1
|
Hamzehlou S, Rahimpour E, Fathi Azarbayjani A, Jouyban A. Development of high-solubility amorphous sulfasalazine: effect of hydrogen bonding. Ther Deliv 2025:1-7. [PMID: 40205838 DOI: 10.1080/20415990.2025.2491291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 04/07/2025] [Indexed: 04/11/2025] Open
Abstract
INTRODUCTION Sulphasalazine (Sulf) is a class IV compound with low aqueous solubility and low permeability which limit its therapeutic activity. This work aims to apply choline chloride (CC) and choline hydroxide (CH) as a hydrogen bond acceptor with Sulf for the production of Sulf salt. MATERIALS AND METHOD New compounds were prepared and characterized by XRD, DSC, and FT-IR. Drug solubility was evaluated in different media including pure water, and buffer pH 1.2, 4.5, and 6.8 were evaluated. RESULTS The diffractogram pattern of the Sulf-CH shows a smooth and low-intensity diffraction which may indicate amorphization of the drug molecule. The FT-IR spectra confirm participation of the carboxyl group of Sulf in the formation of hydrogen bonding between Sulf and CH through salt formation which helps to enhance drug solubility. Solubility of Sulf-CH significantly increased up to 10,000-folds in pure water. Sulf-CC caused up to 2-folds enhancement in drug solubility. CONCLUSION The difference in the solubility of Sulf-CC and Sulf-CH may suggest that each of these compounds involve different intermolecular interactions which were also confirmed by FT-IR, XRD, and DSC results. This effect can influence drug bioavailability and enhance its therapeutic efficacy.
Collapse
Affiliation(s)
- Sama Hamzehlou
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Pharmaceutics, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Anahita Fathi Azarbayjani
- Department of Pharmaceutics, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Goswami A, Sarma B. The pH-Dependent Microspecies Dissociations in the Trade-Off of Solubility and Permeability of Vitamin B2 Eutectic Solids. Mol Pharm 2025; 22:2246-2258. [PMID: 40040550 DOI: 10.1021/acs.molpharmaceut.4c01518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The microspecies-specific physicochemical properties of eutectic solids of sparingly water-soluble micronutrient, Vitamin B2 (Riboflavin), with a few representative BCS drugs, viz., Theophylline, Theobromine, Mesalamine, and Barbituric acid are established. The interplay of solubility and drug permeation behavior is experimentally determined for the eutectic solids, and properties are corroborated with the concomitant relative concentrations of pH-dependent microspecies of Riboflavin and the drugs. Partner drug candidates are selected from different quadrants of BCS classification to apprehend the influence of their solubility on the overall efficacy of the eutectic solids. The coexistence and inseparable ionic, neutral, and/or zwitterionic microspecies are spotted, and the pH-reliant isomer-specific inflection of physicochemical and pharmacokinetic properties in such multicomponent solid formulations is demonstrated.
Collapse
Affiliation(s)
- Archita Goswami
- Department of Chemical Sciences, Tezpur University, Tezpur 784028, Assam, India
| | - Bipul Sarma
- Department of Chemical Sciences, Tezpur University, Tezpur 784028, Assam, India
| |
Collapse
|
3
|
Queiroz LHS, Lage MR, dos Santos CC, Sarraguça MC, Ribeiro PRS. Thermodynamic and Structural Characterization of a Mechanochemically Synthesized Pyrazinamide-Acetylsalicylic-Acid Eutectic Mixture. Pharmaceuticals (Basel) 2025; 18:211. [PMID: 40006026 PMCID: PMC11859338 DOI: 10.3390/ph18020211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/30/2025] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: This study aims to develop a sustainable and environmentally friendly drug delivery system by synthesizing a novel drug-drug eutectic mixture (DDEM) of acetylsalicylic acid (ASA) and pyrazinamide (PZA) using a green and efficient mechanochemical approach. Methods: The DDEM was characterized using various techniques, including differential scanning calorimetry (DSC), thermogravimetry and differential thermal analysis (TG-DTA), powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), and Raman spectroscopy. Binary phase diagrams and Tammann's triangle analysis determined the eutectic point. Density functional theory (DFT) calculations were performed on the starting compounds. The new system was evaluated for aqueous solubility, dissolution, and hygroscopicity. Results: A V-shaped binary phase diagram indicated the formation of a DDEM with a 2:1 molar ratio of ASA to PZA. A positive mixing enthalpy suggested a quasi-eutectic structure. The solubility of ASA and PZA increased by 61.5% and 85.8%, respectively, in the DDEM compared to the pure drugs. Conclusions: These findings highlight the potential of DDEMs to enhance drug properties and delivery. The synergistic interaction between ASA and PZA in the eutectic mixture may further improve therapeutic efficacy, warranting further investigation.
Collapse
Affiliation(s)
- Luís H. S. Queiroz
- Programa de Pós-Graduação em Ciência dos Materiais (PPGCM), Centro de Ciências de Imperatriz (CCIM), Universidade Federal do Maranhão (UFMA), Imperatriz 65900-410, Maranhão, Brazil; (L.H.S.Q.); (M.R.L.)
| | - Mateus R. Lage
- Programa de Pós-Graduação em Ciência dos Materiais (PPGCM), Centro de Ciências de Imperatriz (CCIM), Universidade Federal do Maranhão (UFMA), Imperatriz 65900-410, Maranhão, Brazil; (L.H.S.Q.); (M.R.L.)
| | - Clenilton C. dos Santos
- Laboratório de Espectroscopia Vibracional e Impedância (LEVI), Departamento de Física, Universidade Federal do Maranhão (UFMA), São Luís 65085-580, Maranhão, Brazil;
| | - Mafalda C. Sarraguça
- LAQV/REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, Porto University, 4050-313 Porto, Portugal;
| | - Paulo R. S. Ribeiro
- Programa de Pós-Graduação em Ciência dos Materiais (PPGCM), Centro de Ciências de Imperatriz (CCIM), Universidade Federal do Maranhão (UFMA), Imperatriz 65900-410, Maranhão, Brazil; (L.H.S.Q.); (M.R.L.)
| |
Collapse
|
4
|
Hareendran C, Shaligram PS, Gonnade R, Ajithkumar TG. A solid-state NMR method for characterization of pharmaceutical eutectics. Phys Chem Chem Phys 2024; 26:3800-3803. [PMID: 38240042 DOI: 10.1039/d3cp05615e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Pharmaceutical eutectics are extremely useful for designing formulations, and currently, there are no techniques other than differential scanning calorimetry (DSC) that can confirm their formation. In this study, we demonstrate that 1H fast magic angle spinning (MAS) solid-state NMR (SSNMR) experiments can confirm the formation of eutectics by detecting their intermolecular hydrogen bonding interactions.
