1
|
Mahmoud TM, Abdelfatah MM, Omar MM, Hasan OA, Wali SM, El-Mofty MS, Ewees MG, Salem AE, Abd-El-Galil TI, Mahmoud DM. Enhancing the Therapeutic Effect and Bioavailability of Irradiated Silver Nanoparticle-Capped Chitosan-Coated Rosuvastatin Calcium Nanovesicles for the Treatment of Liver Cancer. Pharmaceutics 2025; 17:72. [PMID: 39861720 PMCID: PMC11769262 DOI: 10.3390/pharmaceutics17010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/14/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025] Open
Abstract
Liver cancer is a prevalent form of carcinoma worldwide. A novel chitosan-coated optimized formulation capped with irradiated silver nanoparticles (INops) was fabricated to boost the anti-malignant impact of rosuvastatin calcium (RC). Using a 23-factorial design, eight formulations were produced using the solvent evaporation process. The formulations were characterized in vitro to identify the optimal formulation (Nop). The FTIR spectra showed that the fingerprint region is not superimposed with that of the drug; DSC thermal analysis depicted a negligible peak shift; and XRPD diffractograms revealed the disappearance of the typical drug peaks. Nop had an entrapment efficiency percent (EE%) of 86.2%, a polydispersity index (PDI) of 0.254, a zeta potential (ZP) of -35.3 mV, and a drug release after 12 h (Q12) of 55.6%. The chitosan-coated optimized formulation (CS.Nop) showed significant mucoadhesive strength that was 1.7-fold greater than Nop. Physical stability analysis of CS.Nop revealed negligible alterations in VS, ZP, PDI, and drug retention (DR) at 4 °C. The irradiated chitosan-coated optimized formulation capped with silver nanoparticles (INops) revealed the highest inhibition effect on carcinoma cells (97.12%) compared to the chitosan-coated optimized formulation (CS.Nop; 81.64) and chitosan-coated optimized formulation capped with silver nanoparticles (CS.Nop.AgNPs; 92.41). The bioavailability of CS-Nop was 4.95-fold greater than RC, with a residence time of about twice the free drug. CS.Nop has displayed a strong in vitro-in vivo correlation with R2 0.9887. The authors could propose that novel INop could serve as an advanced platform to improve oral bioavailability and enhance hepatic carcinoma recovery.
Collapse
Affiliation(s)
- Tamer Mohamed Mahmoud
- Pharmaceutics and Industrial Pharmacy Department, Al-Manara College for Medical Sciences, Maysan 62010, Iraq;
| | | | - Mahmoud Mohamed Omar
- Department of Pharmaceutics and Pharmaceutical Technology, Deraya University, Minia 61519, Egypt;
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| | - Omiya Ali Hasan
- Department of Pharmaceutics and Pharmaceutical Technology, Deraya University, Minia 61519, Egypt;
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| | - Saad M. Wali
- Pharmacology and Toxicology Department, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Mohamed S. El-Mofty
- Oral Medicine, Periodontology, Oral Diagnosis and Radiology Department, Ain Shams University, Cairo 11566, Egypt;
- Oral Medicine, Periodontology, Oral Diagnosis and Radiology Department, Nahda University, Beni-Suef 62764, Egypt
| | - Mohamed G. Ewees
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Nahda University, Beni-Suef 62764, Egypt;
- Department of Pharmacology and Toxicology, College of Pharmacy, Almaaqal University, Basrah 61014, Iraq
| | - Amel E. Salem
- Department of Internal Medicine, Faculty of Medicine, Cairo University, Cairo 11562, Egypt;
| | | | - Dina Mohamed Mahmoud
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni Suef 62764, Egypt;
| |
Collapse
|
2
|
Eleraky NE, Hassan AS, Soliman GM, Al-Gayyar MMH, Safwat MA. Rosuvastatin Flexible Chitosomes: Development, In Vitro Evaluation and Enhancement of Anticancer Efficacy Against HepG2 and MCF7 Cell Lines. AAPS PharmSciTech 2024; 25:234. [PMID: 39375273 DOI: 10.1208/s12249-024-02957-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
Rosuvastatin (ROS), a statin drug with promising anticancer properties has a low bioavailability of approximately 20% due to lipophilicity and first-pass metabolism. This study aimed to enhance ROS anticancer efficacy through loading into flexible chitosomes. The chitosomes were prepared starting from negatively charged liposomes through electrostatic interactions with chitosan. The conversion of zeta potential from negative to positive confirmed the successful formation of chitosomes. The chitosan coating increased the particle size and zeta potential, which ranged from 202.0 ± 1.7 nm to 504.7 ± 25.0 nm and from - 44.9 ± 3.0 mV to 50.1 ± 2.6 mV, respectively. Chitosan and drug concentrations had an important influence on the chitosome properties. The optimum chitosome formulation was used to prepare ROS-loaded flexible chitosomes using different concentrations of four edge activators. The type and concentration of edge activator influenced the particle size, drug entrapment efficiency, and drug release rate of the flexible chitosomes. Flexible chitosomes significantly increased drug permeation through rat abdominal skin compared to control transferosomes and drug solution. The optimal ROS flexible chitosomes containing sodium deoxycholate as an edge activator had a 2.23-fold increase in ROS cytotoxic efficacy against MCF7 cells and a 1.84-fold increase against HepG2 cells. These results underscore the potential of flexible chitosomes for enhancing ROS anticancer efficacy.
