1
|
Van Scoyk AN, Antelope O, Ayer DE, Peterson RT, Pomicter AD, Owen SC, Deininger MW. Bioluminescence assay of lysine deacylase sirtuin activity. Cell Chem Biol 2024; 31:2002-2014.e4. [PMID: 39515338 DOI: 10.1016/j.chembiol.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/08/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Lysine acylation can direct protein function, localization, and interactions. Sirtuins deacylate lysine toward maintaining cellular homeostasis, and their aberrant expression contributes to the pathogenesis of multiple conditions, including cancer. Measuring sirtuins' activity is essential to exploring their potential as therapeutic targets, but accurate quantification is challenging. We developed "SIRTify", a high-sensitivity assay for measuring sirtuin activity in vitro and in vivo. SIRTify is based on a split-version of the NanoLuc luciferase consisting of a truncated, catalytically inactive N-terminal moiety (LgBiT) that complements with a high-affinity C-terminal peptide (p86) to form active luciferase. Acylation of two lysines within p86 disrupts binding to LgBiT and abates luminescence. Deacylation by sirtuins reestablishes p86 and restores binding, generating a luminescence signal proportional to sirtuin activity. Measurements accurately reflect reported sirtuin specificity for lysine-acylations and confirm the effects of sirtuin modulators. SIRTify quantifies lysine deacylation dynamics and may be adaptable to monitoring additional post-translational modifications.
Collapse
Affiliation(s)
| | - Orlando Antelope
- University of Utah, Department of Pharmacology and Toxicology, Salt Lake City
| | - Donald E Ayer
- University of Utah, Department of Oncological Sciences, Salt Lake City
| | - Randall T Peterson
- University of Utah, Department of Pharmacology and Toxicology, Salt Lake City
| | - Anthony D Pomicter
- University of Utah, Division of Hematology Biorepository, Salt Lake City
| | - Shawn C Owen
- University of Utah, Department of Molecular Pharmaceutics, Salt Lake City; University of Utah, Department of Medicinal Chemistry, Department of Biomedical Engineering, Salt Lake City.
| | - Michael W Deininger
- Versiti Blood Research Institute, Milwaukee; Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee.
| |
Collapse
|
2
|
Zhao X, Liu H, Zhang JC, Cai J. Helical sulfonyl-γ-AApeptides for the inhibition of HIV-1 fusion and HIF-1α signaling. RSC Med Chem 2024; 15:1418-1423. [PMID: 38784464 PMCID: PMC11110726 DOI: 10.1039/d4md00110a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/19/2024] [Indexed: 05/25/2024] Open
Abstract
Synthetic helical peptidic foldamers show promising applications in chemical biology and biomedical sciences by mimicking protein helical segments. Sulfonyl-γ-AApeptide helices developed by our group exhibit good chemodiversity, predictable folding structures, proteolytic resistance, favorable cell permeability, and enhanced bioavailability. Herein, in this minireview, we highlight two recent examples of homogeneous left-handed sulfonyl-γ-AApeptide helices to modulate protein-protein interactions (PPIs). One is sulfonyl-γ-AApeptides as anti-HIV-1 fusion inhibitors mimicking the helical C-terminal heptad repeat (CHR), which show excellent anti-HIV-1 activities through tight binding with the N-terminal heptad repeat (NHR) and inhibiting the formation of the 6-helical bundle (HB) structure. Another example is helical sulfonyl-γ-AApeptides disrupting hypoxia-inducible factor 1α (HIF-1α) and p300 PPI, thus selectively inhibiting the relevant signaling cascade. We hope these findings could help to elucidate the principles of the structural design of sulfonyl-γ-AApeptides and inspire their future applications in PPI modulations.
Collapse
Affiliation(s)
- Xue Zhao
- Department of Chemistry, University of South Florida Tampa FL 33620 USA
| | - Heng Liu
- Department of Chemistry, University of South Florida Tampa FL 33620 USA
| | - Justin C Zhang
- Department of Chemistry, University of South Florida Tampa FL 33620 USA
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida Tampa FL 33620 USA
| |
Collapse
|
3
|
Gopikrishnan M, Haryini S, C GPD. Emerging strategies and therapeutic innovations for combating drug resistance in Staphylococcus aureus strains: A comprehensive review. J Basic Microbiol 2024; 64:e2300579. [PMID: 38308076 DOI: 10.1002/jobm.202300579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/04/2024]
Abstract
In recent years, antibiotic therapy has encountered significant challenges due to the rapid emergence of multidrug resistance among bacteria responsible for life-threatening illnesses, creating uncertainty about the future management of infectious diseases. The escalation of antimicrobial resistance in the post-COVID era compared to the pre-COVID era has raised global concern. The prevalence of nosocomial-related infections, especially outbreaks of drug-resistant strains of Staphylococcus aureus, have been reported worldwide, with India being a notable hotspot for such occurrences. Various virulence factors and mutations characterize nosocomial infections involving S. aureus. The lack of proper alternative treatments leading to increased drug resistance emphasizes the need to investigate and examine recent research to combat future pandemics. In the current genomics era, the application of advanced technologies such as next-generation sequencing (NGS), machine learning (ML), and quantum computing (QC) for genomic analysis and resistance prediction has significantly increased the pace of diagnosing drug-resistant pathogens and insights into genetic intricacies. Despite prompt diagnosis, the elimination of drug-resistant infections remains unattainable in the absence of effective alternative therapies. Researchers are exploring various alternative therapeutic approaches, including phage therapy, antimicrobial peptides, photodynamic therapy, vaccines, host-directed therapies, and more. The proposed review mainly focuses on the resistance journey of S. aureus over the past decade, detailing its resistance mechanisms, prevalence in the subcontinent, innovations in rapid diagnosis of the drug-resistant strains, including the applicants of NGS and ML application along with QC, it helps to design alternative novel therapeutics approaches against S. aureus infection.