Collapse
Affiliation(s)
- Chaithanya Hareendran
- Central NMR facility and Physical/Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Parth S Shaligram
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Physical/Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Rajesh Gonnade
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Physical/Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - T G Ajithkumar
- Central NMR facility and Physical/Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Fandaruff C, Quirós-Fallas MI, Vega-Baudrit JR, Navarro-Hoyos M, Lamas DG, Araya-Sibaja AM. Saquinavir-Piperine Eutectic Mixture: Preparation, Characterization, and Dissolution Profile. Pharmaceutics 2023; 15:2446. [PMID: 37896206 PMCID: PMC10609941 DOI: 10.3390/pharmaceutics15102446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
The dissolution rate of the anti-HIV drug saquinavir base (SQV), a poorly water-soluble and extremely low absolute bioavailability drug, was improved through a eutectic mixture formation approach. A screening based on a liquid-assisted grinding technique was performed using a 1:1 molar ratio of the drug and the coformers sodium saccharinate, theobromine, nicotinic acid, nicotinamide, vanillin, vanillic acid, and piperine (PIP), followed by differential scanning calorimetry (DSC). Given that SQV-PIP was the only resulting eutectic system from the screening, both the binary phase and the Tammann diagrams were adapted to this system using DSC data of mixtures prepared from 0.1 to 1.0 molar ratios in order to determine the exact eutectic composition. The SQV-PIP system formed a eutectic at a composition of 0.6 and 0.40, respectively. Then, a solid-state characterization through DSC, powder X-ray diffraction (PXRD), including small-angle X-ray scattering (SAXS) measurements to explore the small-angle region in detail, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and a powder dissolution test were performed. The conventional PXRD analyses suggested that the eutectic mixture did not exhibit structural changes; however, the small-angle region explored through the SAXS instrument revealed a change in the crystal structure of one of their components. FT-IR spectra showed no molecular interaction in the solid state. Finally, the dissolution profile of SQV in the eutectic mixture was different from the dissolution of pure SQV. After 45 min, approximately 55% of the drug in the eutectic mixture was dissolved, while, for pure SQV, 42% dissolved within this time. Hence, this study concludes that the dissolution rate of SQV can be effectively improved through the approach of using PIP as a coformer.
Collapse
Affiliation(s)
- Cinira Fandaruff
- Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA), UNSAM-CONICET, Escuela de Ciencia y Tecnología, Laboratorio de Cristalografía Aplicada, Av. 25 de Mayo 1169, San Martín 1650, Provincia de Buenos Aires, Argentina;
| | - María Isabel Quirós-Fallas
- Laboratorio Nacional de Nanotecnología, LANOTEC-CeNAT-CONARE, San José 1174-1200, Costa Rica; (M.I.Q.-F.); (J.R.V.-B.)
- Laboratorio Biodess, Escuela de Química, Universidad de Costa Rica, San Pedro de Montes de Oca, San José 2060, Costa Rica;
| | - José Roberto Vega-Baudrit
- Laboratorio Nacional de Nanotecnología, LANOTEC-CeNAT-CONARE, San José 1174-1200, Costa Rica; (M.I.Q.-F.); (J.R.V.-B.)
| | - Mirtha Navarro-Hoyos
- Laboratorio Biodess, Escuela de Química, Universidad de Costa Rica, San Pedro de Montes de Oca, San José 2060, Costa Rica;
| | - Diego German Lamas
- Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA), UNSAM-CONICET, Escuela de Ciencia y Tecnología, Laboratorio de Cristalografía Aplicada, Av. 25 de Mayo 1169, San Martín 1650, Provincia de Buenos Aires, Argentina;
| | - Andrea Mariela Araya-Sibaja
- Laboratorio Nacional de Nanotecnología, LANOTEC-CeNAT-CONARE, San José 1174-1200, Costa Rica; (M.I.Q.-F.); (J.R.V.-B.)
| |
Collapse
|
6
|
Panić J, Rapaić M, Gadžurić S, Vraneš M. Solubility and Solvation Properties of Pharmaceutically Active Ionic Liquid Benzocainium Ibuprofenate in Natural Deep Eutectic Solvent Menthol-Lauric Acid. Molecules 2023; 28:5723. [PMID: 37570693 PMCID: PMC10420925 DOI: 10.3390/molecules28155723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Due to their appealing physiochemical properties, particularly in the pharmaceutical industry, deep eutectic solvents (DESs) and ionic liquids (ILs) are utilized in various research fields and industries. The presented research analyzes the thermodynamic properties of a deep eutectic solvent created from natural molecules, menthol and lauric acid in a 2:1 molar ratio, and an ionic liquid based on two active pharmaceutical ingredients, benzocainium ibuprofenate. Initially, the low solubility of benzocainium ibuprofenate in water was observed, and a hydrophobic natural deep eutectic mixture of menthol:lauric acid in a 2:1 ratio was prepared to improve benzocainium ibuprofenate solubility. In order to determine the solvent properties of DESs and ILs mixtures at different temperatures and their molecular interactions to enhance the solvent performance, the apparent molar volume, limiting apparent molar expansibility, and viscosity B coefficient were estimated in temperature range from 293.15 K to 313.15 K and varying concentration of benzocainium ibuprofenate.
Collapse
Affiliation(s)
| | | | - Slobodan Gadžurić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (J.P.); (M.R.); (M.V.)
| | | |
Collapse
|
7
|
Cai J, Wen H, Zhou H, Zhang D, Lan D, Liu S, Li C, Dai X, Song T, Wang X, He Y, He Z, Tan J, Zhang J. Naringenin: A flavanone with anti-inflammatory and anti-infective properties. Biomed Pharmacother 2023; 164:114990. [PMID: 37315435 DOI: 10.1016/j.biopha.2023.114990] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023] Open
Abstract
Although a growing body of research has recently shown how crucial inflammation and infection are to all major diseases, several of the medications currently available on the market have various unfavourable side effects, necessitating the development of alternative therapeutic choices. Researchers are increasingly interested in alternative medications or active components derived from natural sources. Naringenin is a commonly consumed flavonoid found in many plants, and since it was discovered to have nutritional benefits, it has been utilized to treat inflammation and infections caused by particular bacteria or viruses. However, the absence of adequate clinical data and naringenin's poor solubility and stability severely restrict its usage as a medicinal agent. In this article, we discuss naringenin's effects and mechanisms of action on autoimmune-induced inflammation, bacterial infections, and viral infections based on recent research. We also present a few suggestions for enhancing naringenin's solubility, stability, and bioavailability. This paper emphasizes the potential use of naringenin as an anti-inflammatory and anti-infective agent and the next prophylactic substance for the treatment of various inflammatory and infectious diseases, even though some mechanisms of action are still unclear, and offers some theoretical support for its clinical application.
