1
|
Nyavanandi D, Mandati P, Vidiyala N, Parupathi P, Kolimi P, Mamidi HK. Enhancing Patient-Centric Drug Development: Coupling Hot Melt Extrusion with Fused Deposition Modeling and Pressure-Assisted Microsyringe Additive Manufacturing Platforms with Quality by Design. Pharmaceutics 2024; 17:14. [PMID: 39861666 PMCID: PMC11769097 DOI: 10.3390/pharmaceutics17010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
In recent years, with the increasing patient population, the need for complex and patient-centric medications has increased enormously. Traditional manufacturing techniques such as direct blending, high shear granulation, and dry granulation can be used to develop simple solid oral medications. However, it is well known that "one size fits all" is not true for pharmaceutical medicines. Depending on the age, sex, and disease state, each patient might need a different dose, combination of medicines, and drug release pattern from the medications. By employing traditional practices, developing patient-centric medications remains challenging and unaddressed. Over the last few years, much research has been conducted exploring various additive manufacturing techniques for developing on-demand, complex, and patient-centric medications. Among all the techniques, nozzle-based additive manufacturing platforms such as pressure-assisted microsyringe (PAM) and fused deposition modeling (FDM) have been investigated thoroughly to develop various medications. Both nozzle-based techniques involve the application of thermal energy. However, PAM can also be operated under ambient conditions to process semi-solid materials. Nozzle-based techniques can also be paired with the hot melt extrusion (HME) process for establishing a continuous manufacturing platform by employing various in-line process analytical technology (PAT) tools for monitoring critical process parameters (CPPs) and critical material attributes (CMAs) for delivering safe, efficacious, and quality medications to the patient population without compromising critical quality attributes (CQAs). This review covers an in-depth discussion of various critical parameters and their influence on product quality, along with a note on the continuous manufacturing process, quality by design, and future perspectives.
Collapse
Affiliation(s)
- Dinesh Nyavanandi
- Small Molecule Drug Product Development, Cerevel Therapeutics, Cambridge, MA 02141, USA;
| | - Preethi Mandati
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; (P.M.); (P.K.)
| | - Nithin Vidiyala
- Small Molecule Drug Product Development, Cerevel Therapeutics, Cambridge, MA 02141, USA;
| | - Prashanth Parupathi
- Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA;
| | - Praveen Kolimi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; (P.M.); (P.K.)
| | | |
Collapse
|
2
|
Bajwa N, Singh PA, Kumar S, Arya GC, Baldi A. Enhanced bioavailability and efficacy in antimalarial treatment through QbD approach enteric encased inclusion delivery. Ther Deliv 2024; 15:653-666. [PMID: 39225262 DOI: 10.1080/20415990.2024.2377948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 07/04/2024] [Indexed: 09/04/2024] Open
Abstract
Aim: In this study, we aimed to prepare enteric encapsulated spheroids containing inclusion complex using quality by design approach.Methods: A Box-Behnken design was employed to determine effects of variables on selected responses. Risk assessment was conducted using Ishikawa fishbone diagram. A model with a p-value was less than 0.5 for being a significant error of model was determined based on significance 'lack of fit' value. Spheroids were formulated using the extrusion spheronization technique and were characterized using analytical techniques.Results: In vitro release was performed in both acidic (pH 1.2) and simulated intestinal (pH 6.8) conditions. Permeability studies demonstrated tenfold enhancement compared with arteether. In vivo studies further validated increase of 51.8% oral bioavailability. Ex vivo studies revealed 3.4-fold enhancement in antimalarial activity compared with arteether.Conclusion: These findings highlight effectiveness of inclusion complexation technique as a viable approach to enhance solubility and bioavailability for drugs with low aqueous solubility.
