1
|
Wang Y, Li Z, Bao Y, Cui H, Li J, Song B, Wang M, Li H, Cui X, Chen Y, Chen W, Yang S, Yang Y, Jin Z, Si X, Li B. Colon-targeted delivery of polyphenols: construction principles, targeting mechanisms and evaluation methods. Crit Rev Food Sci Nutr 2023; 65:64-86. [PMID: 37823723 DOI: 10.1080/10408398.2023.2266842] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Polyphenols have received considerable attention for their promotive effects on colonic health. However, polyphenols are mostly sensitive to harsh gastrointestinal environments, thus, must be protected. It is necessary to design and develop a colon-targeted delivery system to improve the stability, colon-targeting and bioavailability of polyphenols. This paper mainly introduces research on colon-targeted controlled release of polyphenols. The physiological features affecting the dissolution, release and absorption of polyphenol-loaded delivery systems in the colon are first discussed. Simultaneously, the types of colon-targeted carriers with different release mechanisms are described, and colon-targeting assessment models that have been studied so far and their advantages and limitations are summarized. Based on the current research on polyphenols colon-targeting, outlook and reflections are proposed, with the goal of inspiring strategic development of new colon-targeted therapeutics to ensure that the polyphenols reach the colon with complete bioactivity.
Collapse
Affiliation(s)
- Yidi Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Zhiying Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yiwen Bao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Huijun Cui
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Jiaxin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Baoge Song
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Mengzhu Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Haikun Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xingyue Cui
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Wei Chen
- Faculty of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Shufang Yang
- Zhejiang Lanmei Technology Co., Ltd, Zhu-ji City, Zhejiang Province, China
| | - Yiyun Yang
- Zhejiang Lanmei Technology Co., Ltd, Zhu-ji City, Zhejiang Province, China
| | - Zhufeng Jin
- Zhejiang Lanmei Technology Co., Ltd, Zhu-ji City, Zhejiang Province, China
| | - Xu Si
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Stamatopoulos K, O’Farrell C, Simmons MJH, Batchelor HK, Mistry N. Use of In Vitro Dynamic Colon Model (DCM) to Inform a Physiologically Based Biopharmaceutic Model (PBBM) to Predict the In Vivo Performance of a Modified-Release Formulation of Theophylline. Pharmaceutics 2023; 15:882. [PMID: 36986743 PMCID: PMC10058579 DOI: 10.3390/pharmaceutics15030882] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/25/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
A physiologically based biopharmaceutic model (PBBM) of a modified-release formulation of theophylline (Uniphyllin Continus® 200 mg tablet) was developed and implemented to predict the pharmacokinetic (PK) data of healthy male volunteers by integrating dissolution profiles measured in a biorelevant in vitro model: the Dynamic Colon Model (DCM). The superiority of the DCM over the United States Pharmacopeia (USP) Apparatus II (USP II) was demonstrated by the superior predictions for the 200 mg tablet (average absolute fold error (AAFE): 1.1-1.3 (DCM) vs. 1.3-1.5 (USP II). The best predictions were obtained using the three motility patterns (antegrade and retrograde propagating waves, baseline) in the DCM, which produced similar PK profiles. However, extensive erosion of the tablet occurred at all agitation speeds used in USP II (25, 50 and 100 rpm), resulting in an increased drug release rate in vitro and overpredicted PK data. The PK data of the Uniphyllin Continus® 400 mg tablet could not be predicted with the same accuracy using dissolution profiles from the DCM, which might be explained by differences in upper gastrointestinal (GI) tract residence times between the 200 and 400 mg tablets. Thus, it is recommended that the DCM be used for dosage forms in which the main release phenomena take place in the distal GI tract. However, the DCM again showed a better performance based on the overall AAFE compared to the USP II. Regional dissolution profiles within the DCM cannot currently be integrated into Simcyp®, which might limit the predictivity of the DCM. Thus, further compartmentalization of the colon within PBBM platforms is required to account for observed intra-regional differences in drug distribution.