Collapse
Affiliation(s)
- Ji Cai
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Hongli Wen
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China.
| | - He Zhou
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Dan Zhang
- Zunyi Medical University Library, Zunyi 563000, China.
| | - Dongfeng Lan
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Songpo Liu
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Chunyang Li
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Xiaofang Dai
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Tao Song
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Xianyao Wang
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Yuqi He
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China.
| | - Jun Tan
- Department of Histology and Embryology, Zunyi Medical University, Zunyi 563000, China.
| | - Jidong Zhang
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
8
|
Li D. Natural deep eutectic solvents in phytonutrient extraction and other applications. FRONTIERS IN PLANT SCIENCE 2022; 13:1004332. [PMID: 36212381 PMCID: PMC9533057 DOI: 10.3389/fpls.2022.1004332] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Natural deep eutectic solvents (NaDESs) are considered a new type of green solvent with attractive application prospects in many fields because of their simple preparation, low cost, environmental friendliness, low volatility, high solvency capacity, designable structure, and easy biodegradability. Due to their biocompatibility, they are safe to use and are particularly suitable for natural product applications. In recent years, NaDESs have been used to extract phytonutrients (e.g., flavonoids, saponins, polysaccharides, alkaloids, quinones, phenolic acids, volatile oils, etc.) to improve their solubility, stability, and bioavailability. This review is intended to summarize and discuss recent progress in the field of natural products related to materials and preparation methods, physicochemical properties, enhancing extraction and separation, increasing solubility, improving stability and bioavailability, facilitating oral absorption of phytonutrients, and finally, highlighting the challenge for future work.
Collapse
|
9
|
Fayed ND, Arafa MF, Essa EA, El Maghraby GM. Lopinavir-menthol co-crystals for enhanced dissolution rate and intestinal absorption. J Drug Deliv Sci Technol 2022; 74:103587. [PMID: 35845293 PMCID: PMC9272570 DOI: 10.1016/j.jddst.2022.103587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/27/2022] [Accepted: 07/08/2022] [Indexed: 12/25/2022]
Abstract
Lopinavir is an antiretroviral, antiparasitic agent and recently utilized in treatment of COVID-19. Unfortunately, lopinavir exhibited poor oral bioavailability due to poor dissolution, extensive pre-systemic metabolism, and significant P-glycoprotein intestinal efflux. Accordingly, the aim was to enhance dissolution rate and intestinal absorption of lopinavir. This employed co-processing with menthol which is believed to modify crystalline structures and inhibit intestinal efflux. Lopinavir was mixed with menthol at different molar ratios before ethanol assisted kneading. Formulations were evaluated using FTIR spectroscopy, differential scanning calorimetry (DSC), X-ray powder diffraction (XRD) and dissolution studies. Optimum ratio was utilized to assess lopinavir intestinal permeability. This employed in situ rabbit intestinal perfusion technique. FTIR, DSC and XRD indicated formation of lopinavir-menthol co-crystals at optimum molar ratio of 1:2. Additional menthol underwent phase separation due to possible self-association. Co-crystallization significantly enhanced lopinavir dissolution rate compared with pure drug to increase the dissolution efficiency from 24.96% in case of unprocessed lopinavir to 91.43% in optimum formulation. Lopinavir showed incomplete absorption from duodenum and jejuno-iliac segments with lower absorptive clearance from jejuno-ileum reflecting P-gp efflux. Co-perfusion with menthol increased lopinavir intestinal permeability. The study introduced menthol as co-crystal co-former for enhanced dissolution and augmented intestinal absorption of lopinavir.
Collapse
|
10
|
Liu Y, Wu Y, Liu J, Wang W, Yang Q, Yang G. Deep eutectic solvents: Recent advances in fabrication approaches and pharmaceutical applications. Int J Pharm 2022; 622:121811. [PMID: 35550409 DOI: 10.1016/j.ijpharm.2022.121811] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/25/2022] [Accepted: 05/05/2022] [Indexed: 12/25/2022]
Abstract
Deep eutectic solvents (DESs) have received increasing attention in the past decade owing to their distinguished properties including biocompatibility, tunability, thermal and chemical stability. Particularly, DESs have joined forces in pharmaceutical industry, not only to efficiently separate actives from natural products, but also to dramatically increase solubility and permeability of drugs, both are critical for the drug absorption and efficacy. As a result, lately DESs have been extensively and practically adopted as versatile drug delivery systems for different routes such as nasal, transdermal and oral administration with enhanced bioavailability. This review summarizes the emerging progress of DESs by introducing applied fabrication approaches with advantages and limitations thereof, and by highlighting the pharmaceutical applications of DESs.
Collapse
Affiliation(s)
- Yiwen Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yujing Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jinming Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wenxi Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qingliang Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Gensheng Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
11
|
Wilhelm-Romero K, Quirós-Fallas MI, Vega-Baudrit JR, Guillén-Girón T, Vargas-Huertas F, Navarro-Hoyos M, Araya-Sibaja AM. Evaluation of Piperine as Natural Coformer for Eutectics Preparation of Drugs Used in the Treatment of Cardiovascular Diseases. AAPS PharmSciTech 2022; 23:127. [PMID: 35474407 DOI: 10.1208/s12249-022-02270-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/03/2022] [Indexed: 11/30/2022] Open
Abstract
Piperine (PIP) was evaluated as a natural coformer in the preparation of multicomponent organic materials for enhancing solubility and dissolution rate of the poorly water-soluble drugs: curcumin (CUR), lovastatin (LOV), and irbesartan (IBS). A screening based on liquid assisted grinding technique was performed using 1:1 drug-PIP molar ratio mixtures, followed by differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD) analyses. Three eutectic mixtures (EMs) composed of CUR-PIP, LOV-PIP, and IBS-PIP were obtained. Therefore, binary phase and Tamman's diagrams were constructed for each system to obtain the exact eutectic composition, which was 0.41:0.59, 0.29:0.71, and 0.31:0.69 for CUR-PIP, LOV-PIP, and IBS-PIP, respectively. Further, bulk materials of each system were prepared to characterize them through DSC, PXRD fully, Fourier transform infrared spectroscopy (FT-IR), and solution-state nuclear magnetic resonance (NMR) spectroscopy. In addition, the contact angle, solubility, and dissolution rate of each system were evaluated. The preserved characteristic in the PXRD patterns and FT-IR spectra of the bulk material of each system confirmed the formation of EM mixture without molecular interaction in solid-state. The formation of EM resulted in improved aqueous solubility and dissolution rate associated with the increased wettability observed by the decrease in contact angle. In addition, solution NMR analyses of CUR-PIP, LOV-PIP, and IBS-PIP suggested no significant intermolecular interactions in solution between the components of the EM. Hence, this study concludes that PIP could be an effective coformer to improve the solubility and dissolution rate of CUR, LOV, and IBS.