Collapse
Affiliation(s)
- Mohanraj Gopikrishnan
- Department of Integrative Biology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Sree Haryini
- Department of Biomedical Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - George Priya Doss C
- Department of Integrative Biology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| |
Collapse
|
4
|
Gach-Janczak K, Biernat M, Kuczer M, Adamska-Bartłomiejczyk A, Kluczyk A. Analgesic Peptides: From Natural Diversity to Rational Design. Molecules 2024; 29:1544. [PMID: 38611824 PMCID: PMC11013236 DOI: 10.3390/molecules29071544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Pain affects one-third of the global population and is a significant public health issue. The use of opioid drugs, which are the strongest painkillers, is associated with several side effects, such as tolerance, addiction, overdose, and even death. An increasing demand for novel, safer analgesic agents is a driving force for exploring natural sources of bioactive peptides with antinociceptive activity. Since the G protein-coupled receptors (GPCRs) play a crucial role in pain modulation, the discovery of new peptide ligands for GPCRs is a significant challenge for novel drug development. The aim of this review is to present peptides of human and animal origin with antinociceptive potential and to show the possibilities of their modification, as well as the design of novel structures. The study presents the current knowledge on structure-activity relationship in the design of peptide-based biomimetic compounds, the modification strategies directed at increasing the antinociceptive activity, and improvement of metabolic stability and pharmacodynamic profile. The procedures employed in prolonged drug delivery of emerging compounds are also discussed. The work summarizes the conditions leading to the development of potential morphine replacements.
Collapse
Affiliation(s)
- Katarzyna Gach-Janczak
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (K.G.-J.); (A.A.-B.)
| | - Monika Biernat
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (M.B.); (M.K.)
| | - Mariola Kuczer
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (M.B.); (M.K.)
| | - Anna Adamska-Bartłomiejczyk
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (K.G.-J.); (A.A.-B.)
| | - Alicja Kluczyk
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (M.B.); (M.K.)
| |
Collapse
|
5
|
Van Scoyk AN, Antelope O, Franzini A, Ayer DE, Peterson RT, Pomicter AD, Owen SC, Deininger MW. Bioluminescence Assay of Lysine Deacylase Sirtuin Activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552871. [PMID: 37645727 PMCID: PMC10461969 DOI: 10.1101/2023.08.10.552871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Lysine acylation can direct protein function, localization, and interactions. Sirtuins deacylate lysine towards maintaining cellular homeostasis, and their aberrant expression contributes to the pathogenesis of multiple pathological conditions, including cancer. Measuring sirtuins' activity is essential to exploring their potential as therapeutic targets, but accurate quantification is challenging. We developed 'SIRTify', a high-sensitivity assay for measuring sirtuin activity in vitro and in vivo. SIRTify is based on a split-version of the NanoLuc® luciferase consisting of a truncated, catalytically inactive N-terminal moiety (LgBiT) that complements with a high-affinity C-terminal peptide (p86) to form active luciferase. Acylation of two lysines within p86 disrupts binding to LgBiT and abates luminescence. Deacylation by sirtuins reestablishes p86 and restores binding, generating a luminescence signal proportional to sirtuin activity. Measurements accurately reflect reported sirtuin specificity for lysine acylations and confirm the effects of sirtuin modulators. SIRTify effectively quantifies lysine deacylation dynamics and may be adaptable to monitoring additional post-translational modifications.
Collapse
Affiliation(s)
| | | | - Anca Franzini
- University of Utah, Department of Oncological Sciences
| | - Donald E Ayer
- University of Utah, Department of Oncological Sciences
| | | | | | - Shawn C Owen
- University of Utah, Department of Molecular Pharmaceutics
- University of Utah, Department of Medicinal Chemistry; Department of Biomedical Engineering
| | - Michael W Deininger
- Blood Research Institute, Versiti
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin
| |
Collapse
|
6
|
Robledo SM, Pérez-Silanes S, Fernández-Rubio C, Poveda A, Monzote L, González VM, Alonso-Collado P, Carrión J. Neglected Zoonotic Diseases: Advances in the Development of Cell-Penetrating and Antimicrobial Peptides against Leishmaniosis and Chagas Disease. Pathogens 2023; 12:939. [PMID: 37513786 PMCID: PMC10383258 DOI: 10.3390/pathogens12070939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
In 2020, the WHO established the road map for neglected tropical diseases 2021-2030, which aims to control and eradicate 20 diseases, including leishmaniosis and Chagas disease. In addition, since 2015, the WHO has been developing a Global Action Plan on Antimicrobial Resistance. In this context, the achievement of innovative strategies as an alternative to replace conventional therapies is a first-order socio-sanitary priority, especially regarding endemic zoonoses in poor regions, such as those caused by Trypanosoma cruzi and Leishmania spp. infections. In this scenario, it is worth highlighting a group of natural peptide molecules (AMPs and CPPs) that are promising strategies for improving therapeutic efficacy against these neglected zoonoses, as they avoid the development of toxicity and resistance of conventional treatments. This review presents the novelties of these peptide molecules and their ability to cross a whole system of cell membranes as well as stimulate host immune defenses or even serve as vectors of molecules. The efforts of the biotechnological sector will make it possible to overcome the limitations of antimicrobial peptides through encapsulation and functionalization methods to obtain approval for these treatments to be used in clinical programs for the eradication of leishmaniosis and Chagas disease.