Collapse
Affiliation(s)
| | - Connor O’Farrell
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Mark J. H. Simmons
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Hannah K. Batchelor
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Nena Mistry
- Biopharmaceutics, DPD, MDS, GSK, David Jack Centre, Park Road, Ware SG12 0DP, UK
| |
Collapse
|
3
|
Methamphetamine Induces Systemic Inflammation and Anxiety: The Role of the Gut–Immune–Brain Axis. Int J Mol Sci 2022; 23:ijms231911224. [PMID: 36232524 PMCID: PMC9569811 DOI: 10.3390/ijms231911224] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 12/21/2022] Open
Abstract
Methamphetamine (METH) is a highly addictive drug abused by millions of users worldwide, thus becoming a global health concern with limited management options. The inefficiency of existing treatment methods has driven research into understanding the mechanisms underlying METH-induced disorders and finding effective treatments. This study aims to understand the complex interactions of the gastrointestinal–immune–nervous systems following an acute METH dose administration as one of the potential underlying molecular mechanisms concentrating on the impact of METH abuse on gut permeability. Findings showed a decreased expression of tight junction proteins ZO-1 and EpCAm in intestinal tissue and the presence of FABP-1 in sera of METH treated mice suggests intestinal wall disruption. The increased presence of CD45+ immune cells in the intestinal wall further confirms gut wall inflammation/disruption. In the brain, the expression of inflammatory markers Ccl2, Cxcl1, IL-1β, TMEM119, and the presence of albumin were higher in METH mice compared to shams, suggesting METH-induced blood–brain barrier disruption. In the spleen, cellular and gene changes are also noted. In addition, mice treated with an acute dose of METH showed anxious behavior in dark and light, open field, and elevated maze tests compared to sham controls. The findings on METH-induced inflammation and anxiety may provide opportunities to develop effective treatments for METH addiction in the future.
Collapse
|
4
|
Willis D, Cameron D, Kasmai B, Vassiliou VS, Malcolm PN, Baio G. A novel method for measuring bowel motility and velocity with dynamic magnetic resonance imaging in two and three dimensions. NMR IN BIOMEDICINE 2022; 35:e4663. [PMID: 34913200 DOI: 10.1002/nbm.4663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 11/02/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
Increasingly, dynamic magnetic resonance imaging (MRI) has potential as a noninvasive and accessible tool for diagnosing and monitoring gastrointestinal motility in healthy and diseased bowel. However, current MRI methods of measuring bowel motility have limitations: requiring bowel preparation or long acquisition times; providing mainly surrogate measures of motion; and estimating bowel-wall movement in just two dimensions. In this proof-of-concept study we apply a method that provides a quantitative measure of motion within the bowel, in both two and three dimensions, using existing, vendor-implemented MRI pulse sequences with minimal bowel preparation. This method uses a minimised cost function to fit linear vectors in the spatial and temporal domains. It is sensitised to the spatial scale of the bowel and aims to address issues relating to the low signal-to-noise in high-temporal resolution dynamic MRI scans, previously compensated for by performing thick-slice (10-mm) two-dimensional (2D) coronal scans. We applied both 2D and three-dimensional (3D) scanning protocols in two healthy volunteers. For 2D scanning, analysis yielded bi-modal velocity peaks, with a mean antegrade motion of 5.5 mm/s and an additional peak at ~9 mm/s corresponding to longitudinal peristalsis, as supported by intraoperative data from the literature. Furthermore, 3D scans indicated a mean forward motion of 4.7 mm/s, and degrees of antegrade and retrograde motion were also established. These measures show promise for the noninvasive assessment of bowel motility, and have the potential to be tuned to particular regions of interest and behaviours within the bowel.