Collapse
Affiliation(s)
- Krissia Wilhelm-Romero
- Laboratorio Nacional de Nanotecnología LANOTEC-CeNAT-CONARE, 1174-1200, Pavas, San José, Costa Rica
- Escuela de Química, Laboratorio BIODESS, Universidad de Costa Rica, San Pedro de Montes de Oca, 2060, San José, Costa Rica
| | - María Isabel Quirós-Fallas
- Escuela de Química, Laboratorio BIODESS, Universidad de Costa Rica, San Pedro de Montes de Oca, 2060, San José, Costa Rica
| | - José Roberto Vega-Baudrit
- Laboratorio Nacional de Nanotecnología LANOTEC-CeNAT-CONARE, 1174-1200, Pavas, San José, Costa Rica
- Laboratorio de Investigación y Tecnología de Polímeros POLIUNA, Escuela de Química, Universidad Nacional de Costa Rica, Heredia, 86-3000, Costa Rica
| | - Teodolito Guillén-Girón
- Centro de Investigación y Extensión en Materiales, Escuela de Ciencia E Ingeniería de los Materiales, Tecnológico de Costa Rica, Cartago, 159-7050, Costa Rica
| | - Felipe Vargas-Huertas
- Escuela de Química, Laboratorio BIODESS, Universidad de Costa Rica, San Pedro de Montes de Oca, 2060, San José, Costa Rica
| | - Mirtha Navarro-Hoyos
- Escuela de Química, Laboratorio BIODESS, Universidad de Costa Rica, San Pedro de Montes de Oca, 2060, San José, Costa Rica
| | - Andrea Mariela Araya-Sibaja
- Laboratorio Nacional de Nanotecnología LANOTEC-CeNAT-CONARE, 1174-1200, Pavas, San José, Costa Rica.
- Universidad Técnica Nacional, Alajuela, 159-7050, Costa Rica.
| |
Collapse
|
12
|
Górniak A, Złocińska A, Trojan M, Pęcak A, Karolewicz B. Preformulation Studies of Ezetimibe-Simvastatin Solid Dispersions in the Development of Fixed-Dose Combinations. Pharmaceutics 2022; 14:pharmaceutics14050912. [PMID: 35631498 PMCID: PMC9147300 DOI: 10.3390/pharmaceutics14050912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/12/2022] [Accepted: 04/20/2022] [Indexed: 02/01/2023] Open
Abstract
Two active pharmaceutical ingredients (APIs) with limited solubility, simvastatin and ezetimibe, prepared as a drug-drug solid dispersion (SD) was evaluated for physicochemical, microstructural, and aqueous dissolution properties. The simvastatin-ezetimibe SD was prepared using the co-grinding method in a wide range of weight fractions and differential scanning calorimetry (DSC) and X-ray powder diffraction (XRPD) were used to perform the phase composition analysis. DSC studies confirmed that simvastatin and ezetimibe form a simple eutectic phase equilibrium diagram. Analysis of Fourier transform infrared spectroscopy (FTIR) studies excluded strong interactions between the APIs. Our investigations have revealed that all studied dispersions are characterized by substantially improved ezetimibe dissolution regardless of simvastatin content, and are best when the composition oscillates near the eutectic point. Data obtained in our studies provide an opportunity for the development of well-formulated, ezetimibe-simvastatin fixed-dose combinations (for hypercholesterolemia treatment) with reduced ezetimibe dosages based on its dissolution improvement.
Collapse
Affiliation(s)
- Agata Górniak
- Laboratory of Elemental Analysis and Structural Research, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (A.Z.); (M.T.); (A.P.)
- Correspondence: ; Tel.: +48-717840670
| | - Adrianna Złocińska
- Laboratory of Elemental Analysis and Structural Research, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (A.Z.); (M.T.); (A.P.)
| | - Mateusz Trojan
- Laboratory of Elemental Analysis and Structural Research, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (A.Z.); (M.T.); (A.P.)
| | - Adrianna Pęcak
- Laboratory of Elemental Analysis and Structural Research, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (A.Z.); (M.T.); (A.P.)
| | - Bożena Karolewicz
- Department of Drug Form Technology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| |
Collapse
|
13
|
Improved Solubility and Dissolution Rate of Ketoprofen by the Formation of Multicomponent Crystals with Tromethamine. CRYSTALS 2022. [DOI: 10.3390/cryst12020275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study aims to improve the dissolution rate of ketoprofen by preparing multicomponent crystals with tromethamine. The multicomponent crystals (equimolar ratio) of ketoprofen and tromethamine were prepared by the solvent co-evaporation method. The solid-state properties of the resulting powder were characterized by powder X-ray diffraction, DSC thermal analysis, FT–IR spectroscopy, solubility, and in vitro dissolution rate. The crystal structure of the multicomponent crystal was determined by single-crystal X-ray diffraction analysis. The results showed that the powder X-ray diffraction pattern of the ketoprofen–tromethamine binary system was different from that of the starting materials. This difference indicates the formation of a new crystalline phase between ketoprofen and tromethamine (equimolar ratio). The DSC thermogram of the ketoprofen–tromethamine binary system exhibited a single and sharp endothermic peak at 128.67 °C, attributed to the melting point of a multicomponent crystal of ketoprofen–tromethamine. A single-crystal X-ray analysis revealed that ketoprofen–tromethamine formed a layered structure, salt-type multicomponent crystal. The solubility and dissolution rate of the multicomponent crystal were notably enhanced compared to the intact ketoprofen. The ketoprofen–tromethamine binary system forms salt-type multicomponent crystals, which can significantly increase the solubility and dissolution rate.
