1
|
Wang Z, Pang S, Liu X, Dong Z, Tian Y, Ashrafizadeh M, Rabiee N, Ertas YN, Mao Y. Chitosan- and hyaluronic acid-based nanoarchitectures in phototherapy: Combination cancer chemotherapy, immunotherapy and gene therapy. Int J Biol Macromol 2024; 273:132579. [PMID: 38795895 DOI: 10.1016/j.ijbiomac.2024.132579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Cancer phototherapy has been introduced as a new potential modality for tumor suppression. However, the efficacy of phototherapy has been limited due to a lack of targeted delivery of photosensitizers. Therefore, the application of biocompatible and multifunctional nanoparticles in phototherapy is appreciated. Chitosan (CS) as a cationic polymer and hyaluronic acid (HA) as a CD44-targeting agent are two widely utilized polymers in nanoparticle synthesis and functionalization. The current review focuses on the application of HA and CS nanostructures in cancer phototherapy. These nanocarriers can be used in phototherapy to induce hyperthermia and singlet oxygen generation for tumor ablation. CS and HA can be used for the synthesis of nanostructures, or they can functionalize other kinds of nanostructures used for phototherapy, such as gold nanorods. The HA and CS nanostructures can combine chemotherapy or immunotherapy with phototherapy to augment tumor suppression. Moreover, the CS nanostructures can be functionalized with HA for specific cancer phototherapy. The CS and HA nanostructures promote the cellular uptake of genes and photosensitizers to facilitate gene therapy and phototherapy. Such nanostructures specifically stimulate phototherapy at the tumor site, with particle toxic impacts on normal cells. Moreover, CS and HA nanostructures demonstrate high biocompatibility for further clinical applications.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Neurosurgery, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng 252000, Shandong, PR China
| | - Shuo Pang
- Department of Urinary Surgery, Jinan Third People's Hospital, Jinan, Shandong 250101, PR China
| | - Xiaoli Liu
- Department of Dermatology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zi Dong
- Department of Gastroenterology, Lincang People's Hospital, Lincang, China
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, United States
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, 600077 India
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Türkiye; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Türkiye; UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Türkiye.
| | - Ying Mao
- Department of Oncology, Suining Central Hospital, Suining City, Sichuan, China.
| |
Collapse
|
2
|
Kim Y, Oh KT, Youn YS, Lee ES. Polymyxin B/chlorine e6 conjugated hyaluronate dot particles for antimicrobial photodynamic therapy. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.5988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Yoonyoung Kim
- Department of Biotechnology The Catholic University of Korea Bucheon‐si Republic of Korea
| | - Kyung Taek Oh
- College of Pharmacy Chung‐Ang University Seoul Republic of Korea
| | - Yu Seok Youn
- School of Pharmacy Sungkyunkwan University Suwon‐si Republic of Korea
| | - Eun Seong Lee
- Department of Biotechnology The Catholic University of Korea Bucheon‐si Republic of Korea
- Department of Biomedical‐Chemical Engineering The Catholic University of Korea Bucheon‐si Republic of Korea
| |
Collapse
|
3
|
Xu H, Nie W, Dai L, Luo R, Lin D, Zhang M, Zhang J, Gao F. Recent advances in natural polysaccharides-based controlled release nanosystems for anti-cancer phototherapy. Carbohydr Polym 2022; 301:120311. [DOI: 10.1016/j.carbpol.2022.120311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
|
4
|
Lee S, Kim Y, Lee ES. Hypoxia-Responsive Azobenzene-Linked Hyaluronate Dot Particles for Photodynamic Tumor Therapy. Pharmaceutics 2022; 14:pharmaceutics14050928. [PMID: 35631514 PMCID: PMC9142920 DOI: 10.3390/pharmaceutics14050928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/23/2022] [Accepted: 04/23/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, we developed ultra-small hyaluronate dot particles that selectively release phototoxic drugs into a hypoxic tumor microenvironment. Here, the water-soluble hyaluronate dot (dHA) was covalently conjugated with 4,4′-azodianiline (Azo, as a hypoxia-sensitive linker) and Ce6 (as a photodynamic antitumor agent), producing dHA particles with cleavable Azo bond and Ce6 (dHA-Azo-Ce6). Importantly, the inactive Ce6 (self-quenched state) in the dHA-Azo-Ce6 particles was switched to the active Ce6 (dequenched state) via the Azo linker (–N=N–) cleavage in a hypoxic environment. In vitro studies using hypoxia-induced HeLa cells (treated with CoCl2) revealed that the dHA-Azo-Ce6 particle enhanced photodynamic antitumor inhibition, suggesting its potential as an antitumor drug candidate in response to tumor hypoxia.
