- Division of Pulmonology, Allergy, and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ezharul Hoque Chowdhury
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor, 47500, Malaysia
- Nanoflex LLC, Leesburg, FL, 34748, USA
| |
Collapse
|
4
|
Rastgar A, Kheyrandish S, Vahidi M, Heidari R, Ghorbani M. Advancements in small interfering RNAs therapy for acute lymphoblastic leukemia: promising results and future perspectives. Mol Biol Rep 2024; 51:737. [PMID: 38874790 DOI: 10.1007/s11033-024-09650-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common type of cancer among children, presenting significant healthcare challenges for some patients, including drug resistance and the need for targeted therapies. SiRNA-based therapy is one potential solution, but problems can arise in administration and the need for a delivery system to protect siRNA during intravenous injection. Additionally, siRNA encounters instability and degradation in the reticuloendothelial system, off-target effects, and potential immune system stimulation. Despite these limitations, some promising results about siRNA therapy in ALL patients have been published in recent years, showing the potential for more effective and precise treatment, reduced side effects, and personalized approaches. While siRNA-based therapies demonstrate safety and efficacy, addressing the mentioned limitations is crucial for further optimization. Advancements in siRNA-delivery technologies and combination therapies hold promise to improve treatment effectiveness and overcome drug resistance. Ultimately, despite its challenges, siRNA therapy has the potential to revolutionize ALL treatments and improve patient outcomes.
Collapse
Affiliation(s)
- Amirhossein Rastgar
- Student Research Committee, Faculty of Paramedicine, AJA University of Medical Sciences, Tehran, Iran
- Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Setare Kheyrandish
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmoud Vahidi
- Department of Medical Laboratory Sciences, Faculty of Paramedicine, Aja University of Medical Sciences, Tehran, Iran
| | - Reza Heidari
- Cancer Epidemiology Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Mahdi Ghorbani
- Department of Hematology, Laboratory Sciences, Faculty of Paramedicine, Aja University of Medical Sciences, Tehran, Iran.
- Infectious Diseases Research Center, Aja University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Huang H, Qiang L, Fan M, Liu Y, Yang A, Chang D, Li J, Sun T, Wang Y, Guo R, Zhuang H, Li X, Guo T, Wang J, Tan H, Zheng P, Weng J. 3D-printed tri-element-doped hydroxyapatite/ polycaprolactone composite scaffolds with antibacterial potential for osteosarcoma therapy and bone regeneration. Bioact Mater 2024; 31:18-37. [PMID: 37593495 PMCID: PMC10432151 DOI: 10.1016/j.bioactmat.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 08/19/2023] Open
Abstract
The resection of malignant osteosarcoma often results in large segmental bone defects, and the residual cells can facilitate recurrence. Consequently, the treatment of osteosarcoma is a major challenge in clinical practice. The ideal goal of treatment for osteosarcoma is to eliminate it thoroughly, and repair the resultant bone defects as well as avoid bacterial infections. Herein, we fabricated a selenium/strontium/zinc-doped hydroxyapatite (Se/Sr/Zn-HA) powder by hydrothermal method, and then employed it with polycaprolactone (PCL) as ink to construct composite scaffolds through 3D printing, and finally introduced them in bone defect repair induced by malignant osteosarcoma. The resultant composite scaffolds integrated multiple functions involving anti-tumor, osteogenic, and antibacterial potentials, mainly attributed to the anti-tumor effects of SeO32-, osteogenic effects of Sr2+ and Zn2+, and antibacterial effects of SeO32- and Zn2+. In vitro studies confirmed that Se/Sr/Zn-HA leaching solution could induce apoptosis of osteosarcoma cells, differentiation of MSCs, and proliferation of MC3T3-E1 while showing excellent antibacterial properties. In vivo tests demonstrated that Se/Sr/Zn-HA could significantly suppress tumors after 8 days of injection, and the Se/Sr/Zn-HA-PCLs scaffold repaired femoral defects effectively after 3 months of implantation. Summarily, the Se/Sr/Zn-HA-PCLs composite scaffolds developed in this study were effective for tumor treatment, bone defect repair, and post-operative anti-infection, which provided a great potential to be a facile therapeutic material for osteosarcoma resection.