Collapse
Affiliation(s)
- Nermin E Eleraky
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Abeer S Hassan
- Department of Pharmaceutics, Faculty of Pharmacy, South Valley University, Qena, 83523, Egypt
| | - Ghareb M Soliman
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| | - Mohammed M H Al-Gayyar
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Mohamed A Safwat
- Department of Pharmaceutics, Faculty of Pharmacy, South Valley University, Qena, 83523, Egypt
| |
Collapse
|
3
|
Shehata TM, Aldhubiab B, Elsewedy HS. Virgin Coconut Oil-based Nanostructured Lipid Carrier Improves the Hypolipidemic Effect of Rosuvastatin. Int J Nanomedicine 2024; 19:7945-7961. [PMID: 39130688 PMCID: PMC11313597 DOI: 10.2147/ijn.s463750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024] Open
Abstract
Background Monitoring noncommunicable diseases is regarded as a critical concern that has to be managed in order to avoid a wide variety of complications such as increasing blood lipid levels known as dyslipidemia. Statin drugs, mostly, Rosuvastatin (RSV) was investigated for its effectiveness in treating dyslipidemia. However, reaching the most efficient treatment is essential and improving the effect of RSV is crucial. Therefore, a combination therapy was a good approach for achieving significant benefit. Although RSV is hydrophobic, which would affect its absorption and bioavailability following oral administration, overcoming this obstacle was important. Purpose To that end, the purpose of the present investigation was to incorporate RSV into certain lipid-based nanocarriers, namely, nanostructured lipid carrier (NLC) prepared with virgin coconut oil (CCO). Methods The optimized RSV-NLC formula was selected, characterized and examined for its in vitro, kinetic, and stability profiles. Eventually, the formula was investigated for its in vivo hypolipidemic action. Results The optimized NLC formulation showed a suitable particle size (279.3±5.03 nm) with PDI 0.237 and displayed good entrapment efficiency (75.6±1.9%). Regarding in vitro release, it was efficiently prolonged for 24 h providing 93.7±1.47%. The optimized formula was established to be stable after 3 months storage at two different conditions; 4°C and 25°C. Importantly, including CCO in the development of RSV-NLC could impressively enhance lowering total cholesterol level in obese rat models, which endorse the potential synergistic action between RSV and CCO. Conclusion The study could elucidate the impact of developing NLC using CCO for improving RSV anti-hyperlipidemic activity.
Collapse
Affiliation(s)
- Tamer M Shehata
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf, Al-Ahsa, 36362, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Bandar Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf, Al-Ahsa, 36362, Saudi Arabia
| | - Heba S Elsewedy
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, 11597, Saudi Arabia
| |
Collapse
|
4
|
Kabil MF, Badary OA, Bier F, Mousa SA, El-Sherbiny IM. A comprehensive review on lipid nanocarrier systems for cancer treatment: fabrication, future prospects and clinical trials. J Liposome Res 2024; 34:135-177. [PMID: 37144339 DOI: 10.1080/08982104.2023.2204372] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 04/02/2023] [Indexed: 05/06/2023]
Abstract
Over the last few decades, cancer has been considered a clinical challenge, being among the leading causes of mortality all over the world. Although many treatment approaches have been developed for cancer, chemotherapy is still the most utilized in the clinical setting. However, the available chemotherapeutics-based treatments have several caveats including their lack of specificity, adverse effects as well as cancer relapse and metastasis which mainly explains the low survival rate of patients. Lipid nanoparticles (LNPs) have been utilized as promising nanocarrier systems for chemotherapeutics to overcome the challenges of the currently applied therapeutic strategies for cancer treatment. Loading chemotherapeutic agent(s) into LNPs improves drug delivery at different aspects including specific targeting of tumours, and enhancing the bioavailability of drugs at the tumour site through selective release of their payload, thus reducing their undesired side effects on healthy cells. This review article delineates an overview of the clinical challenges in many cancer treatments as well as depicts the role of LNPs in achieving optimal therapeutic outcomes. Moreover, the review contains a comprehensive description of the many LNPs categories used as nanocarriers in cancer treatment to date, as well as the potential of LNPs for future applications in other areas of medicine and research.