Collapse
Affiliation(s)
- Sohyeon Lee
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si 14662, Gyeonggi-do, Korea; (S.L.); (Y.K.)
| | - Yoonyoung Kim
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si 14662, Gyeonggi-do, Korea; (S.L.); (Y.K.)
| | - Eun Seong Lee
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si 14662, Gyeonggi-do, Korea; (S.L.); (Y.K.)
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si 14662, Gyeonggi-do, Korea
- Correspondence: ; Tel.: +82-02-2164-4921
| |
Collapse
|
5
|
Endosomal pH-Responsive Fe-Based Hyaluronate Nanoparticles for Doxorubicin Delivery. Molecules 2021; 26:molecules26123547. [PMID: 34200716 PMCID: PMC8229704 DOI: 10.3390/molecules26123547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/03/2022] Open
Abstract
In this study, we report pH-responsive metal-based biopolymer nanoparticles (NPs) for tumor-specific chemotherapy. Here, aminated hyaluronic acid (aHA) coupled with 2,3-dimethylmaleic anhydride (DMA, as a pH-responsive moiety) (aHA-DMA) was electrostatically complexed with ferrous chloride tetrahydrate (FeCl2/4H2O, as a chelating metal) and doxorubicin (DOX, as an antitumor drug model), producing DOX-loaded Fe-based hyaluronate nanoparticles (DOX@aHA-DMA/Fe NPs). Importantly, the DOX@aHA-DMA/Fe NPs improved tumor cellular uptake due to HA-mediated endocytosis for tumor cells overexpressing CD44 receptors. As a result, the average fluorescent DOX intensity observed in MDA-MB-231 cells (with CD44 receptors) was ~7.9 × 102 (DOX@HA/Fe NPs, without DMA), ~8.1 × 102 (DOX@aHA-DMA0.36/Fe NPs), and ~9.3 × 102 (DOX@aHA-DMA0.60/Fe NPs). Furthermore, the DOX@aHA-DMA/Fe NPs were destabilized due to ionic repulsion between Fe2+ and DMA-detached aHA (i.e., positively charged free aHA) in the acidic environment of tumor cells. This event accelerated the release of DOX from the destabilized NPs. Our results suggest that these NPs can be promising tumor-targeting drug carriers responding to acidic endosomal pH.
Collapse
|
6
|
Mostafavi E, Medina-Cruz D, Vernet-Crua A, Chen J, Cholula-Díaz JL, Guisbiers G, Webster TJ. Green nanomedicine: the path to the next generation of nanomaterials for diagnosing brain tumors and therapeutics? Expert Opin Drug Deliv 2021; 18:715-736. [PMID: 33332168 DOI: 10.1080/17425247.2021.1865306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Current brain cancer treatments, based on radiotherapy and chemotherapy, are sometimes successful, but they are not free of drawbacks.Areas covered: Traditional methods for the treatment of brain tumors are discussed here with new solutions presented, among which the application of nanotechnology has demonstrated promising results over the past decade. The traditional synthesis of nanostructures, which relies on the use of physicochemical methodologies are discussed, and their associated concerns in terms of environmental and health impact due to the production of toxic by-products, need for toxic catalysts, and their lack of biocompatibility are presented. An overview of the current situation for treating brain tumors using nanotechnological-based approaches is introduced, and some of the latest advances in the application of green nanomaterials (NMs) for the effective targeting of brain tumors are presented.Expert opinion: Green nanotechnology is introduced as a potential solution to toxic NMs through the application of environmentally friendly and cost-effective protocols using living organisms and biomolecules. The current status of this field, such as those involving clinical trials, is included, and the possible limitations of green-NMs and potential ways to avoid those limitations are discussed so that the field can potentially evolve.