Collapse
Affiliation(s)
- Sara M. Robledo
- Programa de Estudio y Control de Enfermedades Tropicales PECET, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Silvia Pérez-Silanes
- Department of Pharmaceutical Technology and Chemistry, ISTUN Instituto de Salud Tropical, IdiSNA, Universidad de Navarra, 31008 Pamplona, Spain;
| | - Celia Fernández-Rubio
- Department of Microbiology and Parasitology, ISTUN Instituto de Salud Tropical, IdiSNA, Universidad de Navarra, 31008 Pamplona, Spain;
| | - Ana Poveda
- DNA Replication and Genome Instability Unit, Grupo de Investigación en Biodiversidad, Zoonosis y Salud Pública (GIBCIZ), Instituto de Investigación en Zoonosis-CIZ, Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito 170521, Ecuador;
| | - Lianet Monzote
- Department of Parasitology, Institute of Tropical Medicine “Pedro Kourí”, Apartado Postal No. 601, Marianao 13, La Habana 10400, Cuba;
| | - Víctor M. González
- Grupo de Aptámeros, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Universitario Ramón y Cajal, Carretera de Colmenar Viejo Km. 9.100, 28034 Madrid, Spain;
| | - Paloma Alonso-Collado
- Department of Animal Health, Faculty of Veterinary Science, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Javier Carrión
- Department of Animal Health, Faculty of Veterinary Science, Complutense University of Madrid, 28040 Madrid, Spain;
| |
Collapse
|
7
|
Kisakova LA, Apartsin EK, Nizolenko LF, Karpenko LI. Dendrimer-Mediated Delivery of DNA and RNA Vaccines. Pharmaceutics 2023; 15:pharmaceutics15041106. [PMID: 37111593 PMCID: PMC10145063 DOI: 10.3390/pharmaceutics15041106] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
DNA and RNA vaccines (nucleic acid-based vaccines) are a promising platform for vaccine development. The first mRNA vaccines (Moderna and Pfizer/BioNTech) were approved in 2020, and a DNA vaccine (Zydus Cadila, India), in 2021. They display unique benefits in the current COVID-19 pandemic. Nucleic acid-based vaccines have a number of advantages, such as safety, efficacy, and low cost. They are potentially faster to develop, cheaper to produce, and easier to store and transport. A crucial step in the technology of DNA or RNA vaccines is choosing an efficient delivery method. Nucleic acid delivery using liposomes is the most popular approach today, but this method has certain disadvantages. Therefore, studies are actively underway to develop various alternative delivery methods, among which synthetic cationic polymers such as dendrimers are very attractive. Dendrimers are three-dimensional nanostructures with a high degree of molecular homogeneity, adjustable size, multivalence, high surface functionality, and high aqueous solubility. The biosafety of some dendrimers has been evaluated in several clinical trials presented in this review. Due to these important and attractive properties, dendrimers are already being used to deliver a number of drugs and are being explored as promising carriers for nucleic acid-based vaccines. This review summarizes the literature data on the development of dendrimer-based delivery systems for DNA and mRNA vaccines.
Collapse
Affiliation(s)
- Lyubov A. Kisakova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Kol’tsovo, Russia
| | - Evgeny K. Apartsin
- CBMN, UMR 5248, CNRS, Bordeaux INP, University Bordeaux, F-33600 Pessac, France
| | - Lily F. Nizolenko
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Kol’tsovo, Russia
| | - Larisa I. Karpenko
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Kol’tsovo, Russia
| |
Collapse
|
8
|
Costa RODA, Passos TS, Silva EMDS, dos Santos NCS, Morais AHDA. Encapsulated Peptides and Proteins with an Effect on Satiety. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1166. [PMID: 37049259 PMCID: PMC10097199 DOI: 10.3390/nano13071166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
The world scenario has undergone a nutritional transition in which some countries have left the reality of malnutrition and now face an epidemic of excess body weight. Researchers have been looking for strategies to reverse this situation. Peptides and proteins stand out as promising molecules with anti-obesity action. However, oral administration and passage through the gastrointestinal tract face numerous physiological barriers that impair their bioactive function. Encapsulation aims to protect the active substance and modify the action, one possibility of potentiating anti-obesity activity. Research with encapsulated peptides and proteins has demonstrated improved stability, delivery, controlled release, and increased bioactivity. However, it is necessary to explore how proteins and peptides affect weight loss and satiety, can impact the nutritional status of obesity, and how encapsulation can enhance the bioactive effects of these molecules. This integrative review aimed to discuss how the encapsulation of protein molecules impacts the nutritional status of obesity. From the studies selected following pre-established criteria, it was possible to infer that the encapsulation of proteins and peptides can contribute to greater efficiency in reducing weight gain, changes in adipose tissue function, and lower hormone levels that modulate appetite and body weight in animals with obesity.
Collapse
Affiliation(s)
- Rafael O. de A. Costa
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Thaís S. Passos
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Eloyse Mikaelly de S. Silva
- Nutrition Course, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | | | - Ana Heloneida de A. Morais
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
- Nutrition Course, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| |
Collapse
|
9
|
Knauer N, Meschaninova M, Muhammad S, Hänggi D, Majoral JP, Kahlert UD, Kozlov V, Apartsin EK. Effects of Dendrimer-microRNA Nanoformulations against Glioblastoma Stem Cells. Pharmaceutics 2023; 15:pharmaceutics15030968. [PMID: 36986829 PMCID: PMC10056969 DOI: 10.3390/pharmaceutics15030968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/06/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Glioblastoma is a rapidly progressing tumor quite resistant to conventional treatment. These features are currently assigned to a self-sustaining population of glioblastoma stem cells. Anti-tumor stem cell therapy calls for a new means of treatment. In particular, microRNA-based treatment is a solution, which in turn requires specific carriers for intracellular delivery of functional oligonucleotides. Herein, we report a preclinical in vitro validation of antitumor activity of nanoformulations containing antitumor microRNA miR-34a and microRNA-21 synthetic inhibitor and polycationic phosphorus and carbosilane dendrimers. The testing was carried out in a panel of glioblastoma and glioma cell lines, glioblastoma stem-like cells and induced pluripotent stem cells. We have shown dendrimer-microRNA nanoformulations to induce cell death in a controllable manner, with cytotoxic effects being more pronounced in tumor cells than in non-tumor stem cells. Furthermore, nanoformulations affected the expression of proteins responsible for interactions between the tumor and its immune microenvironment: surface markers (PD-L1, TIM3, CD47) and IL-10. Our findings evidence the potential of dendrimer-based therapeutic constructions for the anti-tumor stem cell therapy worth further investigation.