Collapse
Affiliation(s)
- Mohamed Fawzi Kabil
- Nanomedicine Research Labs, Center for Materials Science (CMS), Zewail City of Science and Technology, Giza, Egypt
| | - Osama A Badary
- Clinical Pharmacy Department, Faculty of Pharmacy, The British University in Egypt, El-Shorouk City, Egypt
| | - Frank Bier
- AG Molekulare Bioanalytik und Bioelektronik, Institut für Biochemie und Biologie, Universität Potsdam Karl-Liebknecht-Straße 24/25, Potsdam (OT Golm), Germany
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | - Ibrahim M El-Sherbiny
- Nanomedicine Research Labs, Center for Materials Science (CMS), Zewail City of Science and Technology, Giza, Egypt
| |
Collapse
|
5
|
Ashraf I, Hanna PA, Gad S, Abd-Allah FI, El-Say KM. Enhancing Pharmacokinetics and Pharmacodynamics of Rosuvastatin Calcium through the Development and Optimization of Fast-Dissolving Films. Pharmaceutics 2023; 15:2640. [PMID: 38004618 PMCID: PMC10675329 DOI: 10.3390/pharmaceutics15112640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Rosuvastatin (RSV) is a widely used cholesterol-lowering medication, but its limited bioavailability due to its susceptibility to stomach pH and extensive first-pass metabolism poses a significant challenge. A fast-dissolving film (FDF) formulation of RSV was developed, characterized, and compared to the conventional marketed tablet to address this issue. The formulation process involved optimizing the thickness, disintegration time, and folding durability. All formulations were assessed for in vitro disintegration, thickness, folding endurance, in vitro dissolution, weight, and content uniformity. The study's results revealed that the optimized RSV-FDF displayed a significantly faster time to maximum plasma concentration (tmax) of 2 h, compared to 4 h for the marketed tablet. The maximum plasma concentration (Cmax) for the RSV-FDF (1.540 µg/mL ± 0.044) was notably higher than that of the marketed tablet (0.940 µg/mL ± 0.017). Additionally, the pharmacodynamic assessment in male Wistar rats demonstrated that the optimized RSV-FDF exhibited an improved lipid profile, including reduced levels of low-density lipoproteins (LDLs), elevated high-density lipoproteins (HDLs), decreased triglycerides (TGs), and lower very-low-density lipoproteins (VLDLs) compared to the conventional tablet. These findings underscore the potential of RSV-FDFs as a promising alternative to enhance the bioavailability and therapeutic efficacy of rosuvastatin in treating dyslipidemia. The faster onset of action and improved lipid-lowering effects make RSV-FDFs an attractive option for patients requiring efficient cholesterol management.
Collapse
Affiliation(s)
- Ibrahim Ashraf
- Department of Pharmaceutics, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (I.A.); (P.A.H.); (S.G.)
| | - Pierre A. Hanna
- Department of Pharmaceutics, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (I.A.); (P.A.H.); (S.G.)
| | - Shadeed Gad
- Department of Pharmaceutics, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (I.A.); (P.A.H.); (S.G.)
| | - Fathy I. Abd-Allah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt;
| | - Khalid M. El-Say
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
6
|
El-Mancy SS, Boshra SA, Elnahas OS, Fayez SM, Sheta NM. Enhancement of Bottle Gourd Oil Activity via Optimized Self-Dispersing Lipid Formulations (SDLFs) to Mitigate Isoproterenol-Evoked Cardiac Toxicity in Rats via Modulating BMP, MMP2, and miRNA-21 and miRNA-23a Genes' Expression. Molecules 2023; 28:6168. [PMID: 37630419 PMCID: PMC10458851 DOI: 10.3390/molecules28166168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Bottle gourd (BG) oil (family Cucurbitaceae) has several pharmacological activities including a reduction of the hazard of cardiovascular and atherosclerosis conditions. This work aimed to develop and optimize self-dispersing lipid formulations (SDLFs) of BG oil by applying a full 32 factorial design. The formulation variables (oil concentration and surfactant mixture ratio) showed an obvious impact on the characters of the prepared BG-SDLFs including droplet size (DS), polydispersity index (PDI), emulsification time (ET), and transmission percentage (Tr%). The optimum BG-SDLF composed of 30% oil and Tween 80/Cremophor® RH40 (1:1) showed good emulsification characteristics and a better drug release profile compared with BG oil. In vivo study in isoproterenol-injected rats showed that BG oil and the optimized BG-SDLF improved cardiac function, by elevating the miRNA-23a gene expression level and decreasing miRNA-21 gene expression. They also caused the inhibition of the plasma B-type natriuretic peptide (BNP), N-terminal proatrial natriuretic peptide (NT-pro-BNP), cystatin c, galectin-3, lipoprotein-associated phospholipase A2 (Lp-PLA2), matrix metallopeptidase 2 (MMP2), cardiac troponin I (cTnI), and cardiac troponin T (cTnT). Our study demonstrated that BG oil and the optimized BG-SDLF provided a cardioprotection against isoproterenol-induced cardiac toxicity with better results in groups treated with the optimized BG-SDLF.