Collapse
Affiliation(s)
- Ebrahim Mostafavi
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA.,Stanford Cardiovascular Institute, Stanford, CA, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - David Medina-Cruz
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Ada Vernet-Crua
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Junjiang Chen
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | | | - Gregory Guisbiers
- Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR, USA
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
7
|
Choi S, Jeon H, Jang M, Kim H, Shin G, Koo JM, Lee M, Sung HK, Eom Y, Yang H, Jegal J, Park J, Oh DX, Hwang SY. Biodegradable, Efficient, and Breathable Multi-Use Face Mask Filter. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003155. [PMID: 33747729 PMCID: PMC7967051 DOI: 10.1002/advs.202003155] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/19/2020] [Indexed: 05/19/2023]
Abstract
The demand for face masks is increasing exponentially due to the coronavirus pandemic and issues associated with airborne particulate matter (PM). However, both conventional electrostatic- and nanosieve-based mask filters are single-use and are not degradable or recyclable, which creates serious waste problems. In addition, the former loses function under humid conditions, while the latter operates with a significant air-pressure drop and suffers from relatively fast pore blockage. Herein, a biodegradable, moisture-resistant, highly breathable, and high-performance fibrous mask filter is developed. Briefly, two biodegradable microfiber and nanofiber mats are integrated into a Janus membrane filter and then coated by cationically charged chitosan nanowhiskers. This filter is as efficient as the commercial N95 filter and removes 98.3% of 2.5 µm PM. The nanofiber physically sieves fine PM and the microfiber provides a low pressure differential of 59 Pa, which is comfortable for human breathing. In contrast to the dramatic performance decline of the commercial N95 filter when exposed to moisture, this filter exhibits negligible performance loss and is therefore multi-usable because the permanent dipoles of the chitosan adsorb ultrafine PM (e.g., nitrogen and sulfur oxides). Importantly, this filter completely decomposes within 4 weeks in composting soil.
Collapse
Affiliation(s)
- Sejin Choi
- Research Center for Bio‐Based ChemistryKorea Research Institute of Chemical Technology (KRICT)Ulsan44429Republic of Korea
| | - Hyeonyeol Jeon
- Research Center for Bio‐Based ChemistryKorea Research Institute of Chemical Technology (KRICT)Ulsan44429Republic of Korea
| | - Min Jang
- Research Center for Bio‐Based ChemistryKorea Research Institute of Chemical Technology (KRICT)Ulsan44429Republic of Korea
| | - Hyeri Kim
- Research Center for Bio‐Based ChemistryKorea Research Institute of Chemical Technology (KRICT)Ulsan44429Republic of Korea
| | - Giyoung Shin
- Research Center for Bio‐Based ChemistryKorea Research Institute of Chemical Technology (KRICT)Ulsan44429Republic of Korea
| | - Jun Mo Koo
- Research Center for Bio‐Based ChemistryKorea Research Institute of Chemical Technology (KRICT)Ulsan44429Republic of Korea
| | - Minkyung Lee
- Research Center for Bio‐Based ChemistryKorea Research Institute of Chemical Technology (KRICT)Ulsan44429Republic of Korea
| | - Hye Kyeong Sung
- Research Center for Bio‐Based ChemistryKorea Research Institute of Chemical Technology (KRICT)Ulsan44429Republic of Korea
| | - Youngho Eom
- Department of Polymer EngineeringPukyong National UniversityBusan48513Republic of Korea
| | - Ho‐Sung Yang
- Research Center for Bio‐Based ChemistryKorea Research Institute of Chemical Technology (KRICT)Ulsan44429Republic of Korea
| | - Jonggeon Jegal
- Research Center for Bio‐Based ChemistryKorea Research Institute of Chemical Technology (KRICT)Ulsan44429Republic of Korea
| | - Jeyoung Park
- Research Center for Bio‐Based ChemistryKorea Research Institute of Chemical Technology (KRICT)Ulsan44429Republic of Korea
- Advanced Materials and Chemical EngineeringUniversity of Science and Technology (UST)Daejeon34113Republic of Korea
| | - Dongyeop X. Oh
- Research Center for Bio‐Based ChemistryKorea Research Institute of Chemical Technology (KRICT)Ulsan44429Republic of Korea
- Advanced Materials and Chemical EngineeringUniversity of Science and Technology (UST)Daejeon34113Republic of Korea
| | - Sung Yeon Hwang
- Research Center for Bio‐Based ChemistryKorea Research Institute of Chemical Technology (KRICT)Ulsan44429Republic of Korea
- Advanced Materials and Chemical EngineeringUniversity of Science and Technology (UST)Daejeon34113Republic of Korea
| |
Collapse
|
8
|