Collapse
Affiliation(s)
- David Willis
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Donnie Cameron
- Norwich Medical School, University of East Anglia, Norwich, UK
- C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bahman Kasmai
- Department of Radiology, Norfolk & Norwich University Hospital NHS Trust, Norwich, UK
| | | | - Paul N Malcolm
- Department of Radiology, Norfolk & Norwich University Hospital NHS Trust, Norwich, UK
| | - Gabriella Baio
- Norwich Medical School, University of East Anglia, Norwich, UK
- Department of Radiology, Norfolk & Norwich University Hospital NHS Trust, Norwich, UK
| |
Collapse
|
5
|
Schütt M, O’Farrell C, Stamatopoulos K, Hoad CL, Marciani L, Sulaiman S, Simmons MJH, Batchelor HK, Alexiadis A. Simulating the Hydrodynamic Conditions of the Human Ascending Colon: A Digital Twin of the Dynamic Colon Model. Pharmaceutics 2022; 14:pharmaceutics14010184. [PMID: 35057077 PMCID: PMC8778200 DOI: 10.3390/pharmaceutics14010184] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/26/2021] [Accepted: 01/11/2022] [Indexed: 12/21/2022] Open
Abstract
The performance of solid oral dosage forms targeting the colon is typically evaluated using standardised pharmacopeial dissolution apparatuses. However, these fail to replicate colonic hydrodynamics. This study develops a digital twin of the Dynamic Colon Model; a physiologically representative in vitro model of the human proximal colon. Magnetic resonance imaging of the Dynamic Colon Model verified that the digital twin robustly replicated flow patterns under different physiological conditions (media viscosity, volume, and peristaltic wave speed). During local contractile activity, antegrade flows of 0.06-0.78 cm s-1 and backflows of -2.16--0.21 cm s-1 were measured. Mean wall shear rates were strongly time and viscosity dependent although peaks were measured between 3.05-10.12 s-1 and 5.11-20.34 s-1 in the Dynamic Colon Model and its digital twin respectively, comparable to previous estimates of the USPII with paddle speeds of 25 and 50 rpm. It is recommended that viscosity and shear rates are considered when designing future dissolution test methodologies for colon-targeted formulations. In the USPII, paddle speeds >50 rpm may not recreate physiologically relevant shear rates. These findings demonstrate how the combination of biorelevant in vitro and in silico models can provide new insights for dissolution testing beyond established pharmacopeial methods.
Collapse
Affiliation(s)
- Michael Schütt
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (K.S.); (M.J.H.S.)
- Correspondence: (M.S.); (C.O.); (A.A.)
| | - Connor O’Farrell
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (K.S.); (M.J.H.S.)
- Correspondence: (M.S.); (C.O.); (A.A.)
| | - Konstantinos Stamatopoulos
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (K.S.); (M.J.H.S.)
- Biopharmaceutics, Pharmaceutical Development, PDS, MST, RD Platform Technology & Science, GSK, David Jack Centre, Park Road, Ware, Hertfordshire SG12 0DP, UK
| | - Caroline L. Hoad
- Nottingham Digestive Diseases Centre and National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham NG7 2UK, UK; (C.L.H.); (L.M.); (S.S.)
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Luca Marciani
- Nottingham Digestive Diseases Centre and National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham NG7 2UK, UK; (C.L.H.); (L.M.); (S.S.)
| | - Sarah Sulaiman
- Nottingham Digestive Diseases Centre and National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham NG7 2UK, UK; (C.L.H.); (L.M.); (S.S.)
| | - Mark J. H. Simmons
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (K.S.); (M.J.H.S.)
| | - Hannah K. Batchelor
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK;
| | - Alessio Alexiadis
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (K.S.); (M.J.H.S.)
- Correspondence: (M.S.); (C.O.); (A.A.)
| |
Collapse
|
6
|
Quantification of Fluid Volume and Distribution in the Paediatric Colon via Magnetic Resonance Imaging. Pharmaceutics 2021; 13:pharmaceutics13101729. [PMID: 34684022 PMCID: PMC8540766 DOI: 10.3390/pharmaceutics13101729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 12/16/2022] Open
Abstract
Previous studies have used magnetic resonance imaging (MRI) to quantify the fluid in the stomach and small intestine of children, and the stomach, small intestine and colon of adults. This is the first study to quantify fluid volumes and distribution using MRI in the paediatric colon. MRI datasets from 28 fasted (aged 0-15 years) and 18 fluid-fed (aged 10-16 years) paediatric participants were acquired during routine clinical care. A series of 2D- and 3D-based software protocols were used to measure colonic fluid volume and localisation. The paediatric colon contained a mean volume of 22.5 mL ± 41.3 mL fluid, (range 0-167.5 mL, median volume 0.80 mL) in 15.5 ± 17.5 discreet fluid pockets (median 12). The proportion of the fluid pockets larger than 1 mL was 9.6%, which contributed to 94.5% of the total fluid volume observed. No correlation was detected between all-ages and colonic fluid volume, nor was a difference in colonic fluid volumes observed based on sex, fed state or age group based on ICH-classifications. This study quantified fluid volumes within the paediatric colon, and these data will aid and accelerate the development of biorelevant tools to progress paediatric drug development for colon-targeting formulations.