Collapse
Affiliation(s)
- Hao Huang
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Lei Qiang
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
- Department of Orthopaedic Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, PR China
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200011, PR China
| | - Minjie Fan
- Department of Orthopaedic Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, PR China
| | - Yihao Liu
- Department of Orthopaedic Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, PR China
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200011, PR China
| | - Anchun Yang
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Dongbiao Chang
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Jinsheng Li
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Tong Sun
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Yiwei Wang
- Department of Orthopaedic Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, PR China
| | - Ruoyi Guo
- Department of Orthopaedic Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, PR China
| | - Hanjie Zhuang
- Department of Orthopaedic Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, PR China
| | - Xiangyu Li
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200011, PR China
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Tailin Guo
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200011, PR China
| | - Huan Tan
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Pengfei Zheng
- Department of Orthopaedic Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, PR China
| | - Jie Weng
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| |
Collapse
|
6
|
Karim ME, Haque ST, Al-Busaidi H, Bakhtiar A, Tha KK, Holl MMB, Chowdhury EH. Scope and challenges of nanoparticle-based mRNA delivery in cancer treatment. Arch Pharm Res 2022; 45:865-893. [DOI: 10.1007/s12272-022-01418-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022]
|
7
|
PEGylated Strontium Sulfite Nanoparticles with Spontaneously Formed Surface-Embedded Protein Corona Restrict Off-Target Distribution and Accelerate Breast Tumour-Selective Delivery of siRNA. J Funct Biomater 2022; 13:jfb13040211. [PMID: 36412852 PMCID: PMC9680366 DOI: 10.3390/jfb13040211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
As transporters of RNAi therapeutics in preclinical and clinical studies, the application of nanoparticles is often hindered by their susceptibility to opsonin-mediated clearance, poor biological stability, ineffectual targeting, and undesirable effects on healthy cells. Prolonging the blood circulation time while minimizing the off-target distribution and associated toxicity is indispensable for the establishment of a clinically viable delivery system for therapeutic small interfering RNAs (siRNAs). Herein, we report a scalable and straightforward approach to fabricate non-toxic and biodegradable pH-responsive strontium sulfite nanoparticles (SSNs) wrapped with a hydrophilic coating material, biotinylated PEG to lessen unforeseen biological interactions. Surface functionalization of SSNs with PEG led to the generation of small and uniformly distributed particles with a significant affinity towards siRNAs and augmented internalization into breast cancer cells. A triple quadrupole liquid chromatography-mass spectrometry (LC-MS) was deployed to identify the proteins entrapped onto the SSNs, with the help of SwissProt.Mus_musculus database. The results demonstrated the reduction of opsonin proteins adsorption owing to the stealth effect of PEG. The distribution of PEGylated SSNs in mice after 4 h and 24 h of intravenous administration in breast tumour-bearing mice was found to be significantly less to the organs of the reticuloendothelial system (RES) and augmented accumulation in the tumour region. The anti-EGFR siRNA-loaded PEG-SSNs exerted a significant inhibitory effect on tumour development in the murine breast cancer model without any significant toxicity to healthy tissues. Therefore, PEGylated SSNs open up a new avenue for tumour-selective efficient delivery of siRNAs in managing breast cancer.
Collapse
|
8
|
Mitigating off-target distribution and enhancing cytotoxicity in breast cancer cells with alpha-ketoglutaric acid-modified Fe/Mg-CA nanoparticles. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00571-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abstract
Purpose
In this work, pH-sensitive alpha-ketoglutaric acid-modified Fe/Mg-carbonate apatite (α-KAM-Fe/Mg-CA) NPs were introduced and found to be capable of promoting the selective delivery of cancer-killing drug doxorubicin (DOX) in breast cancer cells, while simultaneously mitigating DOX toxicity on normal cells.
Methods
As part of the characterization and evaluation of α-KAM-Fe/Mg-CA NPs to target breast cancer cells, a series of assessments were performed, which included size measurements, morphological analysis, FTIR, cytotoxicity assessment, hemolysis, drug binding, cellular uptake, and pH-responsive drug release tests. Liquid chromatography-mass spectrometry was used to conduct the protein corona analysis of α-KAM-Fe/Mg-CA using 10% FBS (fetal bovine serum) and mice plasma. Furthermore, to investigate the distribution of DOX-loaded α-KAM-Fe/Mg-CA NPs in major tissues and the tumor, a biodistribution investigation was conducted in mammary tumor-induced Balb/c mouse models 24 h after the intravenous administration of DOX-loaded α-KAM-Fe/Mg-CA NPs.