Kim H, Shin MS, Jeon H, Koo JM, Eom Y, Choi S, Shin G, Oh DX, Hwang SY, Park J. Highly reinforced poly(butylene succinate) nanocomposites prepared from chitosan nanowhiskers by in-situ polymerization. Int J Biol Macromol 2021; 173:128-135. [PMID: 33476620 DOI: 10.1016/j.ijbiomac.2021.01.102] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/19/2022]
Abstract
Biodegradable aliphatic polyesters need to be tough for commodity-plastic applications, such as disposable bags. Herein, we show that chitosan nanowhiskers (CsWs) prepared from naturally abundant chitin is an effective nanofiller that reinforces the strength and toughness of poly(butylene succinate) (PBS). In-situ polycondensation of an aqueous solution of processed CsWs led to a PBS nanocomposite with the highest tensile strength (77 MPa) and elongation at break (530%) reported to date for all PBS types at a minimal nanofiller content of 0.2 wt%. The observed 3.2-fold increase in toughness of the CsW/PBS composite compared to neat PBS is superior to those of composites prepared using cellulose nanocrystals, chitin nanowhiskers, and unstably dispersed CsWs in 1,4-butanediol monomer. Interestingly, CsWs efficiently overcome the disadvantages of the PBS film that easily tears. The highly polar surfaces of the CsWs strongly bind to polymer chains and promote a fibrillar and micro-void structure, thereby maximizing the chain-holding ability of the nanofiller, which resists external tensile and tear stress. This sustainable all-organic nanocomposite is a promising candidate for biodegradable disposable commodities.
Collapse
Affiliation(s)
- Hyeri Kim
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Myung Suk Shin
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Hyeonyeol Jeon
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Jun Mo Koo
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Youngho Eom
- Department of Polymer Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Sejin Choi
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Giyoung Shin
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Dongyeop X Oh
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea; Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| | - Sung Yeon Hwang
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea; Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| | - Jeyoung Park
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea; Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| |
Collapse
|
9
|
Yoon S, Noh GJ, Youn YS, Oh KT, Lee ES. Development of
pH
‐responsive cyclodextrin nanoparticles for tumor‐specific photodynamic therapy. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Seonyoung Yoon
- Department of Biotechnology The Catholic University of Korea Seoul Republic of Korea
| | - Gwang Jin Noh
- Department of Biotechnology The Catholic University of Korea Seoul Republic of Korea
| | - Yu Seok Youn
- Sungkyunkwan University School of Pharmacy Suwon‐si Republic of Korea
| | - Kyung Taek Oh
- College of Pharmacy Chung‐Ang University Seoul Republic of Korea
| | - Eun Seong Lee
- Department of Biotechnology The Catholic University of Korea Seoul Republic of Korea
- Department of Biomedical‐Chemical Engineering The Catholic University of Korea Seoul Republic of Korea
| |
Collapse
|
10
|
Zhuang Q, Xu J, Deng D, Chao T, Li J, Zhang R, Peng R, Liu Z. Bacteria-derived membrane vesicles to advance targeted photothermal tumor ablation. Biomaterials 2020; 268:120550. [PMID: 33278684 DOI: 10.1016/j.biomaterials.2020.120550] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023]
Abstract
Nanoscale outer membrane vesicles (OMVs) secreted by Gram-negative bacteria are often applied in antibacterial treatment as adjuvants or antigens. Recently, OMVs have also been tested in a few anti-tumor treatment studies, in which OMVs are injected multiple times to achieve certain therapeutic effects, showing risks in repeated cytokine storms. Herein, we propose the use a single low dose of OMVs combined with photothermal therapy (PTT) for effective cancer treatment. It was found that single i. v. injection of OMVs could activate the immune system by boosting the secretion levels of anti-tumor related cytokines. In addition, single i. v. injection of OMVs could also lead to extravasation of red blood cells in the tumor mainly owing to the effect of lipopolysaccharide on the OMVs. Such effect was not observed in other normal organs. As the results, the tumors on OMV-treated mice showed obviously darkened color with greatly increased intratumoral optical absorbance in the near-infrared (NIR) region, further enabling effective photothermal ablation of those tumors by the NIR laser. Without causing obvious adverse responses, bacteria-derived OMVs may be a new type of therapeutic agent for cancer treatment with multiple functions.