Collapse
Affiliation(s)
- Nadezhda Knauer
- Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
- Clinic for Neurosurgery, Medical Faculty, Heinrich-Heine University Medical Center Düsseldorf, 40225 Düsseldorf, Germany
| | - Mariya Meschaninova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia
| | - Sajjad Muhammad
- Clinic for Neurosurgery, Medical Faculty, Heinrich-Heine University Medical Center Düsseldorf, 40225 Düsseldorf, Germany
| | - Daniel Hänggi
- Clinic for Neurosurgery, Medical Faculty, Heinrich-Heine University Medical Center Düsseldorf, 40225 Düsseldorf, Germany
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination, CNRS, 205 Route de Narbonne, CEDEX 04, 31077 Toulouse, France
| | - Ulf Dietrich Kahlert
- Molecular and Experimental Surgery, Clinic for General-, Visceral-, Vascular-, and Transplant-Surgery, Medical Faculty, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Vladimir Kozlov
- Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
| | - Evgeny K. Apartsin
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, 33600 Pessac, France
- Correspondence:
| |
Collapse
|
10
|
Effects of Cationic Dendrimers and Their Complexes with microRNAs on Immunocompetent Cells. Pharmaceutics 2022; 15:pharmaceutics15010148. [PMID: 36678776 PMCID: PMC9862986 DOI: 10.3390/pharmaceutics15010148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Short regulatory oligonucleotides are considered prospective tools for immunotherapy. However, they require an adequate carrier to deliver potential therapeutics into immune cells. Herein, we explore the potential of polycationic dendrimers as carriers for microRNAs in peripheral blood mononuclear cells of healthy donors. As an oligonucleotide cargo, we use a synthetic mimic and an inhibitor of miR-155, an important factor in the development and functioning of immunocompetent cells. Dendrimers bind microRNAs into low-cytotoxic polyelectrolyte complexes that are efficiently uptaken by immunocompetent cells. We have shown these complexes to affect the number of T-regulatory cells, CD14+ and CD19+ cell subpopulations in non-activated mononuclear cells. The treatment affected the expression of HLA-DR on T-cells and PD-1 expression on T- and B-lymphocytes. It also affected the production of IL-4 and IL-10, but not the perforin and granzyme B production. Our findings suggest the potential of dendrimer-mediated microRNA-155 treatment for immunotherapy, though the activity of microRNA-dendrimer constructions on distinct immune cell subsets can be further improved.
Collapse
|
11
|
Choudhury H, Pandey M, Mohgan R, Jong JSJ, David RN, Ngan WY, Chin TL, Ting S, Kesharwani P, Gorain B. Dendrimer-based delivery of macromolecules for the treatment of brain tumor. BIOMATERIALS ADVANCES 2022; 141:213118. [PMID: 36182834 DOI: 10.1016/j.bioadv.2022.213118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/06/2022] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
Brain tumor represents the most lethal form of cancer with the highest mortality and morbidity rates irrespective of age and sex. Advancements in macromolecule-based therapy (such as nucleic acids and peptides) have shown promising roles in the treatment of brain tumor where the phenomenon of severe toxicities due to the conventional chemotherapeutic agents can be circumvented. Despite its preclinical progress, successful targeting of these macromolecules across the blood-brain barrier without altering their physical and chemical characteristics is of great challenge. With the advent of nanotechnology, nowadays targeted delivery of therapeutics is being explored extensively and these macromolecules, including peptides and nucleic acids, have shown initial success in the treatment, where dendrimer has shown its potential for optimal delivery. Dendrimers are being favored as a mode of drug delivery due to their nano-spherical size and structure, high solubilization potential, multivalent surface, and high loading capacity, where biomolecule resembling characteristics of dendritic 3D structures has shown effective delivery of various therapeutic agents to the brain. Armed with targeting ligands to these dendrimers further expedite the transportation of these multifunctional shuttles specifically to the glioblastoma cells. Thus, a focus has been made in this review on therapeutic applications of dendrimer platforms in brain tumor treatment. The future development of dendrimers as a potential platform for nucleic acid and peptide delivery and its promising clinical application could provide effective and target-specific treatment against brain tumors.
Collapse
Affiliation(s)
- Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia.
| | - Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia; Department of Pharmaceutical Sciences, Central University of Haryana, SSH 17, Jant, Haryana 123031, India.
| | - Raxshanaa Mohgan
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Jim Sii Jack Jong
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Roshini Nicole David
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Wan Yi Ngan
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Tze Liang Chin
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Shereen Ting
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| |
Collapse
|
12
|
In Vitro Validation of the Therapeutic Potential of Dendrimer-Based Nanoformulations against Tumor Stem Cells. Int J Mol Sci 2022; 23:ijms23105691. [PMID: 35628503 PMCID: PMC9143703 DOI: 10.3390/ijms23105691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 12/13/2022] Open
Abstract
Tumor cells with stem cell properties are considered to play major roles in promoting the development and malignant behavior of aggressive cancers. Therapeutic strategies that efficiently eradicate such tumor stem cells are of highest clinical need. Herein, we performed the validation of the polycationic phosphorus dendrimer-based approach for small interfering RNAs delivery in in vitro stem-like cells as models. As a therapeutic target, we chose Lyn, a member of the Src family kinases as an example of a prominent enzyme class widely discussed as a potent anti-cancer intervention point. Our selection is guided by our discovery that Lyn mRNA expression level in glioma, a class of brain tumors, possesses significant negative clinical predictive value, promoting its potential as a therapeutic target for future molecular-targeted treatments. We then showed that anti-Lyn siRNA, delivered into Lyn-expressing glioma cell model reduces the cell viability, a fact that was not observed in a cell model that lacks Lyn-expression. Furthermore, we have found that the dendrimer itself influences various parameters of the cells such as the expression of surface markers PD-L1, TIM-3 and CD47, targets for immune recognition and other biological processes suggested to be regulating glioblastoma cell invasion. Our findings prove the potential of dendrimer-based platforms for therapeutic applications, which might help to eradicate the population of cancer cells with augmented chemotherapy resistance. Moreover, the results further promote our functional stem cell technology as suitable component in early stage drug development.