Collapse
|
14
|
Drug-drug eutectic mixtures of celecoxib with tapentadol and milnacipran which could improve analgesic and antidepressant efficacy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Wu M, Lu L, Chen S, Li Y, Zhang Q, Fu S, Deng X. Natural products inducing nucleolar stress: implications in cancer therapy. Anticancer Drugs 2022; 33:e21-e27. [PMID: 34561998 DOI: 10.1097/cad.0000000000001146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The nucleolus is the site of ribosome biogenesis and is found to play an important role in stress sensing. For over 100 years, the increase in the size and number of nucleoli has been considered as a marker of aggressive tumors. Despite this, the contribution of the nucleolus and the biologic processes mediated by it to cancer pathogenesis has been largely overlooked. This state has been changed over the recent decades with the demonstration that the nucleolus controls numerous cellular functions associated with cancer development. Induction of nucleolar stress has recently been regarded as being superior to conventional cytotoxic/cytostatic strategy in that it is more selective to neoplastic cells while sparing normal cells. Natural products represent an excellent source of bioactive molecules and some of them have been found to be able to induce nucleolar stress. The demonstration of these nucleolar stress-inducing natural products has paved the way for a new therapeutic approach to more delicate tumor cell-killing. This review provides a contemporary summary of the role of the nucleolus as a novel promising target for cancer therapy, with particular emphasis on natural products as an exciting new class of anti-cancer drugs with nucleolar stress-inducing properties.
Collapse
Affiliation(s)
- Mi Wu
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University
- Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha
| | - Lu Lu
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University
- Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha
| | - Sisi Chen
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University
- Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha
| | - Ying Li
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University
- Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha
| | - Qiuting Zhang
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University
- Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha
| | - Shujun Fu
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University
- Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha
| | - Xiyun Deng
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University
- Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha
- Department of Pathophysiology, Jishou University School of Medicine, Jishou, Hunan, China
| |
Collapse
|
16
|
Multicomponent Materials to Improve Solubility: Eutectics of Drug Aminoglutethimide. CRYSTALS 2021. [DOI: 10.3390/cryst12010040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Here, we report the synthesis and experimental characterization of three drug-drug eutectic mixtures of drug aminoglutethimide (AMG) with caffeine (CAF), nicotinamide (NIC) and ethenzamide (ZMD). The eutectic mixtures i.e., AMG-CAF (1:0.4, molar ratio), AMG-NIC (1:1.9, molar ratio) and AMG-ZMD (1:1.4, molar ratio) demonstrate significant melting point depressions ranging from 99.2 to 127.2 °C compared to the melting point of the drug AMG (151 °C) and also show moderately higher aqueous solubilities than that of the AMG. The results presented include the determination of the binary melt phase diagrams and accompanying analytical characterization via X-ray powder diffraction, FT-IR spectroscopy and scanning electron microscopy.
Collapse
|
17
|
Synthesis, Characterization, and Intrinsic Dissolution Studies of Drug-Drug Eutectic Solid Forms of Metformin Hydrochloride and Thiazide Diuretics. Pharmaceutics 2021; 13:pharmaceutics13111926. [PMID: 34834341 PMCID: PMC8620433 DOI: 10.3390/pharmaceutics13111926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 11/30/2022] Open
Abstract
The mechanochemical synthesis of drug–drug solid forms containing metformin hydrochloride (MET·HCl) and thiazide diuretics hydrochlorothiazide (HTZ) or chlorothiazide (CTZ) is reported. Characterization of these new systems indicates formation of binary eutectic conglomerates, i.e., drug–drug eutectic solids (DDESs). Further analysis by construction of binary diagrams (DSC screening) exhibited the characteristic V-shaped form indicating formation of DDESs in both cases. These new DDESs were further characterized by different techniques, including thermal analysis (DSC), solid state NMR spectroscopy (SSNMR), powder X-ray diffraction (PXRD) and scanning electron microscopy–energy dispersive X-ray spectroscopy analysis (SEM–EDS). In addition, intrinsic dissolution rate experiments and solubility assays were performed. In the case of MET·HCl-HTZ (χMET·HCl = 0.66), we observed a slight enhancement in the dissolution properties compared with pure HTZ (1.21-fold). The same analysis for the solid forms of MET·HCl-CTZ (χMET·HCl = 0.33 and 0.5) showed an enhancement in the dissolved amount of CTZ accompanied by a slight improvement in solubility. From these dissolution profiles and saturation solubility studies and by comparing the thermodynamic parameters (ΔHfus and ΔSfus) of the pure drugs with these new solid forms, it can be observed that there was a limited modification in these properties, not modifying the free energy of the solution (ΔG) and thus not allowing an improvement in the dissolution and solubility properties of these solid forms.
Collapse
|
18
|
Yuan K, Ye X, Liu W, Liu K, Wu D, Zhao W, Qian Z, Li S, Huang C, Yu Z, Chen Z. Preparation, characterization and antibacterial activity of a novel Zn(II) coordination polymer derived from carboxylic acid. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Knapik-Kowalczuk J, Kramarczyk D, Jurkiewicz K, Chmiel K, Paluch M. Ternary Eutectic Ezetimibe-Simvastatin-Fenofibrate System and the Physical Stability of Its Amorphous Form. Mol Pharm 2021; 18:3588-3600. [PMID: 34420300 PMCID: PMC8424683 DOI: 10.1021/acs.molpharmaceut.1c00485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
In this study, the
phase diagram of the ternary system of ezetimibe–simvastatin–fenofibrate
was established. It has been proven that the ternary composition recommended
for the treatment of mixed hyperlipidemia forms a eutectic system.
Since eutectic mixtures are characterized by greater solubility and
dissolution rate, the obtained result can explain the marvelous medical
effectiveness of combined therapy. Considering that another well-known
method for improving the aqueous solubility is amorphization, the
ternary system with eutectic concentration was converted into an amorphous
form. Thermal properties, molecular dynamics, and physical stability
of the obtained amorphous system were thoroughly investigated through
various experimental techniques compared to both: neat amorphous active
pharmaceutical ingredients (considered separately) and other representative
concentrations of ternary mixture. The obtained results open up a
new way of selecting the therapeutic concentrations for combined therapies,
a path that considers one additional variable: eutecticity.