Collapse
Affiliation(s)
- Qi Zhuang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jun Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Dashi Deng
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Ting Chao
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Junyan Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Rui Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Rui Peng
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
11
|
Yoon S, Kim Y, Youn YS, Oh KT, Kim D, Lee ES. Transferrin-Conjugated pH-Responsive γ-Cyclodextrin Nanoparticles for Antitumoral Topotecan Delivery. Pharmaceutics 2020; 12:pharmaceutics12111109. [PMID: 33218116 PMCID: PMC7698888 DOI: 10.3390/pharmaceutics12111109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
In this study, we developed γ-cyclodextrin-based multifunctional nanoparticles (NPs) for tumor-targeted therapy. The NPs were self-assembled using a γ-cyclodextrin (γCD) coupled with phenylacetic acid (PA), 2,3-dimethylmaleic anhydride (DMA), poly(ethylene glycol) (PEG), and transferrin (Tf), termed γCDP-(DMA/PEG-Tf) NPs. These γCDP-(DMA/PEG-Tf) NPs are effective in entrapping topotecan (TPT, as a model antitumor drug) resulting from the ionic interaction between pH-responsive DMA and TPT or the host–guest interaction between γCDP and TPT. More importantly, the γCDP-(DMA/PEG-Tf) NPs can induce ionic repulsion at an endosomal pH (~6.0) resulting from the chemical detachment of DMA from γCDP, which is followed by extensive TPT release. We demonstrated that γCDP-(DMA/PEG-Tf) NPs led to a significant increase in cellular uptake and MDA-MB-231 tumor cell death. In vivo animal studies using an MDA-MB-231 tumor xenografted mice model supported the finding that γCDP-(DMA/PEG-Tf) NPs are effective carriers of TPT to Tf receptor-positive MDA-MB-231 tumor cells, promoting drug uptake into the tumors through the Tf ligand-mediated endocytic pathway and increasing their toxicity due to DMA-mediated cytosolic TPT delivery.
Collapse
Affiliation(s)
- Seonyoung Yoon
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Korea; (S.Y.); (Y.K.)
| | - Yoonyoung Kim
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Korea; (S.Y.); (Y.K.)
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea;
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea;
| | - Dongin Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N Stonewall Ave, Oklahoma City, OK 73117, USA;
| | - Eun Seong Lee
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Korea
- Correspondence: ; Tel.: +82-2-2164-4921
| |
Collapse
|
12
|
Lee E, Park J, Youn YS, Oh KT, Kim D, Lee ES. Alendronate/cRGD-Decorated Ultrafine Hyaluronate Dot Targeting Bone Metastasis. Biomedicines 2020; 8:E492. [PMID: 33187133 PMCID: PMC7696888 DOI: 10.3390/biomedicines8110492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 12/28/2022] Open
Abstract
In this study, we report the hyaluronate dot (dHA) with multiligand targeting ability and a photosensitizing antitumor model drug for treating metastatic bone tumors. Here, the dHA was chemically conjugated with alendronate (ALN, as a specific ligand to bone), cyclic arginine-glycine-aspartic acid (cRGD, as a specific ligand to tumor integrin αvβ3), and photosensitizing chlorin e6 (Ce6, for photodynamic tumor therapy), denoted as (ALN/cRGD)@dHA-Ce6. These dots thus prepared (≈10 nm in diameter) enabled extensive cellular interactions such as hyaluronate (HA)-mediated CD44 receptor binding, ALN-mediated bone targeting, and cRGD-mediated tumor integrin αvβ3 binding, thus improving their tumor targeting efficiency, especially for metastasized MDA-MB-231 tumors. As a result, these dots improved the tumor targeting efficiency and tumor cell permeability in a metastatic in vivo tumor model. Indeed, we demonstrated that (ALN/cRGD)@dHA-Ce6 considerably increased photodynamic tumor ablation, the extent of which is superior to that of the tumor ablation of dot systems with single or double ligands. These results indicate that dHA with multiligand can provide an effective treatment strategy for metastatic bone tumors.
Collapse
Affiliation(s)
- Eunsol Lee
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Korea; (E.L.); (J.P.)
| | - Jaeduk Park
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Korea; (E.L.); (J.P.)
| | - Yu Seok Youn
- School of Pharmacy, SungKyunKwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea;
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea;
| | - Dongin Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N Stonewall Ave, Oklahoma City, OK 73117, USA;
| | - Eun Seong Lee
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Korea; (E.L.); (J.P.)