Collapse
|
13
|
Sztandera K, Gorzkiewicz M, Bątal M, Arkhipova V, Knauer N, Sánchez-Nieves J, de la Mata FJ, Gómez R, Apartsin E, Klajnert-Maculewicz B. Triazine–Carbosilane Dendrimersomes Enhance Cellular Uptake and Phototoxic Activity of Rose Bengal in Basal Cell Skin Carcinoma Cells. Int J Nanomedicine 2022; 17:1139-1154. [PMID: 35321027 PMCID: PMC8935628 DOI: 10.2147/ijn.s352349] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/14/2022] [Indexed: 12/11/2022] Open
Abstract
Background The search for new formulations for photodynamic therapy is intended to improve the outcome of skin cancer treatment using significantly reduced doses of photosensitizer, thereby avoiding side effects. The incorporation of photosensitizers into nanoassemblies is a versatile way to increase the efficiency and specificity of drug delivery into target cells. Herein, we report the loading of rose bengal into vesicle-like constructs of amphiphilic triazine-carbosilane dendrons (dendrimersomes) as well as biophysical and in vitro characterization of this novel nanosystem. Methods Using established protocol and analytical and spectroscopy techniques we were able to synthesized dendrons with strictly designed properties. Engaging biophysical methods (hydrodynamic diameter and zeta potential measurements, analysis of spectral properties, transmission electron microscopy) we confirmed assembling of our nanosystem. A set of in vitro techniques was used for determination ROS generation, (ABDA and H2DCFDA probes), cell viability (MTT assay) and cellular uptake (flow cytometry and confocal microscopy). Results Encapsulation of rose bengal inside dendrimersomes enhances cellular uptake, intracellular ROS production and concequently, the phototoxicity of this photosensitizer. Conclusion Triazine-carbosilane dendrimersomes show high capacity as drug carriers for anticancer photodynamic therapy.
Collapse
Affiliation(s)
- Krzysztof Sztandera
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, 90-236, Poland
| | - Michał Gorzkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, 90-236, Poland
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | - Mateusz Bątal
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, 90-236, Poland
| | - Valeria Arkhipova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Nadezhda Knauer
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, 630099, Russia
- Clinic for Neurosurgery, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | - Javier Sánchez-Nieves
- Departamento de Química Orgánica y Química Inorgánica, UAH-IQAR, Alcalá de Henares, 28805, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
| | - Fco Javier de la Mata
- Departamento de Química Orgánica y Química Inorgánica, UAH-IQAR, Alcalá de Henares, 28805, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Madrid, 28034, Spain
| | - Rafael Gómez
- Departamento de Química Orgánica y Química Inorgánica, UAH-IQAR, Alcalá de Henares, 28805, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Madrid, 28034, Spain
| | - Evgeny Apartsin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
- Laboratoire de Chimie de Coordination CNRS, Toulouse, 31077, France
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, 90-236, Poland
- Correspondence: Barbara Klajnert-Maculewicz, Department of General Biophysics, Pomorska 141/143, Łódź, 90-236, Poland, Tel +48 42 635 44 29, Fax +48 42 635 4474, Email
| |
Collapse
|
14
|
Amphiphilic Triazine-Phosphorus Metallodendrons Possessing Anti-Cancer Stem Cell Activity. Pharmaceutics 2022; 14:pharmaceutics14020393. [PMID: 35214126 PMCID: PMC8880151 DOI: 10.3390/pharmaceutics14020393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Dendritic molecules bearing metal complexes in their structure (metallodendrimers and metallodendrons) are considered prospective therapeutic entities. In particular, metallodendrons raise interest as antitumor agents for the treatment of poorly curable or drug-resistant tumors. Herein, we have synthesized amphiphilic triazine-phosphorus dendrons bearing multiple copper (II) or gold (III) complexes on the periphery and a branched hydrophobic fragment at the focal point. Due to their amphiphilic nature, metallodendrons formed single micelles (mean diameter ~9 nm) or multi-micellar aggregates (mean diameter ~60 nm) in a water solution. We have tested the antitumor activity of amphiphilic metallodendrons towards glioblastoma, a malignant brain tumor with a notoriously high level of therapy resistance, as a model disease. The metallodendrons exhibit higher cytotoxic activity towards glioblastoma stem cells (BTSC233, JHH520, NCH644, and SF188 cell lines) and U87 glioblastoma cells (IC50 was 3–6 µM for copper-containing dendron and 11–15 µM for gold-containing dendron) in comparison with temozolomide (IC50 >100 µM)—the clinical standard of care for glioblastoma. Our findings show the potential of metallodendron-based nanoformulations as antitumor entities.
Collapse
|
15
|
Apartsin E, Venyaminova A, Majoral JP, Caminade AM. Dendriplex-Impregnated Hydrogels With Programmed Release Rate. Front Chem 2022; 9:780608. [PMID: 35071182 PMCID: PMC8766751 DOI: 10.3389/fchem.2021.780608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/13/2021] [Indexed: 12/24/2022] Open
Abstract
Hydrogels are biocompatible matrices for local delivery of nucleic acids; however, functional dopants are required to provide efficient delivery into cells. In particular, dendrimers, known as robust nucleic acid carriers, can be used as dopants. Herein, we report the first example of impregnating neutral hydrogels with siRNA-dendrimer complexes. The surface chemistry of dendrimers allows adjusting the release rate of siRNA-containing complexes. This methodology can bring new materials for biomedical applications.
Collapse
Affiliation(s)
- Evgeny Apartsin
- Laboratoire de Chimie de Coordination, CNRS, Toulouse, France.,LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France.,Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Alya Venyaminova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination, CNRS, Toulouse, France.,LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination, CNRS, Toulouse, France.,LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
| |
Collapse
|
16
|
Pashkina E, Aktanova A, Mirzaeva I, Kovalenko E, Andrienko I, Knauer N, Pronkina N, Kozlov V. The Effect of Cucurbit[7]uril on the Antitumor and Immunomodulating Properties of Oxaliplatin and Carboplatin. Int J Mol Sci 2021; 22:ijms22147337. [PMID: 34298956 PMCID: PMC8303694 DOI: 10.3390/ijms22147337] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
Cucurbit[7]uril (CB[7]) is a molecular container that may form host–guest complexes with platinum(II) anticancer drugs and modulate their efficacy and safety. In this paper, we report our studies of the effect of CB[7]–oxaliplatin complex and the mixture of CB[7] and carboplatin (1:1) on viability and proliferation of a primary cell culture (peripheral blood mononuclear cells), two tumor cell lines (B16 and K562) and their activity in the animal model of melanoma. At the same time, we studied the impact of platinum (II) drugs with CB[7] on T cells and B cells in vitro. Although the stable CB[7]–carboplatin complex was not formed, the presence of cucurbit[7]uril affected the biological properties of carboplatin. In vivo, CB[7] increased the antitumor effect of carboplatin, but, at the same time, increased its acute toxicity. Compared to free oxaliplatin, its complex with CB[7] shows a greater cytotoxic effect on tumor cell lines B16 and K562, while in vivo, the effects of the free drug and encapsulated drug were comparable. However, in vivo studies also demonstrated that the encapsulation of oxaliplatin in CB[7] lowered the toxicity of the drug.
