1
|
Xiao Y, Zhong Z, Yang C, Lin Z. Multivariate Cox regression analysis of prognostic genes and therapeutic mechanisms of gastric cancer. Discov Oncol 2025; 16:136. [PMID: 39921793 PMCID: PMC11807035 DOI: 10.1007/s12672-025-01907-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/03/2025] [Indexed: 02/10/2025] Open
Abstract
Gastric cancer (GC) is a common malignant tumor, which originated from the epithelial cells of the stomach. It has the characteristics of high incidence and poor prognosis. Therefore, it is urgent to find new prognostic markers for the diagnosis and treatment of GC. Download gene expression matrix and clinical data from TCGA database and GSE84437 dataset. Through independent prognostic analysis and clinical correlation analysis, 74 prognostic related genes (PRG) were screened out. A PPI network was established for PRG to identify four key genes (KG), namely LMOD1, CRYAB, VCL and MYL9. Survival analysis showed that patients with high expression of KG had poor prognosis. Multivariate Cox regression analysis showed that KG was an independent prognostic factor. TCGA database verifies the importance and significance of KG as a prognostic indicator. Functional enrichment analysis showed that KG was mainly involved in cell adhesion molecules, adhesion spots and PI3K/AKT signaling pathway. KG may be a potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Yangyang Xiao
- Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330005, Jiangxi, China
| | - Zhiru Zhong
- Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330005, Jiangxi, China
| | - Chunli Yang
- Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330005, Jiangxi, China
| | - Zhiying Lin
- Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330005, Jiangxi, China.
| |
Collapse
|
2
|
Li S, Chen A, Gui J, Zhou H, Zhu L, Mi Y. TLN1: an oncogene associated with tumorigenesis and progression. Discov Oncol 2024; 15:716. [PMID: 39589610 PMCID: PMC11599537 DOI: 10.1007/s12672-024-01593-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024] Open
Abstract
Talin-1 (TLN1), encoded by the TLN1 gene, is a focal adhesion-related protein capable of binding various proteins in the cytoskeleton. It is also expressed at high levels in many cancers wherein it influences cellular adhesion and the activation of integrins. TLN1 is also capable of promoting tumor cell invasivity, proliferation, and metastatic progression, in addition to being a relevant biomarker and therapeutic target in certain cancers. The present review offers a comprehensive overview of current knowledge regarding TLN1 with respect to its structural properties, functions, and role in tumor development.
Collapse
Affiliation(s)
- Sixin Li
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu, China
- Wuxi School of Medicine, Jiangnan University, 1800 Lihudadao, Wuxi, 214122, Jiangsu, China
| | - Anjie Chen
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu, China
- Wuxi School of Medicine, Jiangnan University, 1800 Lihudadao, Wuxi, 214122, Jiangsu, China
| | - Jiandong Gui
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu, China
- Wuxi School of Medicine, Jiangnan University, 1800 Lihudadao, Wuxi, 214122, Jiangsu, China
| | - Hangsheng Zhou
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu, China
- Wuxi School of Medicine, Jiangnan University, 1800 Lihudadao, Wuxi, 214122, Jiangsu, China
| | - Lijie Zhu
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu, China.