- Department of Biomedical Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Korea
| |
Collapse
|
13
|
Shin S, Eom Y, Lee ES, Hwang SY, Oh DX, Park J. Malleable Hydrogel Embedded with Micellar Cargo-Expellers as a Prompt Transdermal Patch. Adv Healthc Mater 2020; 9:e2000876. [PMID: 32902150 DOI: 10.1002/adhm.202000876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Indexed: 11/08/2022]
Abstract
Although hydrogels are promising transdermal patches, they face spatiotemporal problems related to controlled drug release. From the "spatio" perspective, hydrogels are not malleable, therefore they do not fully contact curved skin, such as that found on the nose and fingers. From the "temporal" perspective, the internal network of a hydrogel retards cargo release. Herein, a malleable and rapid-cargo-releasing poly(vinyl alcohol)-borax hydrogel that embeds freely mobile poly(hydroxyethyl methacrylate) (PHEMA) micelles is prepared. The in situ polymerization of PHEMA within the matrix produces large compound micelle particles that are not bound by the matrix. The micelles act as expellers by sweeping out cargo upon exposure to wet conditions through a concentration gradient. The hydrogel embedded with the micellar cargo-expellers delivers a 25-fold larger 3-min release quantity of Nile Red (a model cargo) than the control hydrogel. The particles absorb mechanical shocks and the dynamic borate-diol bonds engender the hydrogel with self-healing properties, which results in a hydrogel that tightly contacts highly curved skin. Moreover, the hydrogel shows no toxicity in in vivo and skin irritation tests. This malleable hydrogel will inspire novel prompt skin-patch systems for pharmaceutical and cosmetics purposes.
Collapse
Affiliation(s)
- Sung‐Ho Shin
- Research Center for Bio‐based Chemistry Korea Research Institute of Chemical Technology (KRICT) Ulsan 44429 Republic of Korea
| | - Youngho Eom
- Department of Polymer Engineering Pukyong National University Busan 48513 Republic of Korea
| | - Eun Seong Lee
- Department of Biotechnology The Catholic University of Korea Bucheon Gyeonggi‐do 14662 Republic of Korea
| | - Sung Yeon Hwang
- Research Center for Bio‐based Chemistry Korea Research Institute of Chemical Technology (KRICT) Ulsan 44429 Republic of Korea
- Advanced Materials and Chemical Engineering University of Science and Technology (UST) Daejeon 34113 Republic of Korea
| | - Dongyeop X. Oh
- Research Center for Bio‐based Chemistry Korea Research Institute of Chemical Technology (KRICT) Ulsan 44429 Republic of Korea
- Advanced Materials and Chemical Engineering University of Science and Technology (UST) Daejeon 34113 Republic of Korea
| | - Jeyoung Park
- Research Center for Bio‐based Chemistry Korea Research Institute of Chemical Technology (KRICT) Ulsan 44429 Republic of Korea
- Advanced Materials and Chemical Engineering University of Science and Technology (UST) Daejeon 34113 Republic of Korea
| |
Collapse
|
14
|
Noh GJ, Oh KT, Youn YS, Lee ES. Cyclic RGD-Conjugated Hyaluronate Dot Bearing Cleavable Doxorubicin for Multivalent Tumor Targeting. Biomacromolecules 2020; 21:2525-2535. [PMID: 32384236 DOI: 10.1021/acs.biomac.0c00554] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this study, we developed an extremely small-sized water-soluble hyaluronate dot (dHA) conjugated with cyclic RGD (cRGD) and cleavable doxorubicin (DOX, as a model antitumor drug), named cRGD@dHA-c-DOX. This dot with HA moieties (as specific ligands to tumor CD44 receptors) and cRGD moieties (as specific ligands to tumor integrin αvβ3) was designed to enable multivalent tumor targeting. In particular, the imine bonds, linking the DOX and dHA, can exhibit cleavage performance at endosomal pH, resulting in pH-triggered DOX release from cRGD@dHA-c-DOX. We demonstrated that cRGD@dHA-c-DOX resulted in highly improved cellular uptake and cell death in MDA-MB-231 tumor cells (CD44+, integrin αvβ3+) compared to those in Huh7 tumor cells (CD44-, integrin αvβ3-). In vivo studies using MDA-MB-231 tumor-bearing mice revealed that cRGD@dHA-c-DOX enhanced the tumor inhibition efficacy. These results suggest that cRGD@dHA-c-DOX can be utilized as a promising multivalent tumor-targeting drug carrier for highly efficient tumor treatment.