Collapse
Affiliation(s)
- Ekaterina Pashkina
- Research Institute of Fundamental and Clinical Immunology, 14 Yadrintsevskaya St, 630099 Novosibirsk, Russia; (A.A.); (N.K.); (N.P.); (V.K.)
- Department of Clinical Immunology, Novosibirsk State Medical University, 52 Krasny Prospect, 630091 Novosibirsk, Russia
- Correspondence:
| | - Alina Aktanova
- Research Institute of Fundamental and Clinical Immunology, 14 Yadrintsevskaya St, 630099 Novosibirsk, Russia; (A.A.); (N.K.); (N.P.); (V.K.)
| | - Irina Mirzaeva
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave, 630090 Novosibirsk, Russia; (I.M.); (E.K.); (I.A.)
| | - Ekaterina Kovalenko
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave, 630090 Novosibirsk, Russia; (I.M.); (E.K.); (I.A.)
| | - Irina Andrienko
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave, 630090 Novosibirsk, Russia; (I.M.); (E.K.); (I.A.)
| | - Nadezhda Knauer
- Research Institute of Fundamental and Clinical Immunology, 14 Yadrintsevskaya St, 630099 Novosibirsk, Russia; (A.A.); (N.K.); (N.P.); (V.K.)
| | - Natalya Pronkina
- Research Institute of Fundamental and Clinical Immunology, 14 Yadrintsevskaya St, 630099 Novosibirsk, Russia; (A.A.); (N.K.); (N.P.); (V.K.)
| | - Vladimir Kozlov
- Research Institute of Fundamental and Clinical Immunology, 14 Yadrintsevskaya St, 630099 Novosibirsk, Russia; (A.A.); (N.K.); (N.P.); (V.K.)
- Department of Clinical Immunology, Novosibirsk State Medical University, 52 Krasny Prospect, 630091 Novosibirsk, Russia
| |
Collapse
|
17
|
The Present and Future Role of Microfluidics for Protein and Peptide-Based Therapeutics and Diagnostics. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094109] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The implementation of peptide-based molecules within the medical field has vast potential, owing to their unique nature and predictable physicochemical profiles. However, peptide therapeutic usage is hindered by delivery-related challenges, meaning that their formulations must be altered to overcome these limitations. This process could be propelled by applying microfluidics (MFs) due to its highly controllable and adaptable attributes; however, therapeutic research within this field is extremely limited. Peptides possess multifunctional roles within therapeutic formulations, ranging from enhancing target specificity to acting as the active component of the medicine. Diagnostically, MFs are well explored in the field of peptides, as MFs provide an unsullied platform to provide fast yet accurate examinations. The capacity to add attributes, such as integrated sensors and microwells, to the MF chip, only enhances the attractiveness of MFs as a diagnostic platform. The structural individuality of peptides makes them prime candidates for diagnostic purposes, for example, antigen detection and isolation. Therefore, this review provides a useful insight into the current applications of MFs for peptide-based therapy and diagnostics and highlights potential gaps in the field that are yet to be explored or optimized.
Collapse
|
18
|
Karpenko LI, Apartsin EK, Dudko SG, Starostina EV, Kaplina ON, Antonets DV, Volosnikova EA, Zaitsev BN, Bakulina AY, Venyaminova AG, Ilyichev AA, Bazhan SI. Cationic Polymers for the Delivery of the Ebola DNA Vaccine Encoding Artificial T-Cell Immunogen. Vaccines (Basel) 2020; 8:vaccines8040718. [PMID: 33271964 PMCID: PMC7760684 DOI: 10.3390/vaccines8040718] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 11/16/2022] Open
Abstract
Background: According to current data, an effective Ebola virus vaccine should induce both humoral and T-cell immunity. In this work, we focused our efforts on methods for delivering artificial T-cell immunogen in the form of a DNA vaccine, using generation 4 polyamidoamine dendrimers (PAMAM G4) and a polyglucin:spermidine conjugate (PG). Methods: Optimal conditions were selected for obtaining complexes of previously developed DNA vaccines with cationic polymers. The sizes, mobility and surface charge of the complexes with PG and PAMAM 4G have been determined. The immunogenicity of the obtained vaccine constructs was investigated in BALB/c mice. Results: It was shown that packaging of DNA vaccine constructs both in the PG envelope and the PAMAM 4G envelope results in an increase in their immunogenicity as compared with the group of mice immunized with the of vector plasmid pcDNA3.1 (a negative control). The highest T-cell responses were shown in mice immunized with complexes of DNA vaccines with PG and these responses significantly exceeded those in the groups of animals immunized with both the combination of naked DNAs and the combination DNAs coated with PAMAM 4G. In the group of animals immunized with complexes of the DNA vaccines with PAMAM 4G, no statistical differences were found in the ability to induce T-cell responses, as compared with the group of mice immunized with the combination of naked DNAs. Conclusions: The PG conjugate can be considered as a promising and safe means to deliver DNA-based vaccines. The use of PAMAM requires further optimization.
Collapse
Affiliation(s)
- Larisa I. Karpenko
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk Region, Russia; (S.G.D.); (E.V.S.); (O.N.K.); (D.V.A.); (E.A.V.); (B.N.Z.); (A.Y.B.); (A.A.I.)