Collapse
Affiliation(s)
- Neha Bajwa
- Pharma Innovation Lab, Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India
- University Center of Excellence in Research, Baba Farid University of Health Sciences, Faridkot, 151203, India
| | - Preet Amol Singh
- Pharma Innovation Lab, Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India
- University Center of Excellence in Research, Baba Farid University of Health Sciences, Faridkot, 151203, India
| | - Sumant Kumar
- Pharma Innovation Lab, Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India
| | - Girish Chandra Arya
- Centre for Biomedical Engineering, Indian Institute of Technology, New Delhi, 110016, India
| | - Ashish Baldi
- Pharma Innovation Lab, Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India
| |
Collapse
|
3
|
Nyavanandi D, Narala S, Mandati P, Alzahrani A, Kolimi P, Almotairy A, Repka MA. Twin Screw Melt Granulation: Alternative Approach for Improving Solubility and Permeability of a Non-steroidal Anti-inflammatory Drug Ibuprofen. AAPS PharmSciTech 2023; 24:47. [PMID: 36703024 DOI: 10.1208/s12249-023-02512-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/11/2023] [Indexed: 01/27/2023] Open
Abstract
The current research is focused on investigating the suitability of the twin screw melt granulation (TSMG) approach for improving the solubility of a non-steroidal anti-inflammatory (NSAIDs) drug (ibuprofen), by developing granules using lipid surfactants. The solubility of the drug within the solid lipid excipients (Gelucire® 48/16 and Gelucire® 50/13) was determined by differential scanning calorimetry (DSC). The formulations were developed for drug and lipid ratios of 1:1.5, 1:3, and 1:4.5 using Neusilin® US2 as a solid adsorbent carrier. The solid-state properties of the drug investigated using differential scanning calorimetry (DSC) have revealed the conversion of the drug to an amorphous form for 1:3 and 1:4.5 ratios of formulations confirmed by powder x-ray diffraction analysis (PXRD). Drug-excipient compatibility and formation of no interactions were characterized using Fourier transform infrared spectroscopy (FTIR). The granules with a 1:3 and 1:4.5 ratios of drug and lipid have improved drug dissolution and permeation, attributing to the formation of micellar emulsions. The stability of formulation with a 1:3 ratio of drug and lipid surfactant was preserved when stored in accelerated conditions. However, the formulation with a 1:4.5 ratio of drug and lipid failed to retain the amorphous state evidenced by the recrystallization of the drug. This shows the suitability of TSMG as a single-step continuous manufacturing process for developing melt granules to improve the solubility of poorly water-soluble drug substances.
Collapse
Affiliation(s)
- Dinesh Nyavanandi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Jackson, MS, 38677, USA
| | - Sagar Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Jackson, MS, 38677, USA
| | - Preethi Mandati
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Jackson, MS, 38677, USA
| | - Abdullah Alzahrani
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Jackson, MS, 38677, USA
| | - Praveen Kolimi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Jackson, MS, 38677, USA
| | - Ahmed Almotairy
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Jackson, MS, 38677, USA.,Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy, Taibah University, AlMunawarah, Al Madinah, 30001, Saudi Arabia
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Jackson, MS, 38677, USA. .,Pii Center for Pharmaceutical Technology, The University of Mississippi, University, Jackson, MS, 38677, USA.
| |
Collapse
|
4
|
Nyavanandi D, Mandati P, Narala S, Alzahrani A, Kolimi P, Pradhan A, Bandari S, Repka MA. Feasibility of high melting point hydrochlorothiazide processing via cocrystal formation by hot melt extrusion paired fused filament fabrication as a 3D-printed cocrystal tablet. Int J Pharm 2022; 628:122283. [DOI: 10.1016/j.ijpharm.2022.122283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 10/31/2022]
|
5
|
Salave S, Prayag K, Rana D, Amate P, Pardhe R, Jadhav A, Jindal AB, Benival D. Recent Progress in Hot Melt Extrusion Technology in Pharmaceutical Dosage Form Design. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2022; 16:170-191. [PMID: 35986528 DOI: 10.2174/2667387816666220819124605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The Hot Melt Extrusion (HME) technique has shown tremendous potential in transforming highly hydrophobic crystalline drug substances into amorphous solids without using solvents. This review explores in detail the general considerations involved in the process of HME, its applications and advances. OBJECTIVE The present review examines the physicochemical properties of polymers pertinent to the HME process. Theoretical approaches for the screening of polymers are highlighted as a part of successful HME processed drug products. The critical quality attributes associated with the process of HME are also discussed in this review. HME plays a significant role in the dosage form design, and the same has been mentioned with suitable examples. The role of HME in developing several sustained release formulations, films, and implants is described along with the research carried out in a similar domain. METHODS The method includes the collection of data from different search engines like PubMed, ScienceDirect, and SciFinder to get coverage of relevant literature for accumulating appropriate information regarding HME, its importance in pharmaceutical product development, and advanced applications. RESULTS HME is known to have advanced pharmaceutical applications in the domains related to 3D printing, nanotechnology, and PAT technology. HME-based technologies explored using Design-of- Experiments also lead to the systematic development of pharmaceutical formulations. CONCLUSION HME remains an adaptable and differentiated technique for overall formulation development.