Collapse
Affiliation(s)
- Shereen S. El-Mancy
- Department of Pharmaceutics, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt; (S.S.E.-M.); (O.S.E.); (S.M.F.); (N.M.S.)
| | - Sylvia A. Boshra
- Department of Biochemistry, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt
| | - Osama S. Elnahas
- Department of Pharmaceutics, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt; (S.S.E.-M.); (O.S.E.); (S.M.F.); (N.M.S.)
| | - Sahar M. Fayez
- Department of Pharmaceutics, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt; (S.S.E.-M.); (O.S.E.); (S.M.F.); (N.M.S.)
| | - Nermin M. Sheta
- Department of Pharmaceutics, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt; (S.S.E.-M.); (O.S.E.); (S.M.F.); (N.M.S.)
| |
Collapse
|
7
|
El-Marasy SA, AbouSamra MM, El-Mosallamy AEMK, Emam AN, Mabrok HB, Galal AF, Ahmed-Farid OA, Abd El-Rahman SS, Moustafa PE. Chrysin loaded nanovesicles ameliorated diabetic peripheral neuropathy. Role of NGF/AKT/GSK-3β pathway. Chem Biol Interact 2023; 375:110402. [PMID: 36804429 DOI: 10.1016/j.cbi.2023.110402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
Diabetic peripheral neuropathy (DPN) is a common diabetic complication. Chrysin (CHY) has many biological properties but poor oral bioavailability. This study investigates the effect of CHY and CHY-loaded nanovesicles (CHY-NVs) on streptozotocin (STZ)-induced DPN in rats. CHY-NVs were prepared by using film hydration method. The formula with the best entrapment efficiency%, lowest particle size, highest zeta potential, and highest in vitro CHY released profile was selected, characterized by Differential scanning calorimetry, Fourier transformation infrared spectroscopy analysis, and examined by Transmission electron microscope. Acute toxicity test, pharmacokinetic study and experimental model of diabetes mellitus were performed on the selected formulation. Wistar rats were considered diabetic by administration of a single intraperitoneal dose of STZ (50 mg/kg). 48 h after STZ administration, hyperglycemic rats were randomly assigned into four groups, one group of untreated hyperglycemic rats and the other three groups received daily oral doses of unloaded NVs, CHY-NVs (25 mg/kg), and CHY-NVs (50 mg/kg), respectively for 21 days. Moreover, five additional groups of healthy rats received: distilled water (control), free CHY, unloaded NVs, and CHY-NVs respectively for 21 days. CHY and CHY-NVs maintained body weight and reduced STZ-induced behavioral changes in rotarod, hind paw cold allodynia, tail cold allodynia, tail flick, and hot plate tests. CHY and CHY-NVs lowered blood glucose, glycated hemoglobin, elevated serum reduced glutathione (GSH), and reduced plasma malondialdehyde (MDA) levels. CHY-NVs elevated phosphatidylinositol 3-kinase (Pi3k), phosphorylated protein kinase B (p-AKT), and reduced nuclear factor kappa B (NF-κB), interleukin-6 (IL-6) in sciatic nerve homogenate. CHY and CHY-NVs increased nerve growth factor (NGF) and decreased glycogen synthase kinase-3β (GSK-3β) gene expressions in the sciatic nerve. In conclusion, CHY and CHY-NVs ameliorated STZ-induced DPN behavioral and histopathological changes via attenuating hyperglycemia, exerting anti-oxidant, anti-inflammatory effects, activating NGF/p-AKT/GSK-3β pathway, and its anti-apoptotic effect. The best pharmacokinetic profile and therapeutic effect was observed in rats treated with CHY-loaded NVs.