- Correspondence: (L.I.K.); (S.I.B.); Tel.: +7-383-363-47-00 (ext. 2001) (L.I.K. & S.I.B.)
| | - Evgeny K. Apartsin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.K.A.); (A.G.V.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Laboratoire de Chimie de Coordination, CNRS, 31077 Toulouse, France
| | - Sergei G. Dudko
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk Region, Russia; (S.G.D.); (E.V.S.); (O.N.K.); (D.V.A.); (E.A.V.); (B.N.Z.); (A.Y.B.); (A.A.I.)
| | - Ekaterina V. Starostina
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk Region, Russia; (S.G.D.); (E.V.S.); (O.N.K.); (D.V.A.); (E.A.V.); (B.N.Z.); (A.Y.B.); (A.A.I.)
| | - Olga N. Kaplina
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk Region, Russia; (S.G.D.); (E.V.S.); (O.N.K.); (D.V.A.); (E.A.V.); (B.N.Z.); (A.Y.B.); (A.A.I.)
| | - Denis V. Antonets
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk Region, Russia; (S.G.D.); (E.V.S.); (O.N.K.); (D.V.A.); (E.A.V.); (B.N.Z.); (A.Y.B.); (A.A.I.)
| | - Ekaterina A. Volosnikova
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk Region, Russia; (S.G.D.); (E.V.S.); (O.N.K.); (D.V.A.); (E.A.V.); (B.N.Z.); (A.Y.B.); (A.A.I.)
| | - Boris N. Zaitsev
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk Region, Russia; (S.G.D.); (E.V.S.); (O.N.K.); (D.V.A.); (E.A.V.); (B.N.Z.); (A.Y.B.); (A.A.I.)
| | - Anastasiya Yu. Bakulina
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk Region, Russia; (S.G.D.); (E.V.S.); (O.N.K.); (D.V.A.); (E.A.V.); (B.N.Z.); (A.Y.B.); (A.A.I.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Aliya G. Venyaminova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.K.A.); (A.G.V.)
| | - Alexander A. Ilyichev
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk Region, Russia; (S.G.D.); (E.V.S.); (O.N.K.); (D.V.A.); (E.A.V.); (B.N.Z.); (A.Y.B.); (A.A.I.)
| | - Sergei I. Bazhan
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk Region, Russia; (S.G.D.); (E.V.S.); (O.N.K.); (D.V.A.); (E.A.V.); (B.N.Z.); (A.Y.B.); (A.A.I.)
- Correspondence: (L.I.K.); (S.I.B.); Tel.: +7-383-363-47-00 (ext. 2001) (L.I.K. & S.I.B.)
| |
Collapse
|
19
|
Surface-engineered nanoliposomes with lipidated and non-lipidated peptide-dendrimeric scaffold for efficient transdermal delivery of a therapeutic agent: Development, characterization, toxicological and preclinical performance analyses. Eur J Pharm Biopharm 2020; 156:97-113. [DOI: 10.1016/j.ejpb.2020.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 11/23/2022]
|
20
|
pH-Sensitive Dendrimersomes of Hybrid Triazine-Carbosilane Dendritic Amphiphiles-Smart Vehicles for Drug Delivery. NANOMATERIALS 2020; 10:nano10101899. [PMID: 32977594 PMCID: PMC7598245 DOI: 10.3390/nano10101899] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/18/2022]
Abstract
Supramolecular constructions of amphiphilic dendritic molecules are promising vehicles for anti-cancer drug delivery due to the flexibility of their architecture, high drug loading capacity and avoiding off-target effects of a drug. Herein, we report a new class of amphiphilic dendritic species—triazine-carbosilane dendrons readily self-assembling into pH-sensitive dendrimersomes. The dendrimersomes efficiently encapsulate anticancer drugs doxorubicin and methotrexate. Chemodrug-loaded dendrimersomes have dose-related cytotoxic activity against leukaemia cell lines 1301 and K562. Our findings suggest that triazine-carbosilane dendrimersomes are prospective drug carriers for anti-cancer therapy.
Collapse
|
21
|
Pashkina E, Aktanova A, Blinova E, Mirzaeva I, Kovalenko E, Knauer N, Ermakov A, Kozlov V. Evaluation of the Immunosafety of Cucurbit[n]uril on Peripheral Blood Mononuclear Cells In Vitro. Molecules 2020; 25:E3388. [PMID: 32726898 PMCID: PMC7435832 DOI: 10.3390/molecules25153388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/09/2020] [Accepted: 07/23/2020] [Indexed: 12/19/2022] Open
Abstract
Cucurbiturils (CB[n]s) are nanoscale macrocyclic compounds capable of encapsulating a molecule or part of a molecule by forming host-guest complexes. Integration of drugs with CB[n] is used for the following purposes: controlling clearance; protection of the drug from biodegradation; targeted delivery to specific organs, tissues, or cells; reduction of toxicity; and improving solubility. One of the major problems encountered in the application of new drug delivery systems is lack of knowledge of their biological properties. CB[n], unlike many other often toxic nanoparticles, has extremely low toxicity, even at high doses. However, many aspects of the biological actions of these nanoscale cavitands remain unclear, including the immunotropic properties. In this study, we investigated the immunotoxicity and immunomodulation properties of CB[n]. It was found that CB[7] and CB[6] did not decrease the viability of mononuclear cells at all tested concentrations from 0.1-1 mM. Overall, the results indicated an immunomodulatory effect of different concentrations of CB[n]. In the case of a longer cultivation time, CB[n] had an immunostimulating effect, which was indicated by an enhancement of the proliferative activity of cells and increased expression of HLA-DR on lymphocytes.
Collapse
Affiliation(s)
- Ekaterina Pashkina
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya st., 630099 Novosibirsk, Russia; (A.A.); (E.B.); (N.K.); (V.K.)
- Novosibirsk State Medical University, 52, Krasny Prospect, 630091 Novosibirsk, Russia;
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8, Lavrentiev ave., 630090 Novosibirsk, Russia
| | - Alina Aktanova
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya st., 630099 Novosibirsk, Russia; (A.A.); (E.B.); (N.K.); (V.K.)
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8, Lavrentiev ave., 630090 Novosibirsk, Russia
| | - Elena Blinova
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya st., 630099 Novosibirsk, Russia; (A.A.); (E.B.); (N.K.); (V.K.)
| | - Irina Mirzaeva
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3, Lavrentiev ave., 630090 Novosibirsk, Russia; (I.M.); (E.K.)
| | - Ekaterina Kovalenko
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3, Lavrentiev ave., 630090 Novosibirsk, Russia; (I.M.); (E.K.)
| | - Nadezhda Knauer
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya st., 630099 Novosibirsk, Russia; (A.A.); (E.B.); (N.K.); (V.K.)
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8, Lavrentiev ave., 630090 Novosibirsk, Russia
| | - Aleksandr Ermakov
- Novosibirsk State Medical University, 52, Krasny Prospect, 630091 Novosibirsk, Russia;
| | - Vladimir Kozlov
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya st., 630099 Novosibirsk, Russia; (A.A.); (E.B.); (N.K.); (V.K.)