Collapse
Affiliation(s)
- Gwang Jin Noh
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do 14662, Republic of Korea
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Yu Seok Youn
- School of Pharmacy, SungKyunKwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Eun Seong Lee
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do 14662, Republic of Korea.,Department of Biomedical Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do 14662, Republic of Korea
| |
Collapse
|
15
|
Tumor-Homing pH-Sensitive Extracellular Vesicles for Targeting Heterogeneous Tumors. Pharmaceutics 2020; 12:pharmaceutics12040372. [PMID: 32316679 PMCID: PMC7238000 DOI: 10.3390/pharmaceutics12040372] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 01/12/2023] Open
Abstract
In this study, we fabricated tumor-homing pH-sensitive extracellular vesicles for efficient tumor treatment. These vesicles were prepared using extracellular vesicles (EVs; BTEVs extracted from BT-474 tumor cells or SKEVs extracted from SK-N-MC tumor cells), hyaluronic acid grafted with 3-(diethylamino)propylamine (HDEA), and doxorubicin (DOX, as a model antitumor drug). Consequently, HDEA/DOX anchored EVs (HDEA@EVs) can interact with origin tumor cells owing to EVs’ homing ability to origin cells. Therefore, EV blends of HDEA@BTEVs and HDEA@SKEVs demonstrate highly increased cellular uptake in both BT-474 and SK-N-MC cells: HDEA@BTEVs for BT-474 tumor cells and HDEA@SKEVs for SK-N-MC tumor cells. Furthermore, the hydrophobic HDEA present in HDEA@EVs at pH 7.4 can switch to hydrophilic HDEA at pH 6.5 as a result of acidic pH-induced protonation of 3-(diethylamino)propylamine (DEAP) moieties, resulting in an acidic pH-activated EVs’ disruption, accelerated release of encapsulated DOX molecules, and highly increased cell cytotoxicity. However, EV blends containing pH-insensitive HA grafted with deoxycholic acid (HDOC) (HDOC@BTEVs and HDOC@SKEVs) showed less cell cytotoxicity for both BT-474 and SK-N-MC tumor cells, because they did not act on EVs’ disruption and the resulting DOX release. Consequently, the use of these tumor-homing pH-sensitive EV blends may result in effective targeted therapies for various tumor cells.
Collapse
|
16
|
Yu HS, Lee ES. Honeycomb-like pH-responsive γ-cyclodextrin electrospun particles for highly efficient tumor therapy. Carbohydr Polym 2019; 230:115563. [PMID: 31887908 DOI: 10.1016/j.carbpol.2019.115563] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/15/2019] [Accepted: 10/31/2019] [Indexed: 01/06/2023]
Abstract
We report here the tumor-implantable microparticles with a honeycomb-like porous structure. These microparticles were prepared by electrospinning using γ-cyclodextrin (γ-CD) conjugated with 3-(diethylamino)propylamine (DEAP, as a pH-responsive moiety), named γ-CD-DEAP. The resulting microparticles had pore channels (constructed using γ-CD-DEAP) extending into the deep compartment of the microparticles and allowing efficient paclitaxel (PTX, as a chemotherapeutic model drug) entrapment by a simple hole-filling encapsulation process. Importantly, the hydrophobic DEAP (at pH 7.4) in the γ-CD-DEAP microparticles changed to hydrophilic DEAP (at pH 6.8) because of its acidic pH-induced protonation. This phenomenon resulted in an acidic pH-activated particle destruction by a charge-charge repulsion between the protonated DEAP moieties and allowed a pH-triggered release of the encapsulated PTX from the collapsed microparticles. Consequently, γ-CD-DEAP microparticles implanted at the tumor site caused a significant enhancement of the in vitro/in vivo tumor cell ablation, suggesting their significant potential as a chemotherapeutic implant for tumor therapy.
Collapse
Affiliation(s)
- Hyeong Sup Yu
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Gyeonggi-do 14662, Republic of Korea
| | - Eun Seong Lee
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Gyeonggi-do 14662, Republic of Korea; Department of Biomedical Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Gyeonggi-do 14662, Republic of Korea.
| |
Collapse
|