Collapse
Affiliation(s)
- Salma A El-Marasy
- Department of Pharmacology, Medical and clinical studies institute, National Research Centre, Giza, Egypt.
| | - Mona M AbouSamra
- Pharmaceutical Technology Department, Pharmaceutical drug industries research institute, National Research Centre, Giza, Egypt
| | - Aliaa E M K El-Mosallamy
- Department of Pharmacology, Medical and clinical studies institute, National Research Centre, Giza, Egypt
| | - Ahmed N Emam
- Refractories, Ceramics and Building Materials Department, Advanced Materials Technology and Mineral Researches research institute, National Research Centre, Giza, Egypt
| | - Hoda B Mabrok
- Nutrition and food science department, Food industries and nutrition research institute, National Research Centre, Giza, Egypt
| | - Asmaa F Galal
- Narcotics, Ergogenics and Poisons Department, Medical and clinical studies research institute, National Research Centre, Giza, Egypt
| | | | - Sahar S Abd El-Rahman
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Passant E Moustafa
- Department of Pharmacology, Medical and clinical studies institute, National Research Centre, Giza, Egypt
| |
Collapse
|
8
|
El-Dahmy RM, Elsayed I, Hussein J, Althubiti M, Almaimani RA, El-Readi MZ, Elbaset MA, Ibrahim BMM. Development of Transdermal Oleogel Containing Olmesartan Medoxomil: Statistical Optimization and Pharmacological Evaluation. Pharmaceutics 2023; 15:1083. [PMID: 37111569 PMCID: PMC10146305 DOI: 10.3390/pharmaceutics15041083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Olmesartan medoxomil (OLM) is a first-line antihypertensive drug with low oral bioavailability (28.6%). This study aimed to develop oleogel formulations to decrease OLM side effects and boost its therapeutic efficacy and bioavailability. OLM oleogel formulations were composed of Tween 20, Aerosil 200, and lavender oil. A central composite response surface design chose the optimized formulation, containing Oil/Surfactant (SAA) ratio of 1:1 and Aerosil % of 10.55%, after showing the lowest firmness and compressibility, and the highest viscosity, adhesiveness, and bioadhesive properties (Fmax and Wad). The optimized oleogel increased OLM release by 4.21 and 4.97 folds than the drug suspension and gel, respectively. The optimized oleogel formulation increased OLM permeation by 5.62 and 7.23 folds than the drug suspension and gel, respectively. The pharmacodynamic study revealed the superiority of the optimized formulation in maintaining normal blood pressure and heart rate for 24 h. The biochemical analysis revealed that the optimized oleogel achieved the best serum electrolyte balance profile, preventing OLM-induced tachycardia. The pharmacokinetic study showed that the optimized oleogel increased OLM's bioavailability by more than 4.5- and 2.5-folds compared to the standard gel and the oral market tablet, respectively. These results confirmed the success of oleogel formulations in the transdermal delivery of OLM.
Collapse
Affiliation(s)
- Rania Moataz El-Dahmy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Central Axis, Cairo 12585, Egypt
| | - Ibrahim Elsayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 04184, United Arab Emirates
| | - Jihan Hussein
- Medical Biochemistry Department, Medicine and Clinical Studies Research Institute, National Research Centre, Giza 12622, Egypt
| | - Mohammad Althubiti
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah 24381, Saudi Arabia
| | - Riyad A. Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah 24381, Saudi Arabia
| | - Mahmoud Zaki El-Readi
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah 24381, Saudi Arabia
- Biochemistry Department, Faculty of Pharmacy, Al-Azhar University, Assuit 71524, Egypt
| | - Marawan A. Elbaset
- Pharmacology Department, Medicine and Clinical Studies Research Institute, National Research Centre, Giza 12622, Egypt
| | - Bassant M. M. Ibrahim
- Pharmacology Department, Medicine and Clinical Studies Research Institute, National Research Centre, Giza 12622, Egypt
| |
Collapse
|
9
|
A novel oral medicated jelly for enhancement of etilefrine hydrochloride bioavailability: In vitro characterization and pharmacokinetic evaluation in healthy human volunteers. Saudi Pharm J 2022; 30:1435-1447. [DOI: 10.1016/j.jsps.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022] Open
|
10
|
Teaima MH, Alsofany JM, El-Nabarawi MA. Clove Oil Endorsed Transdermal Flux of Dronedarone Hydrochloride Loaded Bilosomal Nanogel: Factorial Design, In vitro Evaluation and Ex vivo Permeation. AAPS PharmSciTech 2022; 23:182. [PMID: 35773361 DOI: 10.1208/s12249-022-02337-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
The goal of this study was to develop a bilosomal gel formulation to enhance transdermal permeability of dronedarone hyrdrochloride (DRN) which suffers from poor oral absorption and limited bioavailability. To overcome this obstacle, bilosomes were successfully prepared using 23 full-factorial design. Span®40, cholesterol, sodium deoxycholate (bile salt), clove oil (permeability enhancer), and either Tween® 60 or Tween® 80 (edge activator) were used in bilosome preparation by ethanol injection method. In this design, independent variables were X1, edge activator type; X2, edge activator amount (mg); and X3, permeability enhancer concentration (% w/v). Optimal formula (B2) of the highest desirability of (0.776) demonstrated minimum vesicle size (VS) of 312.4 ± 24.42 nm, maximum absolute value of zeta potential (ZP) - 36.17 ± 2.57 mV, maximum entrapment efficiency (EE %) of 80.95 ± 3.01%, maximum deformability Index (DI) of 8.24 ± 1.26 g and maximum drug flux after 12 h (J12) of 21.23 ± 1.54 µg/cm2 h upon ex vivo permeation study. After 12 h, 70.29 ± 6.46% of DRN was released from B2. TEM identification of B2 showed spherical shaped nanosized vesicles which were physically stable for 3 months at different temperatures. B2 was incorporated into carboxymethylcellulose gel base for easiness of dermal application. B2 gel demonstrated good physical properties, non-Newtonian psuedoplastic flow, and enhanced release (57.0 ± 8.68% of DRN compared to only 13.3 ± 1.2% released from drug suspension after 12 h) and enhanced skin permeation.