Collapse
Affiliation(s)
- Sagar Salave
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Kedar Prayag
- Department of Pharmacy, Birla Institute of Technology and Science Pilani (BITS PILANI), Pilani, Rajasthan, India
| | - Dhwani Rana
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Prakash Amate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Rupali Pardhe
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Ajinkya Jadhav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Anil B Jindal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani (BITS PILANI), Pilani, Rajasthan, India
| | - Derajram Benival
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| |
Collapse
|
6
|
Enhanced Supersaturation via Fusion-Assisted Amorphization during FDM 3D Printing of Crystalline Poorly Soluble Drug Loaded Filaments. Pharmaceutics 2021; 13:pharmaceutics13111857. [PMID: 34834272 PMCID: PMC8618474 DOI: 10.3390/pharmaceutics13111857] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Filaments loaded with griseofulvin (GF), a model poorly water-soluble drug, were prepared and used for 3D printing via fused deposition modeling (FDM). GF was selected due to its high melting temperature, enabling lower temperature hot-melt extrusion (HME) keeping GF largely crystalline in the filaments, which could help mitigate the disadvantages of high HME processing temperatures such as filament quality, important for printability and the adverse effects of GF recrystallization on tablet properties. Novel aspects include single-step fusion-assisted ASDs generation during FDM 3D printing and examining the impact of tablet surface areas (SA) through printing multi-mini and square-pattern perforated tablets to further enhance drug supersaturation during dissolution. Kollicoat protect and hydroxypropyl cellulose were selected due to their low miscibility with GF, necessary to produce crystalline filaments. The drug solid-state was assessed via XRPD, DSC and FT-IR. At 165 °C HME processing temperature, the filaments containing ~80% crystalline GF were printable. Fusion-assisted 3D printing led to GF supersaturation of ~153% for cylindrical tablets and ~293% with the square-pattern perforated tablets, indicating strong monotonous impact of tablet SA. Dissolution kinetics of drug release profiles indicated Fickian transport for tablets with higher SA, demonstrating greater SA-induced drug supersaturation for well-designed 3D printed tablets.
Collapse
|
7
|
Chen X, Zhang M, Teng X, Mujumdar AS. Recent Progress in Modeling 3D/4D Printing of Foods. FOOD ENGINEERING REVIEWS 2021. [DOI: 10.1007/s12393-021-09297-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Machine Learning for Process Monitoring and Control of Hot-Melt Extrusion: Current State of the Art and Future Directions. Pharmaceutics 2021; 13:pharmaceutics13091432. [PMID: 34575508 PMCID: PMC8466632 DOI: 10.3390/pharmaceutics13091432] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/26/2021] [Accepted: 09/06/2021] [Indexed: 01/11/2023] Open
Abstract
In the last few decades, hot-melt extrusion (HME) has emerged as a rapidly growing technology in the pharmaceutical industry, due to its various advantages over other fabrication routes for drug delivery systems. After the introduction of the ‘quality by design’ (QbD) approach by the Food and Drug Administration (FDA), many research studies have focused on implementing process analytical technology (PAT), including near-infrared (NIR), Raman, and UV–Vis, coupled with various machine learning algorithms, to monitor and control the HME process in real time. This review gives a comprehensive overview of the application of machine learning algorithms for HME processes, with a focus on pharmaceutical HME applications. The main current challenges in the application of machine learning algorithms for pharmaceutical processes are discussed, with potential future directions for the industry.
Collapse
|
9
|
Domokos A, Nagy B, Szilágyi B, Marosi G, Nagy ZK. Integrated Continuous Pharmaceutical Technologies—A Review. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.0c00504] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- András Domokos
- Budapest University of Technology and Economics, Organic Chemistry and Technology Department, H-1111 Budapest, Hungary
| | - Brigitta Nagy
- Budapest University of Technology and Economics, Organic Chemistry and Technology Department, H-1111 Budapest, Hungary
| | - Botond Szilágyi
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, H-1111 Budapest, Hungary
| | - György Marosi
- Budapest University of Technology and Economics, Organic Chemistry and Technology Department, H-1111 Budapest, Hungary
| | - Zsombor Kristóf Nagy
- Budapest University of Technology and Economics, Organic Chemistry and Technology Department, H-1111 Budapest, Hungary
| |
Collapse
|
10
|
Han R, Buchanan F, Julius M, Walsh PJ. Filament extrusion of bioresorbable PDLGA for additive manufacturing utilising diatom biosilica to inhibit process-induced thermal degradation. J Mech Behav Biomed Mater 2021; 116:104265. [PMID: 33524893 DOI: 10.1016/j.jmbbm.2020.104265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/23/2020] [Accepted: 12/09/2020] [Indexed: 10/22/2022]
Abstract
Bone scaffolds are often fabricated by initially producing custom-made filaments by twin-screw extruder and subsequently fabricating into 3D scaffolds using fused deposition modelling. This study aims to directly compare the effect of two alternative silica-rich filler materials on the thermo-mechanical properties of such scaffolds after extrusion and printing. Poly (DL-lactide-co-glycolide) (PDLGA) was blended with either 45S5 Bioglass (5 wt %) or Biosilica (1 and 5 wt%) isolated from Cyclotella meneghiniana a freshwater diatom were tested. Diatom-PDLGA was found to have similar mechanical strength and ductility to pure-PDLGA, whereas Bioglass-PDLGA was found induce a more brittle behaviour. Bioglass-PDLGA was also found to have the lowest toughness in terms of energy absorption to failure. The TGA results suggested that significant thermal degradation in both the Bioglass filaments and scaffolds had occurred as a result of processing. However, diatom biosilica was found to inhibit thermal degradation of the PDLGA. Furthermore, evidence suggested the agglomeration of Bioglass particles occurred during processing the Bioglass-PDLGA filaments. Overall, diatom biosilica was found to be a promising candidate as a bone filler additive in 3D printed PDLGA scaffolds, whereas Bioglass caused some potentially detrimental effects on performance.