| | - Yuanyuan Mi
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
3
|
Yuan T, Lu X, Jiang J, Chen N, Tang B, He C, Liu W, Wang J, Ci C. ACTN1 promotes malignant progression in cutaneous squamous cell carcinoma by downregulating the p53 signaling pathway. Chin Med J (Engl) 2024; 137:1759-1761. [PMID: 38835108 PMCID: PMC11268810 DOI: 10.1097/cm9.0000000000003168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Indexed: 06/06/2024] Open
Affiliation(s)
- Tao Yuan
- Department of Dermatology, Yijishan Hospital, the First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241004, China
| | - Xiaohong Lu
- Department of Dermatology, Yijishan Hospital, the First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241004, China
| | - Jiahui Jiang
- Department of Dermatology, Yijishan Hospital, the First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241004, China
| | - Nan Chen
- Department of Dermatology, Yijishan Hospital, the First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241004, China
| | - Biao Tang
- Department of Dermatology, Yijishan Hospital, the First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241004, China
| | - Caifeng He
- Department of Dermatology, Yijishan Hospital, the First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241004, China
| | - Wenbei Liu
- Department of Dermatology, Yijishan Hospital, the First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241004, China
| | - Jun Wang
- Department of Dermatology, Yijishan Hospital, the First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241004, China
| | - Chao Ci
- Department of Dermatology, Yijishan Hospital, the First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241004, China
| |
Collapse
|
4
|
Cömez B, Özbaş S. Alginate-Chitosan Hydrogels Containing shRNA Plasmid for Inhibition of CTNNB1 Expression in Breast Cancer Cells. Gels 2023; 9:541. [PMID: 37504420 PMCID: PMC10378784 DOI: 10.3390/gels9070541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/02/2023] [Accepted: 06/25/2023] [Indexed: 07/29/2023] Open
Abstract
The hydrogels prepared with alginate and chitosan polymers were prepared to deliver the shRNA-encoding plasmid (pshRNA) to MDA-MB-231 cells for the inhibition of β-catenin (CTNNB1), which was reported to be overexpressed in breast cancer. Polyion complex hydrogels prepared using sodium alginate and chitosan were characterized by Fourier transform infrared spectrometry (FTIR) analysis, scanning electron microscope (SEM) analysis, swelling, and degradation properties. After the release properties and serum stability of pshRNA-loaded hydrogels were determined, their cytotoxicity, transfection efficacy, and effects on CTNNB1 expression were investigated in MDA-MB-231 cells. All hydrogels were shown to protect pshRNA from the enzymatic activity of serum and to deliver pshRNA to cells efficiently. As a result of transfection studies, pshRNA-loaded hydrogels reduced CTNNB1 expression by up to 30.25%. Cell viability also decreased by 38% in cells treated with 2.5% (w/v) alginate-chitosan hydrogel containing pshRNA targeting CTNNB1. Alginate-chitosan hydrogels were shown to be a suitable matrix system for local gene delivery.
Collapse
Affiliation(s)
- Birnur Cömez
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Marmara University, İstanbul 34854, Turkey
| | - Suna Özbaş
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Marmara University, İstanbul 34854, Turkey
| |
Collapse
|
5
|
ZHANG J, SHU D, CHENG X, TIAN T, XIAO K, ZHANG D, YANG J. Effect of plant polysaccharides ( Poria cocos and Astragalus polysaccharides) on immune responses and intestinal microbiota of Dabry's sturgeons. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2023; 42:243-253. [PMID: 37791344 PMCID: PMC10542428 DOI: 10.12938/bmfh.2022-089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/28/2023] [Indexed: 10/05/2023]
Abstract
Searching for non-toxic and harmless feed ingredients that can improve growth performance and host immunity has always been the focus of attention in the protected areas for artificially bred Dabry's sturgeons. The present study explored the effect of dietary Poria cocos and Astragalus polysaccharides on the antioxidant status, expression of immune related genes, and composition and putative functions of gut bacterial communities in Dabry's sturgeons for the first time. In this study, Dabry's sturgeons were randomly divided into 3 groups and fed diets of normal, P. cocos polysaccharide-added (200 mg/kg), and Astragalus polysaccharide-added (200 mg/kg) food for 14 days. The results indicated that dietary Astragalus polysaccharide can increase the final body weight of Dabry's sturgeon. Compared with normal breeding individuals, feeding diets containing the P. cocos and Astragalus polysaccharides up-regulated the activity of superoxide dismutase, lysozyme, catalase, and glutathione peroxidase while also decreasing the levels of malondialdehyde. In addition, the Astragalus polysaccharide group had higher gene expression of two inflammatory cytokines, tumor necrosis factor alpha and immunoglobulin M, than the control group. Analysis of intestinal microbiota revealed that the dietary Astragalus polysaccharide improved the richness and diversity of major gut microbiota in Dabry's sturgeons, while the structure in the P. cocos polysaccharide group was clearly distinguished from that of the control group. Our results preliminarily indicated that dietary supplementation of P. cocos and Astragalus polysaccharides may contribute to better performance in growth, development, and inflammatory response for Dabry's sturgeons, and they provide basic guidance for plant polysaccharide additives in artificial breeding of sturgeons.