Results
The in vitro pH-dependent release of DOX over time demonstrated that α-KAM-Fe/Mg-CA NPs were pH-responsive and degraded rapidly at acidic pH levels. When compared to free DOX, the DOX-loaded α-KAM-Fe/Mg-CA NPs demonstrated a potent antiproliferative effect on breast cancer cells. Confocal microscopy confirmed the effective internalization of DOX-loaded α-KAM-Fe/Mg-CA NPs in breast cancer cells. The protein corona analysis revealed an affinity for dysopsonins (serum albumin, apolipoproteins) and transport proteins that may assist in extending their blood circulation period. Furthermore, biodistribution data of DOX-loaded α-KAM-Fe/Mg-CA NPs in the mammary tumor-induced Balb/c mouse model indicated extended circulation in the bloodstream, reduced non-target distribution in major tissues, and increased drug accumulation in the tumor.
Conclusion
The results obtained suggest that α-KAM-Fe/Mg-CA NPs may emerge as a prospective candidate for delivering therapeutic cargos to treat malignant mammary tumors.
Collapse
|
9
|
Huang Y, Wang L, Liu Y, Li T, Xin B. Drug-loaded PLCL/PEO-SA bilayer nanofibrous membrane for controlled release. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2021; 32:2331-2348. [PMID: 34491876 DOI: 10.1080/09205063.2021.1970881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The bilayer nanofibrous membrane fabricated via electrospinning technique can be considered as an ideal structure for the treatment of chronic skin diseases and exudative wound dressings. Wound exudate would affect healing and increases the likelihood of infection at the same time. Therefore, it is essential to produce a kind of wound dressing with relatively high hygroscopicity which could absorb wound exudate and provide a relatively dry healing environment. Bilayer nanofibrous membranes of poly(L-lactide-co-ε-caprolactone)/tetracycline hydrochloride- polyethylene oxide/sodium alginate-zinc oxide (PLCL/TCH-PEO/SA-ZnO) with drug delivery potential were prepared by electrospinning for wound healing. Then, a cross-linking which involved soaking the samples in an aqueous solution containing strontium ions for 4 h was conducted. SEM images showed that membranes still maintained the peculiar nanofibrous structure. The spinning aid (PEO) used was removed in the cross-linked alginate without affecting the PLCL/TCH outer layer gave the membrane good mechanical properties and manageability. The hydrophilicity of the mats was tested to evaluate the ability of the bilayer membrane to absorb exudate from the wound. In vitro drug release suggested that antibacterial agents TCH could release continuously more than 10 days. The cross-linked fibrous membrane has improved mechanical properties and fluid repellency, thus representing a barrier to the external environment and effective wound protection. Consequently, the bilayer fibrous scaffold with good hygroscopicity and drug release properties would have wide applications prospects for the treatment of chronic skin diseases and exudative wound dressings.
Collapse
Affiliation(s)
- Yifan Huang
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai, China
| | - Lei Wang
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai, China
| | - Yi Liu
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai, China
| | - Tingxiao Li
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai, China
| | - Binjie Xin
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai, China
| |
Collapse
|
10
|
Pan X, Veroniaina H, Su N, Sha K, Jiang F, Wu Z, Qi X. Applications and developments of gene therapy drug delivery systems for genetic diseases. Asian J Pharm Sci 2021; 16:687-703. [PMID: 35027949 PMCID: PMC8737406 DOI: 10.1016/j.ajps.2021.05.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 02/15/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Genetic diseases seriously threaten human health and have always been one of the refractory conditions facing humanity. Currently, gene therapy drugs such as siRNA, shRNA, antisense oligonucleotide, CRISPR/Cas9 system, plasmid DNA and miRNA have shown great potential in biomedical applications. To avoid the degradation of gene therapy drugs in the body and effectively deliver them to target tissues, cells and organelles, the development of excellent drug delivery vehicles is of utmost importance. Viral vectors are the most widely used delivery vehicles for gene therapy in vivo and in vitro due to their high transfection efficiency and stable transgene expression. With the development of nanotechnology, novel nanocarriers are gradually replacing viral vectors, emerging superior performance. This review mainly illuminates the current widely used gene therapy drugs, summarizes the viral vectors and non-viral vectors that deliver gene therapy drugs, and sums up the application of gene therapy to treat genetic diseases. Additionally, the challenges and opportunities of the field are discussed from the perspective of developing an effective nano-delivery system.