- Novosibirsk State Medical University, 52, Krasny Prospect, 630091 Novosibirsk, Russia;
| |
Collapse
|
22
|
Yadav S, Sharma AK, Kumar P. Nanoscale Self-Assembly for Therapeutic Delivery. Front Bioeng Biotechnol 2020; 8:127. [PMID: 32158749 PMCID: PMC7051917 DOI: 10.3389/fbioe.2020.00127] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/10/2020] [Indexed: 12/23/2022] Open
Abstract
Self-assembly is the process of association of individual units of a material into highly arranged/ordered structures/patterns. It imparts unique properties to both inorganic and organic structures, so generated, via non-covalent interactions. Currently, self-assembled nanomaterials are finding a wide variety of applications in the area of nanotechnology, imaging techniques, biosensors, biomedical sciences, etc., due to its simplicity, spontaneity, scalability, versatility, and inexpensiveness. Self-assembly of amphiphiles into nanostructures (micelles, vesicles, and hydrogels) happens due to various physical interactions. Recent advancements in the area of drug delivery have opened up newer avenues to develop novel drug delivery systems (DDSs) and self-assembled nanostructures have shown their tremendous potential to be used as facile and efficient materials for this purpose. The main objective of the projected review is to provide readers a concise and straightforward knowledge of basic concepts of supramolecular self-assembly process and how these highly functionalized and efficient nanomaterials can be useful in biomedical applications. Approaches for the self-assembly have been discussed for the fabrication of nanostructures. Advantages and limitations of these systems along with the parameters that are to be taken into consideration while designing a therapeutic delivery vehicle have also been outlined. In this review, various macro- and small-molecule-based systems have been elaborated. Besides, a section on DNA nanostructures as intelligent materials for future applications is also included.
Collapse
Affiliation(s)
| | | | - Pradeep Kumar
- Nucleic Acids Research Laboratory, CSIR Institute of Genomics and Integrative Biology, Delhi, India
| |
Collapse
|
23
|
Le NTT, Nguyen TNQ, Cao VD, Hoang DT, Ngo VC, Hoang Thi TT. Recent Progress and Advances of Multi-Stimuli-Responsive Dendrimers in Drug Delivery for Cancer Treatment. Pharmaceutics 2019; 11:E591. [PMID: 31717376 PMCID: PMC6920789 DOI: 10.3390/pharmaceutics11110591] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/02/2019] [Accepted: 11/06/2019] [Indexed: 12/20/2022] Open
Abstract
Despite the fact that nanocarriers as drug delivery systems overcome the limitation of chemotherapy, the leakage of encapsulated drugs during the delivery process to the target site can still cause toxic effects to healthy cells in other tissues and organs in the body. Controlling drug release at the target site, responding to stimuli that originated from internal changes within the body, as well as stimuli manipulated by external sources has recently received significant attention. Owning to the spherical shape and porous structure, dendrimer is utilized as a material for drug delivery. Moreover, the surface region of dendrimer has various moieties facilitating the surface functionalization to develop the desired material. Therefore, multi-stimuli-responsive dendrimers or 'smart' dendrimers that respond to more than two stimuli will be an inspired attempt to achieve the site-specific release and reduce as much as possible the side effects of the drug. The aim of this review was to delve much deeper into the recent progress of multi-stimuli-responsive dendrimers in the delivery of anticancer drugs in addition to the major potential challenges.
Collapse
Affiliation(s)
- Ngoc Thuy Trang Le
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam;
| | - Thi Nhu Quynh Nguyen
- Faculty of Pharmacy, Lac Hong University, Buu Long Ward, Bien Hoa City, Dong Nai Province 810000, Vietnam; (T.N.Q.N.); (V.D.C.); (D.T.H.); (V.C.N.)
| | - Van Du Cao
- Faculty of Pharmacy, Lac Hong University, Buu Long Ward, Bien Hoa City, Dong Nai Province 810000, Vietnam; (T.N.Q.N.); (V.D.C.); (D.T.H.); (V.C.N.)
| | - Duc Thuan Hoang
- Faculty of Pharmacy, Lac Hong University, Buu Long Ward, Bien Hoa City, Dong Nai Province 810000, Vietnam; (T.N.Q.N.); (V.D.C.); (D.T.H.); (V.C.N.)
| | - Van Cuong Ngo
- Faculty of Pharmacy, Lac Hong University, Buu Long Ward, Bien Hoa City, Dong Nai Province 810000, Vietnam; (T.N.Q.N.); (V.D.C.); (D.T.H.); (V.C.N.)
| | - Thai Thanh Hoang Thi
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
24
|
Martin-Serrano Á, Gómez R, Ortega P, de la Mata FJ. Nanosystems as Vehicles for the Delivery of Antimicrobial Peptides (AMPs). Pharmaceutics 2019; 11:E448. [PMID: 31480680 PMCID: PMC6781550 DOI: 10.3390/pharmaceutics11090448] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/24/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022] Open
Abstract
Recently, antimicrobial peptides (AMPs), also called host defence peptides (HDPs), are attracting great interest, as they are a highly viable alternative in the search of new approaches to the resistance presented by bacteria against antibiotics in infectious diseases. However, due to their nature, they present a series of disadvantages such as low bioavailability, easy degradability by proteases, or low solubility, among others, which limits their use as antimicrobial agents. For all these reasons, the use of vehicles for the delivery of AMPs, such as polymers, nanoparticles, micelles, carbon nanotubes, dendrimers, and other types of systems, allows the use of AMPs as a real alternative to treatment with antibiotics.
Collapse
Affiliation(s)
- Ángela Martin-Serrano
- Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. Del Río" (IQAR), University of Alcalá, 28805 Madrid, Spain
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
| | - Rafael Gómez
- Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. Del Río" (IQAR), University of Alcalá, 28805 Madrid, Spain
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Paula Ortega
- Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. Del Río" (IQAR), University of Alcalá, 28805 Madrid, Spain.
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain.
| | - F Javier de la Mata
- Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. Del Río" (IQAR), University of Alcalá, 28805 Madrid, Spain.
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain.
| |
Collapse
|