Collapse
Affiliation(s)
- Jianming ZHANG
- Hubei Key Laboratory of the Three Gorges Project for
Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges
Corporation, Yichang, Hubei 443100, China
- Chinese Sturgeon Research Institute, China Three Gorges
Corporation, Yichang, Hubei 443100, China
| | - Debin SHU
- Hubei Key Laboratory of the Three Gorges Project for
Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges
Corporation, Yichang, Hubei 443100, China
- Chinese Sturgeon Research Institute, China Three Gorges
Corporation, Yichang, Hubei 443100, China
| | - Xu CHENG
- Hubei Key Laboratory of the Three Gorges Project for
Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges
Corporation, Yichang, Hubei 443100, China
- Chinese Sturgeon Research Institute, China Three Gorges
Corporation, Yichang, Hubei 443100, China
| | - Tian TIAN
- Hubei Key Laboratory of the Three Gorges Project for
Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges
Corporation, Yichang, Hubei 443100, China
- Chinese Sturgeon Research Institute, China Three Gorges
Corporation, Yichang, Hubei 443100, China
| | - Kan XIAO
- Hubei Key Laboratory of the Three Gorges Project for
Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges
Corporation, Yichang, Hubei 443100, China
- Chinese Sturgeon Research Institute, China Three Gorges
Corporation, Yichang, Hubei 443100, China
| | - Dezhi ZHANG
- Hubei Key Laboratory of the Three Gorges Project for
Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges
Corporation, Yichang, Hubei 443100, China
- Chinese Sturgeon Research Institute, China Three Gorges
Corporation, Yichang, Hubei 443100, China
| | - Jing YANG
- Hubei Key Laboratory of the Three Gorges Project for
Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges
Corporation, Yichang, Hubei 443100, China
- Chinese Sturgeon Research Institute, China Three Gorges
Corporation, Yichang, Hubei 443100, China
| |
Collapse
|
6
|
Liu W, Huang X, Luo W, Liu X, Chen W. The Role of Paxillin Aberrant Expression in Cancer and Its Potential as a Target for Cancer Therapy. Int J Mol Sci 2023; 24:ijms24098245. [PMID: 37175948 PMCID: PMC10179295 DOI: 10.3390/ijms24098245] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Paxillin is a multi-domain adaptor protein. As an important member of focal adhesion (FA) and a participant in regulating cell movement, paxillin plays an important role in physiological processes such as nervous system development, embryonic development, and vascular development. However, increasing evidence suggests that paxillin is aberrantly expressed in many cancers. Many scholars have also recognized that the abnormal expression of paxillin is related to the prognosis, metastases, invasion, survival, angiogenesis, and other aspects of malignant tumors, suggesting that paxillin may be a potential cancer therapeutic target. Therefore, the study of how aberrant paxillin expression affects the process of tumorigenesis and metastasis will help to develop more efficacious antitumor drugs. Herein, we review the structure of paxillin and its function and expression in tumors, paying special attention to the multifaceted effects of paxillin on tumors, the mechanism of tumorigenesis and progression, and its potential role in tumor therapy. We also hope to provide a reference for the clinical prognosis and development of new tumor therapeutic targets.