Collapse
|
7
|
Stamatopoulos K, O'Farrell C, Simmons M, Batchelor H. In vivo models to evaluate ingestible devices: Present status and current trends. Adv Drug Deliv Rev 2021; 177:113915. [PMID: 34371085 DOI: 10.1016/j.addr.2021.113915] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/27/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022]
Abstract
Evaluation of orally ingestible devices is critical to optimize their performance early in development. Using animals as a pre-clinical tool can provide useful information on functionality, yet it is important to recognize that animal gastrointestinal physiology, pathophysiology and anatomy can differ to that in humans and that the most suitable species needs to be selected to inform the evaluation. There has been a move towards in vitro and in silico models rather than animal models in line with the 3Rs (Replacement, Reduction and Refinement) as well as the better control and reproducibility associated with these systems. However, there are still instances where animal models provide the greatest understanding. This paper provides an overview of key aspects of human gastrointestinal anatomy and physiology and compares parameters to those reported in animal species. The value of each species can be determined based upon the parameter of interest from the ingested device when considering the use of pre-clinical animal testing.
Collapse
Affiliation(s)
- Konstantinos Stamatopoulos
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Biopharmaceutics, Pharmaceutical Development, PDS, MST, RD Platform Technology & Science, GSK, David Jack Centre, Park Road, Ware, Hertfordshire SG12 0DP, UK
| | - Connor O'Farrell
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Mark Simmons
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Hannah Batchelor
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
8
|
Yu X, Yang Y, Li J. Application of ultrasound in the diagnosis of gastrointestinal tumors. EUR J INFLAMM 2020. [DOI: 10.1177/2058739220961194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Gastrointestinal tumors are common tumors in the digestive system. Early diagnosis of gastrointestinal tumors is the key to improve prognosis and curative effect of patients with tumors. Compared with other methods of examination and diagnosis, ultrasound examination has the advantages of simple operation, non-invasive, economical, and repeatable operation. With the advancement of ultrasound technology and the development of ultrasound contrast agents, ultrasound examination is more and more applied to gastrointestinal examination. Ultrasound cannot only observe the gastrointestinal wall, but also evaluate the surrounding lesions and metastases, as well as preoperative analysis and postoperative follow-up of gastrointestinal tumors. We reviewed the diagnostic applications of ultrasound in gastrointestinal tumors.
Collapse
Affiliation(s)
- XianZhe Yu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi City, Guizhou Province, P.R. China
| | - YanNi Yang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi City, Guizhou Province, P.R. China
| | - JianGuo Li
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi City, Guizhou Province, P.R. China
| |
Collapse
|
9
|
Hao Y, Li J, Meng F, Zhang P, Ciuti G, Dario P, Huang Q. Photometric Stereo-Based Depth Map Reconstruction for Monocular Capsule Endoscopy. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5403. [PMID: 32967182 PMCID: PMC7571214 DOI: 10.3390/s20185403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 11/24/2022]
Abstract
The capsule endoscopy robot can only use monocular vision due to the dimensional limit. To improve the depth perception of the monocular capsule endoscopy robot, this paper proposes a photometric stereo-based depth map reconstruction method. First, based on the characteristics of the capsule endoscopy robot system, a photometric stereo framework is established. Then, by combining the specular property and Lambertian property of the object surface, the depth of the specular highlight point is estimated, and the depth map of the whole object surface is reconstructed by a forward upwind scheme. To evaluate the precision of the depth estimation of the specular highlight region and the depth map reconstruction of the object surface, simulations and experiments are implemented with synthetic images and pig colon tissue, respectively. The results of the simulations and experiments show that the proposed method provides good precision for depth map reconstruction in monocular capsule endoscopy.