Collapse
Affiliation(s)
- Justyna Knapik-Kowalczuk
- Faculty of Science and Technology, Institute of Physics, University of Silesia in Katowice, SMCEBI, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Daniel Kramarczyk
- Faculty of Science and Technology, Institute of Physics, University of Silesia in Katowice, SMCEBI, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Karolina Jurkiewicz
- Faculty of Science and Technology, Institute of Physics, University of Silesia in Katowice, SMCEBI, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Krzysztof Chmiel
- Department of Pharmacognosy and Phytochemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Jagiellonska 4, 41-200 Sosnowiec, Poland
| | - Marian Paluch
- Faculty of Science and Technology, Institute of Physics, University of Silesia in Katowice, SMCEBI, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| |
Collapse
|
20
|
Mechanochemical synthesis and characterization of Zidovudine-lamivudine solid dispersion (binary eutectic mixture). J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Butreddy A, Almutairi M, Komanduri N, Bandari S, Zhang F, Repka MA. Multicomponent crystalline solid forms of aripiprazole produced via hot melt extrusion techniques: An exploratory study. J Drug Deliv Sci Technol 2021; 63. [PMID: 33959199 DOI: 10.1016/j.jddst.2021.102529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multicomponent crystalline solid forms (salts, cocrystals and eutectics) are a promising means of enhancing the dissolution behavior of poorly soluble drugs. The present study demonstrates the development of multicomponent solid forms of aripiprazole (ARP) prepared with succinic acid (SA) and nicotinamide (NA) as coformers using the hot melt extrusion (HME) technique. The HME-processed samples were characterized and analyzed using differential scanning calorimetry (DSC), hot stage microscopy (HSM), Fourier transform infrared (FTIR) spectroscopy, powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM). The DSC and HSM analyses revealed a characteristic single melting temperature in the solid forms, which differed from the melting points of the individual components. The discernible changes in the FTIR (amide C=O stretching) and PXRD results for ARP-SA confirm the formation of new crystalline solid forms. In the case of ARP-NA, these changes were less prominent, without the appearance or disappearance of peaks, suggesting no change in the crystal lattice. The SEM images demonstrated morphological differences between the HME-processed samples and the individual parent components. The in vitro dissolution and microenvironment pH measurement studies revealed that ARP-SA showed a higher dissolution rate, which could be due to the acidic microenvironment pH imparted by the coformer. The observations of the present study demonstrate the applicability of the HME technique for the development of ARP multicomponent solid forms.
Collapse
Affiliation(s)
- Arun Butreddy
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Mashan Almutairi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA.,Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail, 81442, Saudi Arabia
| | - Neeraja Komanduri
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Suresh Bandari
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Feng Zhang
- College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA.,Pii Center for Pharmaceutical Technology, The University of Mississippi, University, MS 38677, USA
| |
Collapse
|
22
|
Haneef J, Ali S, Chadha R. Emerging Multi-Drug Eutectics: Opportunities and Challenges. AAPS PharmSciTech 2021; 22:66. [PMID: 33554308 DOI: 10.1208/s12249-021-01939-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/15/2021] [Indexed: 11/30/2022] Open
Abstract
Complexity and heterogeneous nature of most diseases have posed greater challenges in the modern healthcare system. Fixed-dose combination can offer an ideal way to improve patient compliance and higher therapeutic efficacy. However, biopharmaceutical issues associated with the drug combinations remain unaddressed. Multidrug eutectics (MDE) have demonstrated significant promise in improving the biopharmaceutical attributes with synergistic therapeutic action. Eutectic mixtures are the multicomponent solid forms that possess lesser melting point than the individual components at a fixed composition. Non-covalent linking of drug combinations as MDE is an innovative strategy with enhanced solubility, dissolution, and mechanical and potential therapeutic efficacy. This review provides a comprehensive overview of the design of MDE, rational selection of drugs, characterization tools, and their therapeutic potential. Besides, the futuristic perspective where MDE could make a significant impact on combination therapy is briefly outlined. Graphical Abstract.
Collapse
|
23
|
Arafa MF, Alshaikh RA, Abdelquader MM, El Maghraby GM. Co-processing of Atorvastatin and Ezetimibe for Enhanced Dissolution Rate: In Vitro and In Vivo Correlation. AAPS PharmSciTech 2021; 22:59. [PMID: 33517486 DOI: 10.1208/s12249-021-01925-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 01/07/2021] [Indexed: 12/26/2022] Open
Abstract
Development of fixed dose combinations is growing and many of these drug combinations are being legally marketed. However, the development of these requires careful investigation of possible physicochemical changes during co-processing. This requires investigation of the effect of co-processing of drug combination in absence of excipients to maximize the chance of interaction (if any). Accordingly, the aim was to investigate the effect of co-processing of ezetimibe and atorvastatin on drugs dissolution rate. The objective was extended to in vitro in vivo correlation. Drugs were subjected to wet co-processing in presence of ethanol after being mixed at different ratios. The prepared formulations were characterized using FTIR spectroscopy, X-ray powder diffraction, differential scanning calorimetry, scanning electron microscopy, and in vitro dissolution testing. These investigations proved the possibility of eutectic system formation after drugs co-processing. This was reflected on drugs dissolution rate which was significantly enhanced at dose ratio and 2:1 atorvastatin:ezetimibe molar ratio compared to the corresponding pure drugs. In vivo antihyperlipidemic effects of the co-processed drugs were monitored in albino mice which were subjected to hyperlipidemia induction using poloxamer 407. The results showed significant enhancement in pharmacological activity as revealed from pronounced reduction in cholesterol level in mice administering the co-processed form of both drugs. Besides, histopathological examinations of the liver showed marked decrease in hepatic vacuolation. In conclusion, co-processing of atorvastatin with ezetimibe resulted in beneficial eutexia which hastened the dissolution rate and pharmacological effects of both drugs.Graphical abstract.