Collapse
Affiliation(s)
- Weixian Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, China
| | - Xinxian Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, China
| | - Weizhao Luo
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, China
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, China
| | - Weichun Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, China
| |
Collapse
|
7
|
Huang J, Wang H, Xu Y, Li C, Lv X, Han X, Chen X, Chen Y, Yu Z. The Role of CTNNA1 in Malignancies: An Updated Review. J Cancer 2023; 14:219-230. [PMID: 36741258 PMCID: PMC9891874 DOI: 10.7150/jca.79236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/15/2022] [Indexed: 01/04/2023] Open
Abstract
Catenin alpha 1 (CTNNA1), encoding α-catenin, is involved in several physiological activities, such as adherens junction synthesis and signal transduction. Recent studies have suggested additional functions for CTNNA1 malignancies. This review systematically summarizes the varying functions of CTNNA1 in different tumors and briefly describes the diverse pathways and mechanisms involved in different types of tumors. CTNNA1 is abnormally expressed in leukemia and solid tumor such as cancers of digestive system, genitourinary system and breast, and it's related to the occurrence, development, and prognosis of tumors. In addition, the possible physiological processes involving CTNNA1, such as methylation, miRNA interference, or regulatory axes, similar to those of CDH1, SETD2, and hsa-miR-30d-5p/GJA1 are also summarized here. The precise mechanism of CTNNA1 in most cancers remains uncertain; hence, additional pre-clinical studies of CTNNA1 are warranted for potential early tumor diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Jinhua Huang
- Department of Gynecology, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.,College of Medicine, Shantou University, Shantou, 515041, Guangdong, China
| | - Huihui Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230023, China
| | - Yuting Xu
- Department of Gynecology, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.,College of Medicine, Shantou University, Shantou, 515041, Guangdong, China
| | - Chunhua Li
- Department of Gynecology, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
| | - Xinyue Lv
- Department of Gynecology, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
| | - Xintong Han
- Department of Gynecology, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
| | - Xiaochun Chen
- Department of Gynecology, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
| | - Yu Chen
- Department of Gynecology, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
| | - Zhiying Yu
- Department of Gynecology, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.,✉ Corresponding author: Zhiying Yu, Shenzhen Second People's Hospital, 3002 Sungang West Road, Shenzhen, Guangdong, China, 518035. Tel: 0755-83366388; Fax: +86 83366388-3048; E-mail:
| |
Collapse
|
8
|
PEGylated Strontium Sulfite Nanoparticles with Spontaneously Formed Surface-Embedded Protein Corona Restrict Off-Target Distribution and Accelerate Breast Tumour-Selective Delivery of siRNA. J Funct Biomater 2022; 13:jfb13040211. [PMID: 36412852 PMCID: PMC9680366 DOI: 10.3390/jfb13040211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
As transporters of RNAi therapeutics in preclinical and clinical studies, the application of nanoparticles is often hindered by their susceptibility to opsonin-mediated clearance, poor biological stability, ineffectual targeting, and undesirable effects on healthy cells. Prolonging the blood circulation time while minimizing the off-target distribution and associated toxicity is indispensable for the establishment of a clinically viable delivery system for therapeutic small interfering RNAs (siRNAs). Herein, we report a scalable and straightforward approach to fabricate non-toxic and biodegradable pH-responsive strontium sulfite nanoparticles (SSNs) wrapped with a hydrophilic coating material, biotinylated PEG to lessen unforeseen biological interactions. Surface functionalization of SSNs with PEG led to the generation of small and uniformly distributed particles with a significant affinity towards siRNAs and augmented internalization into breast cancer cells. A triple quadrupole liquid chromatography-mass spectrometry (LC-MS) was deployed to identify the proteins entrapped onto the SSNs, with the help of SwissProt.Mus_musculus database. The results demonstrated the reduction of opsonin proteins adsorption owing to the stealth effect of PEG. The distribution of PEGylated SSNs in mice after 4 h and 24 h of intravenous administration in breast tumour-bearing mice was found to be significantly less to the organs of the reticuloendothelial system (RES) and augmented accumulation in the tumour region. The anti-EGFR siRNA-loaded PEG-SSNs exerted a significant inhibitory effect on tumour development in the murine breast cancer model without any significant toxicity to healthy tissues. Therefore, PEGylated SSNs open up a new avenue for tumour-selective efficient delivery of siRNAs in managing breast cancer.