Collapse
Affiliation(s)
- Mahmoud H Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Jihad Mahmoud Alsofany
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, University of Sadat City, Sadat City, Monufia, Egypt
| | - Mohamed A El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
11
|
Statistical optimization of nanostructured gels for enhancement of vinpocetine transnasal and transdermal permeation. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Elshafeey AH, El-Dahmy RM. Formulation and Development of Oral Fast-Dissolving Films Loaded with Nanosuspension to Augment Paroxetine Bioavailability: In Vitro Characterization, Ex Vivo Permeation, and Pharmacokinetic Evaluation in Healthy Human Volunteers. Pharmaceutics 2021; 13:pharmaceutics13111869. [PMID: 34834284 PMCID: PMC8620498 DOI: 10.3390/pharmaceutics13111869] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 01/10/2023] Open
Abstract
Paroxetine (PX) is the most potent serotonin reuptake inhibitor utilized in depression and anxiety treatment. It has drawbacks, such as having a very bitter taste, low water solubility, and undergoing extensive first pass metabolism, leading to poor oral bioavailability (<50%). This work aimed to develop and optimize palatable oral fast-dissolving films (OFDFs) loaded with a paroxetine nanosuspension. A PX nanosuspension was prepared to increase the PX solubility and permeability via the buccal mucosa. The OFDFs could increase PX bioavailability due to their rapid dissolution in saliva, without needing water, and the rapid absorption of the loaded drug through the buccal mucosa, thus decreasing the PX metabolism in the liver. OFDFs also offer better convenience to patients with mental illness, as well as pediatric, elderly, and developmentally disabled patients. The PX nanosuspension was characterized by particle size, poly dispersity index, and zeta potential. Twelve OFDFs were formulated using a solvent casting technique. A 22 × 31 full factorial design was applied to choose the optimized OFDF, utilizing Design-Expert® software (Stat-Ease Inc., Minneapolis, MN, USA). The optimized OFDF (F1) had a 3.89 ± 0.19 Mpa tensile strength, 53.08 ± 1.28% elongation%, 8.12 ± 0.13 MPa Young's modulus, 17.09 ± 1.30 s disintegration time, and 96.02 ± 3.46% PX dissolved after 10 min. This optimized OFDF was subjected to in vitro dissolution, ex vivo permeation, stability, and palatability studies. The permeation study, using chicken buccal pouch, revealed increased drug permeation from the optimized OFDF; with a more than three-fold increase in permeation over the pure drug. The relative bioavailability of the optimized OFDF in comparison with the market tablet was estimated clinically in healthy human volunteers and was found to be 178.43%. These findings confirmed the success of the OFDFs loaded with PX nanosuspension for increasing PX bioavailability.
Collapse
Affiliation(s)
- Ahmed Hassen Elshafeey
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Correspondence: ; Tel.: +20-100-584-0261
| | - Rania Moataz El-Dahmy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Central Axis, Cairo 12585, Egypt;
| |
Collapse
|
13
|
Zhuang W, Liu H, Zhang Y, He J, Wang P. Effective asymmetric preparation of (R)-1-[3-(trifluoromethyl)phenyl]ethanol with recombinant E. coli whole cells in an aqueous Tween-20/natural deep eutectic solvent solution. AMB Express 2021; 11:118. [PMID: 34410519 PMCID: PMC8377109 DOI: 10.1186/s13568-021-01278-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 11/10/2022] Open
Abstract
(R)-1-[3-(Trifluoromethyl)phenyl]ethanol ((R)-MTF-PEL) is an important chiral building block for the synthesis of a neuroprotective compound, (R)-3-(1-(3-(trifluoromethyl)phenyl)ethoxy)azetidine-1-carboxamide. In this work, an effective whole-cell-catalyzed biotransformation was developed to produce (R)-MTF-PEL, and its productivity was increased by medium engineering strategy. The recombinant E. coli BL21(DE3)-pET28a(+)-LXCAR-S154Y variant affording carbonyl reductase was adopted for the reduction of 3'-(trifluoromethyl)acetophenone to (R)-MTF-PEL with enantiomeric excess (ee) > 99.9%. The addition of 0.6% Tween-20 (w/v) boosted the bioreduction, because the substrate concentration was increased by 4.0-fold than that in the neat buffer solution. The biocatalytic efficiency was further enhanced by introducing choline chloride: lysine (ChCl:Lys, molar ratio of 1:1) in the reaction medium, because the product yield reached 91.5% under 200 mM substrate concentration in the established Tween-20/ChCl:Lys-containing system, which is the highest ever reported for (R)-MTF-PEL production. The optimal reduction conditions were as follows: 4% (w/v) ChCl:Lys, 12.6 g (DCW)/L recombinant E. coli cells, pH 7.0, 30 ℃ and 200 rpm, reaction for 18 h. The combined strategy of surfactant and NADES has great potential in the biocatalytic process and the synthesis of chiral alcohols.