Collapse
Affiliation(s)
- R Han
- School of Chemistry & Chemical Engineering, Queen's University Belfast, Northern Ireland, UK
| | - F Buchanan
- School of Mechanical & Aerospace Engineering, Queen's University Belfast, Northern Ireland, UK
| | - M Julius
- Biological Sciences, St. Cloud State University, St. Cloud, MN, USA
| | - P J Walsh
- School of Chemistry & Chemical Engineering, Queen's University Belfast, Northern Ireland, UK.
| |
Collapse
|
11
|
Stress Relaxation and Creep of a Polymer-Aluminum Composite Produced through Selective Laser Sintering. Polymers (Basel) 2020; 12:polym12040830. [PMID: 32260564 PMCID: PMC7240605 DOI: 10.3390/polym12040830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/24/2020] [Accepted: 04/01/2020] [Indexed: 12/20/2022] Open
Abstract
This article discusses the rheological properties (stress relaxation and creep) of polymer-aluminum composite specimens fabricated through the selective laser sintering (SLS) from a commercially available powder called Alumide. The rheological data predicted using the Maxwell–Wiechert and the Kelvin–Voigt models for stress relaxation and creep, respectively, were in agreement with the experimental results. The elastic moduli and dynamic viscosities were determined with high accuracy for both models. The findings of this study can be useful to designers and users of SLS prints made from the material tested.
Collapse
|
12
|
Azad MA, Olawuni D, Kimbell G, Badruddoza AZM, Hossain MS, Sultana T. Polymers for Extrusion-Based 3D Printing of Pharmaceuticals: A Holistic Materials-Process Perspective. Pharmaceutics 2020; 12:E124. [PMID: 32028732 PMCID: PMC7076526 DOI: 10.3390/pharmaceutics12020124] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 11/16/2022] Open
Abstract
Three dimensional (3D) printing as an advanced manufacturing technology is progressing to be established in the pharmaceutical industry to overcome the traditional manufacturing regime of 'one size fits for all'. Using 3D printing, it is possible to design and develop complex dosage forms that can be suitable for tuning drug release. Polymers are the key materials that are necessary for 3D printing. Among all 3D printing processes, extrusion-based (both fused deposition modeling (FDM) and pressure-assisted microsyringe (PAM)) 3D printing is well researched for pharmaceutical manufacturing. It is important to understand which polymers are suitable for extrusion-based 3D printing of pharmaceuticals and how their properties, as well as the behavior of polymer-active pharmaceutical ingredient (API) combinations, impact the printing process. Especially, understanding the rheology of the polymer and API-polymer mixtures is necessary for successful 3D printing of dosage forms or printed structures. This review has summarized a holistic materials-process perspective for polymers on extrusion-based 3D printing. The main focus herein will be both FDM and PAM 3D printing processes. It elaborates the discussion on the comparison of 3D printing with the traditional direct compression process, the necessity of rheology, and the characterization techniques required for the printed structure, drug, and excipients. The current technological challenges, regulatory aspects, and the direction toward which the technology is moving, especially for personalized pharmaceuticals and multi-drug printing, are also briefly discussed.
Collapse
Affiliation(s)
- Mohammad A. Azad
- Department of Chemical, Biological and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA; (D.O.); (G.K.)
| | - Deborah Olawuni
- Department of Chemical, Biological and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA; (D.O.); (G.K.)
| | - Georgia Kimbell
- Department of Chemical, Biological and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA; (D.O.); (G.K.)
| | - Abu Zayed Md Badruddoza
- Department of Chemical and Life Sciences Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Md. Shahadat Hossain
- Department of Engineering Technology, Queensborough Community College, City University of New York (CUNY), Bayside, NY 11364, USA;
| | - Tasnim Sultana
- Department of Public Health, School of Arts and Sciences, Massachusetts College of Pharmacy and Health Sciences (MCPHS), Boston, MA 02115, USA;
| |
Collapse
|