Collapse
Affiliation(s)
- Yang Hao
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (Y.H.); (P.Z.)
| | - Jing Li
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China; (J.L.); (G.C.); (P.D.); (Q.H.)
| | - Fei Meng
- Key Laboratory of Biomimetic Robots and Systems, Beijing Institute of Technology, Ministry of Education, Beijing 100081, China
| | - Peisen Zhang
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (Y.H.); (P.Z.)
| | - Gastone Ciuti
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China; (J.L.); (G.C.); (P.D.); (Q.H.)
- The BioRobotics Institute, Scuola Superiore Sant’Anna, 56025 Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, 56025 Pisa, Italy
| | - Paolo Dario
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China; (J.L.); (G.C.); (P.D.); (Q.H.)
- The BioRobotics Institute, Scuola Superiore Sant’Anna, 56025 Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, 56025 Pisa, Italy
| | - Qiang Huang
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China; (J.L.); (G.C.); (P.D.); (Q.H.)
- Key Laboratory of Biomimetic Robots and Systems, Beijing Institute of Technology, Ministry of Education, Beijing 100081, China
| |
Collapse
|
10
|
Dynamic Colon Model (DCM): A Cine-MRI Informed Biorelevant In Vitro Model of the Human Proximal Large Intestine Characterized by Positron Imaging Techniques. Pharmaceutics 2020; 12:pharmaceutics12070659. [PMID: 32668624 PMCID: PMC7407282 DOI: 10.3390/pharmaceutics12070659] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022] Open
Abstract
This work used in vivo MRI images of human colon wall motion to inform a biorelevant Dynamic Colon Model (DCM) to understand the interplay of wall motion, volume, viscosity, fluid, and particle motion within the colon lumen. Hydrodynamics and particle motion within the DCM were characterized using Positron Emission Tomography (PET) and Positron Emission Particle Tracking (PEPT), respectively. In vitro PET images showed that fluid of higher viscosity follows the wall motion with poor mixing, whereas good mixing was observed for a low viscosity fluid. PEPT data showed particle displacements comparable to the in vivo data. Increasing fluid viscosity favors the net forward propulsion of the tracked particles. The use of a floating particle demonstrated shorter residence times and greater velocities on the liquid surface, suggesting a surface wave that was moving faster than the bulk liquid. The DCM can provide an understanding of flow motion and behavior of particles with different buoyancy, which in turn may improve the design of drug formulations, whereby fragments of the dosage form and/or drug particles are suspended in the proximal colon.
Collapse
|
11
|
Investigation of age-related differences in toxicokinetic processes of deoxynivalenol and deoxynivalenol-3-glucoside in weaned piglets. Arch Toxicol 2019; 94:417-425. [PMID: 31834428 DOI: 10.1007/s00204-019-02644-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/04/2019] [Indexed: 10/25/2022]
Abstract
Age-related differences in toxicokinetic processes of deoxynivalenol (DON) and deoxynivalenol-3-glucoside (DON3G) were studied. DON3G [55.7 µg/kg bodyweight (BW)] and an equimolar dose of DON (36 µg/kg BW) were administered to weaned piglets (4 weeks old) by single intravenous and oral administration in a double two-way cross-over design. Systemic and portal blood was sampled at different time points pre- and post-administration and plasma concentrations of DON, DON3G and their metabolites were quantified using validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) and liquid chromatography-high-resolution mass spectrometry (LC-HRMS) methods. Data were processed using tailor-made compartmental toxicokinetic (TK) models to accurately estimate TK parameters. Results were statistically compared to data obtained in a previous study on 11-week-old pigs using identical experimental conditions. Significant age-related differences in intestinal and systemic exposure to both DON and DON3G were noted. Most remarkably, a significant difference was found for the absorbed fraction of DON3G, after presystemic hydrolysis to DON, in weaned piglets compared to 11-week-old piglets (83% vs 16%, respectively), assumed to be mainly attributed to the higher intestinal permeability of weaned piglets. Other differences in TK parameters could be assigned to a higher water/fat body ratio and longer gastrointestinal transit time of weaned piglets. Results may further refine current risk assessment concerning DON and DON3G in animals. Additionally, since piglets possibly serve as a human paediatric surrogate model, results may be extrapolated to human infants.
Collapse
|