Collapse
Affiliation(s)
- Wenjin Zhuang
- Key Laboratory of Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hanyu Liu
- Key Laboratory of Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ying Zhang
- Key Laboratory of Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Junyao He
- Zhejiang Pharmaceutical College, Ningbo, 315100, China
| | - Pu Wang
- Key Laboratory of Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
14
|
Naguib MJ, Elsayed I, Teaima MH. Simultaneous Optimization of Oral and Transdermal Nanovesicles for Bioavailability Enhancement of Ivabradine Hydrochloride. Int J Nanomedicine 2021; 16:2917-2931. [PMID: 33911861 PMCID: PMC8072262 DOI: 10.2147/ijn.s299326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/10/2021] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Ivabradine hydrochloride is selective pacemaker current (If) ion channel inhibitor used in case of chronic heart failure (CHF) with superior efficacy and lower side effects than most β-blockers. However, the drug suffers from low bioavailability (≈40%) due to extensive first-pass metabolism. Hence, this work aims to formulate nanovesicular platforms to enhance their bioavailability both orally and transdermally. MATERIALS AND METHODS A central composite face-centered design was employed to formulate the nanovesicles, both phosphatidylcholine: drug ratio and percentage of pluronic F68 were used as independent variables. The nine developed formulae were characterized in terms of vesicle size (nm), polydispersity index, zeta potential (mV), entrapment efficiency (%). Decreasing vesicle size, increasing negative value of the zeta potential, and increasing entrapment efficiency were the chosen constraints to optimize the engineered nanovesicles. The candidate formula was subjected to further investigation including lyophilization, loading into carbopol gel, in vitro release, imaging with a transmission electron microscope, histopathological examination, in vitro cytotoxicity study and in vivo pharmacokinetics. RESULTS The optimized nanovesicular formula was composed of lipid: drug ratio of 3.91:1 and 100% pluronic as a stabilizer. It has particle size, zeta potential and entrapment efficiency of 337.6 nm, -40.5 mV and 30.5, respectively. It was then lyophilized in the presence of 5% trehalose as a cryoprotectant, dispersed in 0.5% carbopol to develop the transdermal gel. The two different forms of the candidate formula (lyophilized and gel form) displayed sustained drug release in comparison to drug solution. The histopathological and cytotoxicity studies showed that the optimized formula was safe and highly biocompatible. The pharmacokinetics parameters measured declared a higher Cmax and half-life of both formulae in comparison to market product (Procoralan®) with a 2.54- and 1.85-folds increase in bioavailability, respectively. CONCLUSION Hence, the developed nanovesicles can be reported as the first nanoplatforms to be used for simultaneous ivabradine delivery by both oral and topical routes with enhanced oral and transdermal drug delivery. The developed nanoplatforms hence can be further used to formulate other drugs that suffer from low bioavailability due to extensive first-pass metabolism.