Collapse
|
24
|
Urai S, Takiyama H. Improvement in Rebaudioside D Solubility by Preparing a Solid Phase with Erythritol Using Melt Crystallization Technology. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2021. [DOI: 10.1252/jcej.20we192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Soichiro Urai
- Product Development Center, Suntory Beverage & Food Ltd
| | - Hiroshi Takiyama
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology (TUAT)
| |
Collapse
|
25
|
Bhowmik S, Anand P, Das R, Sen T, Akhter Y, Das MC, De UC. Synthesis of new chrysin derivatives with substantial antibiofilm activity. Mol Divers 2021; 26:137-156. [PMID: 33438129 DOI: 10.1007/s11030-020-10162-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/25/2020] [Indexed: 11/26/2022]
Abstract
Multidrug resistance mechanism of microorganisms towards conventional antimicrobials nowadays faces a common health problem. So, searching and development of new antibacterials are in the frontier areas of biochemistry. Functionalizations of various natural products or synthesis of compounds through molecular modeling followed by virtual screening are the ways to obtain potential leads. Chrysin is one of the plant secondary metabolites and is ubiquitously present in majority of plants. It has multi-dimensional potentiality however, with a very low bioavailability causing a very low efficacy. Very few chrysin derivatives possessing antimicrobial activity with a low anti-biofilm efficacy have been found in the literature. Thus, it has been attempted to synthesize a series of new chrysin derivatives (CDs). In this study, twenty-two new derivatives have been synthesized via its 7-OH modulation and antibiofilm activity was evaluated against a model bacterium viz. Escherichia coli MTCC 40 (Gram negative). Eleven CDs coded as 2a, 2b, 2c, 2e, 2f, 2g, 2h, 2i, 3j, 3k and 3l have been found more potent compared to chrysin (precursor of CDs) against planktonic form of E. coli. Biofilm inhibition studies indicated a noteworthy results for 2a (93.57%), 2b (92.14%), 2f (92.14%) and 3l (93.57%) compared to chrysin (33.57%). E. coli motility was also highly restricted by 2a, 2b, 2f and 3l than chrysin at their sub-inhibitory concentrations. Solubility studies indicated an extended-release of 2a, 2b, 2f and 3l in physiological systems. Relatively higher bioavailability of 2a, 2b, 2f and 3l than chrysin was revealed from the dissolution experiments and was further validated through in silico ADME-based SAR analysis. Hence, this study is more interesting in regard to antibacterial potentiality of chrysin derivatives against Escherichia coli MTCC 40 (Gram negative). Thus, this article might be useful for further design and development of new leads in the context of biofilm-associated bacterial infections.
Collapse
Affiliation(s)
- Sukhen Bhowmik
- Department of Chemistry, Tripura University, Suryamaninagar, Tripura, 799022, India
| | - Pragya Anand
- Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh, 226025, India
| | - Riyanki Das
- Department of Medical Laboratory Technology, Women's Polytechnic, Hapania, Tripura, 799130, India
- Department of Nanotechnology, North-Eastern Hill University, Umshing Mawkynroh, Shillong, 793022, India
| | - Tirtharaj Sen
- Division of Electrical Engineering, Women's Polytechnic, Hapania, Tripura, 799130, India
| | - Yusuf Akhter
- Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh, 226025, India
| | - Manash C Das
- Department of Medical Laboratory Technology, Women's Polytechnic, Hapania, Tripura, 799130, India.
| | - Utpal C De
- Department of Chemistry, Tripura University, Suryamaninagar, Tripura, 799022, India.
| |
Collapse
|
26
|
Abstract
Eutectic, co-amorphous, cocrystal, and physical mixtures of curcumin with basic amino acids are prepared and characterized by PXRD, DSC, NMR, FT-IR, and SEM; solubility and dissolution improvement achieved in 40% ethanol–water system.
Collapse
Affiliation(s)
- Anilkumar Gunnam
- School of Chemistry
- University of Hyderabad
- Hyderabad 500 046
- India
| | | |
Collapse
|
27
|
Bazzo GC, Pezzini BR, Stulzer HK. Eutectic mixtures as an approach to enhance solubility, dissolution rate and oral bioavailability of poorly water-soluble drugs. Int J Pharm 2020; 588:119741. [PMID: 32783978 DOI: 10.1016/j.ijpharm.2020.119741] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
Abstract
Eutectic mixtures have been known for a long time in the pharmaceutical field. However, its potential as a system to improve the solubility and dissolution of poorly water-soluble drugs remains little explored. Studies involving the microstructural characterization and the preparation of solid dosage forms containing eutectic mixtures are also an issue to be developed. Recently, the number of studies involving the preparation of eutectic mixtures to improve the solubility and oral bioavailability of poorly soluble drugs has increased considerably, including drug-carrier and drug-drug mixtures. In this review is discussed the potential of eutectic mixtures as an alternative pharmaceutical solid system to enhance drugs solubility, dissolution rate or oral bioavailability. Different aspects like history, physico-chemical, microstructural properties, preparation methods, mechanisms involved in solubility/dissolution enhancement, techniques for solid state characterization, in vivo studies, advantages, limitations and formulation perspective are also discussed.
Collapse
Affiliation(s)
- Giovana Carolina Bazzo
- Innovation Study Center in Pharmaceutical Technologies - NITfar, Programa de Pós-Graduação em Farmácia, Universidade Federal de Santa Catarina, Campus Trindade, 88040-970 Florianópolis, SC, Brazil
| | - Bianca Ramos Pezzini
- Innovation Study Center in Pharmaceutical Technologies - NITfar, Programa de Pós-Graduação em Farmácia, Universidade Federal de Santa Catarina, Campus Trindade, 88040-970 Florianópolis, SC, Brazil
| | - Hellen Karine Stulzer
- Innovation Study Center in Pharmaceutical Technologies - NITfar, Programa de Pós-Graduação em Farmácia, Universidade Federal de Santa Catarina, Campus Trindade, 88040-970 Florianópolis, SC, Brazil.
| |
Collapse
|
28
|
Chaturvedi K, Shah HS, Nahar K, Dave R, Morris KR. Contribution of Crystal Lattice Energy on the Dissolution Behavior of Eutectic Solid Dispersions. ACS OMEGA 2020; 5:9690-9701. [PMID: 32391455 PMCID: PMC7203706 DOI: 10.1021/acsomega.9b03886] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
In the literature, it is reported that eutectics lead to the enhanced dissolution of a poorly soluble compound. However, the solubility theory suggests that since crystal structures of two components are unchanged that all else being equal, the dissolution rates of a fused mixture (FM) should be the same as a physical mixture (PM). The influence of crystal lattice energy on dissolution profiles was investigated using the PM and FM. Experimental phase diagrams constructed using differential scanning calorimetry data were compared with those theoretically derived. Deviation of the experimental phase diagram curves from the theoretical model indicates the nonideal behavior of both systems (ibuprofen/poly(ethylene glycol)-6000 and acetaminophen/caffeine). Both the binary systems showed an increase in the dissolution rate of the PM and FM. However, the dissolution from the PM was comparable with the FM's dissolution profile. The theoretical solubility calculations using the modified solubility equation showed that the use of the eutectic temperature instead of the drug's melting point should give a 3-4-fold increase in drug solubility. However, the correlation between dissolution and solubility calculation showed that the FM did not improve the dissolution when compared with the respective PM's dissolution profile. The proposed explanation is that the unchanged crystal lattice energy in eutectics still limits the solubility and therefore the dissolution rate.