Collapse
|
9
|
Zhang S, Wang J, Chen T, Wang J, Wang Y, Yu Z, Zhao K, Zheng K, Chen Y, Wang Z, Li B, Wang C, Huang W, Fu Z, Chen J. α-Actinin1 promotes tumorigenesis and epithelial-mesenchymal transition of gastric cancer via the AKT/GSK3β/β-Catenin pathway. Bioengineered 2021; 12:5688-5704. [PMID: 34546849 PMCID: PMC8806412 DOI: 10.1080/21655979.2021.1967713] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/10/2021] [Indexed: 12/25/2022] Open
Abstract
α-Actinin1 (ACTN1), an actin cross-linking protein, is implicated in cytokinesis, cell adhesion, and cell migration. In addition, it is involved in the tumorigenesis and development of certain cancers, such as breast cancer. We explored the function of ACTN1 in gastric cancer (GC), which has largely remained unclear. High-throughput sequencing and public microarray datasets from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) revealed the upregulation of ACTN1 in gastric cancer with a poor prognosis. These results were further verified by western blotting (WB), Real-Time Quantitative polymerase chain reaction (RT-qPCR), and immunohistochemistry. We constructed loss and gain of function gastric cancer cells, which revealed the effect of ACTN1 over-expression on promoting GC cell proliferation, invasion, migration, and inhibited apoptosis. Mechanistic studies revealed that ACTN1 regulates the epithelial-mesenchymal transition (EMT) and tumorigenesis of gastric cancer via the AKT/GSK3β/β-catenin pathway, confirmed by the inhibitor of AKT MK2206. Altogether, these results demonstrated that ACTN1 could be a promising candidate for gastric cancer treatment.
Collapse
Affiliation(s)
- Siwen Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Junfu Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ting Chen
- Graduate College, The Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, People’s Republic of China
| | - Jiancheng Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ye Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhu Yu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Kun Zhao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Kaitian Zheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yeyang Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhen Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bopei Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Congjun Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Weijia Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhao Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Junqiang Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
10
|
Inhibition of the lncRNA Coded within Transglutaminase 2 Gene Impacts Several Relevant Networks in MCF-7 Breast Cancer Cells. Noncoding RNA 2021; 7:ncrna7030049. [PMID: 34449674 PMCID: PMC8395837 DOI: 10.3390/ncrna7030049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNAs are nucleotide molecules that regulate transcription in numerous cellular processes and are related to the occurrence of many diseases, including cancer. In this regard, we recently discovered a polyadenylated long non-coding RNA (named TG2-lncRNA) encoded within the first intron of the Transglutaminase type 2 gene (TGM2), which is related to tumour proliferation in human cancer cell lines. To better characterize this new biological player, we investigated the effects of its suppression in MCF-7 breast cancer cells, using siRNA treatment and RNA-sequencing. In this way, we found modifications in several networks associated to biological functions relevant for tumorigenesis (apoptosis, chronic inflammation, angiogenesis, immunomodulation, cell mobility, and epithelial–mesenchymal transition) that were originally attributed only to Transglutaminase type 2 protein but that could be regulated also by TG2-lncRNA. Moreover, our experiments strongly suggest the ability of TG2-lncRNA to directly interact with important transcription factors, such as RXRα and TP53, paving the way for several regulatory loops that can potentially influence the phenotypic behaviour of MCF-7 cells. These considerations imply the need to further investigate the relative relevance of the TG2 protein itself and/or other gene products as key regulators in the organization of breast cancer program.
Collapse
|
11
|
Role of the V1G1 subunit of V-ATPase in breast cancer cell migration. Sci Rep 2021; 11:4615. [PMID: 33633298 PMCID: PMC7907067 DOI: 10.1038/s41598-021-84222-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/18/2021] [Indexed: 12/26/2022] Open
Abstract
V-ATPase is a large multi-subunit complex that regulates acidity of intracellular compartments and of extracellular environment. V-ATPase consists of several subunits that drive specific regulatory mechanisms. The V1G1 subunit, a component of the peripheral stalk of the pump, controls localization and activation of the pump on late endosomes and lysosomes by interacting with RILP and RAB7. Deregulation of some subunits of the pump has been related to tumor invasion and metastasis formation in breast cancer. We observed a decrease of V1G1 and RAB7 in highly invasive breast cancer cells, suggesting a key role of these proteins in controlling cancer progression. Moreover, in MDA-MB-231 cells, modulation of V1G1 affected cell migration and matrix metalloproteinase activation in vitro, processes important for tumor formation and dissemination. In these cells, characterized by high expression of EGFR, we demonstrated that V1G1 modulates EGFR stability and the EGFR downstream signaling pathways that control several factors required for cell motility, among which RAC1 and cofilin. In addition, we showed a key role of V1G1 in the biogenesis of endosomes and lysosomes. Altogether, our data describe a new molecular mechanism, controlled by V1G1, required for cell motility and that promotes breast cancer tumorigenesis.