Collapse
Affiliation(s)
- Marianne Joseph Naguib
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ibrahim Elsayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Pharmaceutical Sciences, College of Pharmacy and Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Mahmoud Hassan Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
15
|
Nasr AM, Elhady SS, Swidan SA, Badawi NM. Celecoxib Loaded In-Situ Provesicular Powder and Its In-Vitro Cytotoxic Effect for Cancer Therapy: Fabrication, Characterization, Optimization and Pharmacokinetic Evaluation. Pharmaceutics 2020; 12:pharmaceutics12121157. [PMID: 33260755 PMCID: PMC7760804 DOI: 10.3390/pharmaceutics12121157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Several recent studies have shown that the role of cyclooxygenase 2 (COX-2) in carcinogenesis has become more evident. It affects angiogenesis, apoptosis, and invasion, and plays a key role in the production of carcinogens. It has also been reported that COX-2 inhibitors such as celecoxib (CLX) might play an effective role in preventing cancer formation and progression. Formulation of CLX into nanovesicles is a promising technique to improve its bioavailability and anticancer efficacy. AIM The aim of this study is to optimize and evaluate the anticancer efficacy of CLX-loaded in-situ provesicular powder composed of surfactants and fatty alcohol-based novel nanovesicles in-vitro and determine its pharmacokinetic parameters in-vivo. METHODS The novel provesicular powders were prepared by the slurry method and optimized by 32 full factorial design using the desirability function. RESULTS Small mean particle size was achieved by the formed vesicles with value of 351.7 ± 1.76 nm and high entrapment efficacy of CLX in the formed vesicles of 97.53 ± 0.84%. Solid state characterization of the optimized formulation showed that the powder was free flowing, showed no incompatibilities between drug and excipients and showed smooth texture. The cytotoxic study of the optimized formula on HCT-116, HepG-2, A-549, PC-3 and MCF-7 cell lines showed significant increase in activity of CLX compared to its free form. The pharmacokinetic study on albino rabbits after oral administration showed significant increase in the area under the curve (AUC)0-24 h and significantly higher oral relative bioavailability of the optimized formulation compared to Celebrex® 100 mg market product (p < 0.05). CONCLUSION All findings of this study suggest the potential improvement of efficacy and bioavailability of CLX when formulated in the form of in-situ provesicular powder composed of surfactants and fatty alcohol-based novel nanovesicles for its repositioned use as an anticancer agent.
Collapse
Affiliation(s)
- Ali M. Nasr
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Alarish, North Sinai 45511, Egypt
- Correspondence: (A.M.N.); (S.A.S.); (N.M.B.)
| | - Sameh S. Elhady
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Shady A. Swidan
- Department of Pharmaceutics, Faculty of Pharmacy, The British University in Egypt, El-Sherouk city, Cairo 11837, Egypt
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt
- Correspondence: (A.M.N.); (S.A.S.); (N.M.B.)
| | - Noha M. Badawi
- Department of Pharmaceutics, Faculty of Pharmacy, The British University in Egypt, El-Sherouk city, Cairo 11837, Egypt
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt
- Correspondence: (A.M.N.); (S.A.S.); (N.M.B.)
| |
Collapse
|
16
|
Al-Heibshy FNS, Başaran E, Öztürk N, Demirel M. Preparation and in vitro characterization of rosuvastatin calcium incorporated methyl beta cyclodextrin and Captisol ® inclusion complexes. Drug Dev Ind Pharm 2020; 46:1495-1506. [PMID: 32804005 DOI: 10.1080/03639045.2020.1810264] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Despite being the most effective hypolipidemic agent, poor physicochemical properties of Rosuvastatin calcium (RCa) remain challenging obstacles in the development of pharmaceutical dosage forms. Inclusion complexes (ICs) of RCa with cyclodextrin (CD) derivatives; methyl-beta-cyclodextrin (M-β-CD) and sulfobutylether-beta-cyclodextrin (SBE-β-CD; Captisol®) were formulated by kneading and freeze-drying (lyophilization) methods. Pysicochemical properties of ICs were evaluated by SEM, DSC, XRD, FT-IR, 1H-NMR analyses. Entrapment efficiency (EE), water solubility, in vitro release analyses were also performed. Safety and efficacy of the ICs were analyzed by cytotoxicity and permeation studies on Caco-2 cell lines. Both CDs indicated AL type phase solubility diagrams showing that [1:1] molar ratio. Apparent stability constants (K1:1) were found to be 60.93 M-1 for M-β-CD and 158.07 M-1 for Captisol®. High EE in the range of 93.50-105.40% was achieved. Molar solubility of RCa was increased 3.7- and 4.1-fold with M-β-CD and Captisol® ICs, respectively. In vitro release analyses have indicated the equivalence of dissolution profiles for M-β-CD and Captisol® based ICs to that of pure RCa (f2 > 50). Cytotoxicity studies on Caco-2 cell lines have revealed the safety of ICs for oral use. Permeability studies demonstrated that selected lyophilized F6 formulation has shown the best permeation rate with Papp value of 3.08 × 10-7 cm·s-1. Considering greater water solubility, lower toxicity, high efficiency of complexation as well as, RCa-like permeability and in vitro release behavior at pH 6.8; Captisol® based lyophilized F6 formulation was selected as the best IC to be used in oral dosage forms of RCa.
Collapse
Affiliation(s)
- Fawaz N S Al-Heibshy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,Department of Pharmaceutical Technology, Faculty of Pharmacy, Aden University, Aden, Yemen
| | - Ebru Başaran
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Naile Öztürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Müzeyyen Demirel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
17
|
Elshafeey AH, Zayed R, Shukr MH, Elsayed I. Sucrose acetate isobutyrate based nanovesicles: A promising platform for drug delivery and bioavailability enhancement. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|