Collapse
Affiliation(s)
- Kaushalendra Chaturvedi
- Arnold
and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York 11201, United States
| | - Harsh S. Shah
- Arnold
and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York 11201, United States
| | - Kajal Nahar
- Arnold
and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York 11201, United States
| | - Rutesh Dave
- Division
of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy
and Health Sciences, Long Island University, Brooklyn, New York 11201, United States
| | - Kenneth R. Morris
- Lachman
Institute for Pharmaceutical Analysis, Arnold and Marie Schwartz College
of Pharmacy and Health Sciences, Long Island
University, Brooklyn, New York 11201, United
States
| |
Collapse
|
29
|
Da Silva FLO, Marques MBDF, Kato KC, Carneiro G. Nanonization techniques to overcome poor water-solubility with drugs. Expert Opin Drug Discov 2020; 15:853-864. [DOI: 10.1080/17460441.2020.1750591] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Flávia Lidiane Oliveira Da Silva
- Department of Pharmacy, Faculty of Biological and Health Sciences, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
| | - Maria Betânia De Freitas Marques
- Department of Pharmacy, Faculty of Biological and Health Sciences, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Kelly Cristina Kato
- Department of Pharmacy, Faculty of Biological and Health Sciences, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
| | - Guilherme Carneiro
- Department of Pharmacy, Faculty of Biological and Health Sciences, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
| |
Collapse
|
30
|
The potential of nanofibers to increase solubility and dissolution rate of the poorly soluble and chemically unstable drug lovastatin. Int J Pharm 2020; 573:118809. [DOI: 10.1016/j.ijpharm.2019.118809] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 12/17/2022]
|
31
|
Álvarez MS, Zhang Y. Sketching neoteric solvents for boosting drugs bioavailability. J Control Release 2019; 311-312:225-232. [PMID: 31521743 DOI: 10.1016/j.jconrel.2019.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 12/12/2022]
Abstract
Emerging neoteric solvents are being the subject of growing attention due to their lower cost and environmental impact, so they are being applied in a broad spectrum of industries. Among them, the pharmaceutical sector is demanding new environmentally friendly and non-toxic solvents able to enhance drugs solubility and stability. The introduction of ionic liquids turned out to be a breakthrough in the field of Green Chemistry opening up new separation and catalysis opportunities. In this sense, the options represented by Deep Eutectic Solvents make up an attractive alternative due to the low cost of their raw material, simple synthesis, and eco-friendly character. In line with these findings, Therapeutic Deep Eutectic Solvents and Natural Deep Eutectic Solvents are new and promising alternatives to improve the bioavailability of drugs in pharmaceutical formulations. This leading article is focused on providing a general picture of the advantages and drawbacks of these new solvents as well as the main research lines and perspectives to achieve efficient drugs delivery systems.
Collapse
Affiliation(s)
- María S Álvarez
- Department of Chemical Engineering, University of Vigo, P. O. Box 36310, Vigo, Spain; Department of Chemical and Biological Engineering Princeton University, Princeton, NJ, USA.
| | - Yanfei Zhang
- Department of Chemical and Biological Engineering Princeton University, Princeton, NJ, USA
| |
Collapse
|
32
|
Palanisamy V, Sanphui P, Prakash M, Chernyshev V. Multicomponent solid forms of the uric acid reabsorption inhibitor lesinurad and cocrystal polymorphs with urea: DFT simulation and solubility study. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2019; 75:1102-1117. [PMID: 31380793 DOI: 10.1107/s2053229619008829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 06/20/2019] [Indexed: 11/11/2022]
Abstract
Lesinurad (systematic name: 2-{[5-bromo-4-(4-cyclopropylnaphthalen-1-yl)-4H-1,2,4-triazol-3-yl]sulfanyl}acetic acid, C17H14BrN3O2S) is a selective uric acid reabsorption inhibitor related to gout, which exhibits poor aqueous solubility. High-throughput solid-form screening was performed to screen for new solid forms with improved pharmaceutically relevant properties. During polymorph screening, we obtained two solvates with methanol (CH3OH) and ethanol (C2H5OH). Binary systems with caffeine (systematic name: 3,7-dihydro-1,3,7-trimethyl-1H-purine-2,6-dione, C8H10N4O2) and nicotinamide (C6H6N2O), polymorphs with urea (CH4N2O) and eutectics with similar drugs, like allopurinol and febuxostat, were prepared using the crystal engineering approach. All these novel solid forms were confirmed by XRD, DSC and FT-IR. The crystal structures were solved by single-crystal and powder X-ray diffraction. The crystal structures indicate that the lesinurad molecule is highly flexible and the triazole moiety, along with the rotatable thioacetic acid (side chain) and cyclopropane ring, is almost perpendicular to the planar naphthalene moiety. The carboxylic acid-triazole heterosynthon in the drug is interrupted by the presence of methanol and ethanol molecules in their crystal structures and forms intermolecular macrocyclic rings. The caffeine cocrystal maintains the consistency of the acid-triazole heterosynthons as in the drug and, in addition, they are bound by several auxiliary interactions. In the binary system of nicotinamide and urea, the acid-triazole heterosynthon is replaced by an acid-amide synthon. Among the urea cocrystal polymorphs, Form I (P-1, 1:1) consists of an acid-amide (urea) heterodimer, whereas in Form II (P21/c, 2:2), both acid-amide heterosynthons and urea-urea dimers co-exist. Density functional theory (DFT) calculations further support the experimentally observed synthon hierarchies in the cocrystals. Aqueous solubility experiments of lesinurad and its binary solids in pH 5 acetate buffer medium indicate the apparent solubility order lesinurad-urea Form I (43-fold) > lesinurad-caffeine (20-fold) > lesinurad-allopurinol (12-fold) ≃ lesinurad-nicotinamide (11-fold) > lesinurad, and this order is correlated with the crystal structures.
Collapse
Affiliation(s)
- Vasanthi Palanisamy
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, India
| | - Palash Sanphui
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, India
| | - Muthuramalingam Prakash
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, India
| | - Vladimir Chernyshev
- Department of Chemistry, M. V. Lomonosov Moscow State University, 1-3 Leninskie Gory, Moscow 119991, Russian Federation
| |
Collapse
|