Collapse
|
12
|
Rehan F, Ahemad N, Islam RA, Gupta M, Gan SH, Chowdhury EH. Optimization and Formulation of Nanostructured and Self-Assembled Caseinate Micelles for Enhanced Cytotoxic Effects of Paclitaxel on Breast Cancer Cells. Pharmaceutics 2020; 12:pharmaceutics12100984. [PMID: 33080962 PMCID: PMC7589039 DOI: 10.3390/pharmaceutics12100984] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/23/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Paclitaxel (PTX) is a widely used anti-cancer drug for treating various types of solid malignant tumors including breast, ovarian and lung cancers. However, PTX has a low therapeutic response and is linked with acquired resistance, as well as a high incidence of adverse events, such as allergic reactions, neurotoxicity and myelosuppression. The situation is compounded when its complex chemical structure contributes towards hydrophobicity, shortening its circulation time in blood, causing off-target effects and limiting its therapeutic activity against cancer cells. Formulating a smart nano-carrier may overcome the solubility and toxicity issues of the drug and enable its more selective delivery to the cancerous cells. Among the nano-carriers, natural polymers are of great importance due to their excellent biodegradability, non-toxicity and good accessibility. The aim of the present research is to develop self-assembled sodium caseinate nanomicelles (NaCNs) with PTX loaded into the hydrophobic core of NaCNs for effective uptake of the drug in cancer cells and its subsequent intracellular release. METHODS The PTX-loaded micelle was characterized with high-performance liquid chromatography (HPLC), Fourier Transform Infrared Spectra (FTIR), High Resolution-Transmission Electron Microscope (HR-TEM), Field Emission Scanning Electron Microscope (FESEM) and Energy Dispersive X-Ray (EDX). Following treatment with PTX-loaded NaCNs, cell viability, cellular uptake and morphological changes were analyzed using MCF-7 and MDA-MB 231 human breast cancer cell lines. RESULTS We found that PTX-loaded NaCNs efficiently released PTX in an acidic tumor environment, while showing an enhanced cytotoxicity, cellular uptake and in-vivo anti-tumor efficacy in a mouse model of breast cancer when compared to free drug and blank micelles. Additionally, the nanomicelles also presented improved colloidal stability for three months at 4 °C and -20 °C and when placed at a temperature of 37 °C. CONCLUSIONS We conclude that the newly developed NaCNs is a promising carrier of PTX to enhance tumor accumulation of the drug while addressing its toxicity issues as well.
Collapse
Affiliation(s)
- Farah Rehan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia; (F.R.); (N.A.); (M.G.); (S.H.G.)
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia; (F.R.); (N.A.); (M.G.); (S.H.G.)
- Tropical Medicine and Biology Multidisciplinary Platform, Monash University, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia
- Global Asia in the 21st century Research Platform, Monash University, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia
| | - Rowshan Ara Islam
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia;
| | - Manish Gupta
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia; (F.R.); (N.A.); (M.G.); (S.H.G.)
- School of Pharmaceutical and Population Health Informatics, DIT University, Mussoorie-Diversion Road, Dehradun, Uttarakhand-248009, India
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia; (F.R.); (N.A.); (M.G.); (S.H.G.)