Collapse
Affiliation(s)
- Xiuhua Pan
- China Pharmaceutical University, Nanjing 211198, China
| | | | - Nan Su
- China Pharmaceutical University, Nanjing 211198, China
| | - Kang Sha
- China Pharmaceutical University, Nanjing 211198, China
| | - Fenglin Jiang
- China Pharmaceutical University, Nanjing 211198, China
| | - Zhenghong Wu
- China Pharmaceutical University, Nanjing 211198, China
| | - Xiaole Qi
- China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
11
|
Shah A, Aftab S, Nisar J, Ashiq MN, Iftikhar FJ. Nanocarriers for targeted drug delivery. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102426] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Jahan S, Karim ME, Chowdhury EH. Nanoparticles Targeting Receptors on Breast Cancer for Efficient Delivery of Chemotherapeutics. Biomedicines 2021; 9:114. [PMID: 33530291 PMCID: PMC7910939 DOI: 10.3390/biomedicines9020114] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/25/2020] [Accepted: 01/05/2021] [Indexed: 12/14/2022] Open
Abstract
The journey of chemotherapeutic drugs from the site of administration to the site of action is confronted by several factors including low bioavailability, uneven distribution in major organs, limited accessibility of drug molecules to the distant tumor tissues, and lower therapeutic indexes. These unavoidable features of classical chemotherapeutics necessitate an additional high, repetitive dose of drugs to obtain maximum therapeutic responses with the result of unintended adverse side effects. An erratic tumor microenvironment, notable drawbacks of conventional chemotherapy, and multidrug-resistant mechanisms of breast cancer cells warrant precisely designed therapeutics for the treatment of cancers. In recent decades, nanoparticles have been deployed for the delivery of standard anticancer drugs to maximize the therapeutic potency while minimizing the adverse effects to increase the quality and span of life. Several organic and inorganic nanoplatforms that have been designed exploiting the distinctive features of the tumor microenvironment and tumor cells offer favorable physicochemical properties and pharmacokinetic profiles of a parent drug, with delivery of higher amounts of the drug to the pathological site and its controlled release, thereby improving the balance between its efficacy and toxicity. Advances to this front have included design and construction of targeted nanoparticles by conjugating homing devices like peptide, ligand, and Fab on the surface of nanomaterials to navigate nanoparticledrug complexes towards the target tumor cell with minimal destruction of healthy cells. Furthermore, actively targeting nanoparticles can facilitate the delivery and cellular uptake of nanoparticle-loaded drug constructs via binding with specific receptors expressed aberrantly on the surface of a tumor cell. Herein, we present an overview of the principle of targeted delivery approaches, exploiting drug-nanoparticle conjugates with multiple targeting moieties to target specific receptors of breast cancer cells and highlighting therapeutic evaluation in preclinical studies. We conclude that an understanding of the translational gap and challenges would show the possible future directions to foster the development of novel targeted nanotherapeutics.
Collapse
Affiliation(s)
| | | | - Ezharul Hoque Chowdhury
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Petaling Jaya 47500, Malaysia; (S.J.); (M.E.K.)
| |
Collapse
|
13
|
Abstract
Abstract
In the review we describe a method for concentration of anionic liposomes with encapsulated water-soluble substances within a small volume via electrostatic liposome adsorption on the surface of polymer particles with grafted cationic chains (spherical polycationic brushes), or cationic microgel particles. Dozens of intact liposomes can be bound to each polymer particle, the resulting polymer/liposome complex does not dissociate into the original components in a physiological solution. This allows fabrication of multi-liposomal complexes (MLCs) with a required ratio of encapsulated substances. Two approaches are discussed for the synthesis of stimuli-sensitive MLCs. The first is to incorporate the conformation switch, morpholinocyclohexanol-based lipid, into the liposomal membrane thus forming pH-sensitive liposomes capable of releasing their cargo when acidifying the surrounding solution. These liposomes complexed with the brushes release encapsulated substances much faster than the uncomplexed liposomes. The second is to adsorb liposomes on cationic thermo-responsive microgels. The resulting MLCs contracts upon heating over a volume phase transition temperature from the swollen to the collapsed state of microgel, thus causing the adsorbed liposomes to change drastically their morphology and release an encapsulated substance. Complexation of anionic liposomes with chitosan microgels and polylactide micelles gives MLCs which degrade in the presence of enzymes down to small particles, 10–15 nm in diameter. A novel promising approach suggests that immobilized liposomes can act as a capacious depot for biologically active compounds and ensure their controllable leakage to surrounding solution.
Collapse
Affiliation(s)
- Alexander A. Yaroslavov
- Lomonosov Moscow State University , Department of Chemistry , Leninskie Gory 1-3 , Moscow 119991 , Russian Federation
| | - Andrey V. Sybachin
- Lomonosov Moscow State University , Department of Chemistry , Leninskie Gory 1-3 , Moscow 119991 , Russian Federation
| |
Collapse
|