| | - Ezharul Hoque Chowdhury
- Tropical Medicine and Biology Multidisciplinary Platform, Monash University, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia;
- Correspondence:
| |
Collapse
|
13
|
Carbonate Apatite and Hydroxyapatite Formulated with Minimal Ingredients to Deliver SiRNA into Breast Cancer Cells In Vitro and In Vivo. J Funct Biomater 2020; 11:jfb11030063. [PMID: 32927738 PMCID: PMC7565062 DOI: 10.3390/jfb11030063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/24/2020] [Accepted: 09/07/2020] [Indexed: 01/22/2023] Open
Abstract
Introduction: Cancer is one of the top-ranked noncommunicable diseases causing deaths to nine million people and affecting almost double worldwide in 2018. Tremendous advancement in surgery, chemotherapy, radiation and targeted immunotherapy have improved the rate of cure and disease-free survival. As genetic mutations vary in different cancers, potential of customized treatment to silence the problem gene/s at the translational level is being explored too. Yet delivering therapeutics at the required dosage only to the affected cells without affecting the healthy ones, is a big hurdle to be overcome. Scientists worldwide have been working to invent a smart drug delivery system for targeted delivery of therapeutics to tumor tissues only. As part of such an effort, few organic nanocarriers went to clinical trials, while inorganic nanoparticles (NPs) are still in development stage despite their many customizable properties. Carbonate apatite (CA), a pH sensitive nanocarrier has emerged as an efficient delivery system for drugs, plasmids and siRNAs in preclinical models of breast and colon cancers. Like hydroxyapatite (HA) which serves as a classical tool for delivery of genetic materials such as siRNA and plasmid, CA is an apatite-based synthetic carrier. We developed simplified methods of formulating CA-in-DMEM and a DMEM-mimicking buffer and HA in a HEPES-buffered solution and characterized them in terms of size, stability, protein corona (PC) composition, cytotoxicity, siRNA delivery efficiency in breast cancer cells and siRNA biodistribution profile in a mouse model of breast cancer. Methods: Particle growth was analyzed via spectrophotometry and light microscopy, size was measured via dynamic light scattering and scanning electron microscopy and confirmation of functional groups in apatite structures was made by FT-IR. siRNA-binding was analyzed via spectrophotometry. Stability of the formulation solutions/buffers was tested over various time points and at different temperatures to determine their compatibility in the context of practical usage. Cellular uptake was studied via fluorescence microscopy. MTT assay was performed to measure the cytotoxicity of the NPs. Liquid chromatography—mass spectrometry was carried out to analyze the PC formed around all three different NPs in serum-containing media. To explore biodistribution of all the formulations, fluorescence-labeled siRNA-loaded NPs were administered intravenously prior to analysis of fluorescence intensity in the collected organs and tumors of the treated mice. Results: The size of NPs in 10% serum-containing media was dramatically different where CA-in-DMB and HA were much larger than CA-in-DMEM. Effect of media was notable on the PC composition of all three NPs. All three NPs bound albumin and some common protease inhibitors involved in bone metabolism due to their compositional similarity to our bone materials. Moreover, CA also bound heme-binding proteins and opsonins. Unlike CA, HA bound different kinds of keratins. Difference in PC constitution was likely to influence accumulation of NPs in various organs including those of reticuloendothelial system, such as liver and spleen and the tumor. We found 10 times more tumor accumulation of CA-in-DMB than CA-in-DMEM, which could be due to more stable siRNA-binding and distinct PC composition of the former. Conclusion: As a nanocarrier CA is more efficient than HA for siRNA delivery to the tumor. CA prepared in a buffer containing only the mere constituents was potentially more efficient than classical CA prepared in DMEM, owing to the exclusion of interference attributed by the inorganic ions and organic molecules present in DMEM.
Collapse
|
14
|
Alpha KM, Xu W, Turner CE. Paxillin family of focal adhesion adaptor proteins and regulation of cancer cell invasion. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 355:1-52. [PMID: 32859368 PMCID: PMC7737098 DOI: 10.1016/bs.ircmb.2020.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The paxillin family of proteins, including paxillin, Hic-5, and leupaxin, are focal adhesion adaptor/scaffolding proteins which localize to cell-matrix adhesions and are important in cell adhesion and migration of both normal and cancer cells. Historically, the role of these proteins in regulating the actin cytoskeleton through focal adhesion-mediated signaling has been well documented. However, studies in recent years have revealed additional functions in modulating the microtubule and intermediate filament cytoskeletons to affect diverse processes including cell polarization, vesicle trafficking and mechanosignaling. Expression of paxillin family proteins in stromal cells is also important in regulating tumor cell migration and invasion through non-cell autonomous effects on the extracellular matrix. Both paxillin and Hic-5 can also influence gene expression through a variety of mechanisms, while their own expression is frequently dysregulated in various cancers. Accordingly, these proteins may serve as valuable targets for novel diagnostic and treatment approaches in cancer.
Collapse
Affiliation(s)
- Kyle M Alpha
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Weiyi Xu
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Christopher E Turner
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, United States.
| |
Collapse
|
15
|
Selected DNA aptamers as hydroxyapatite affinity reagents. Anal Chim Acta 2020; 1110:115-121. [PMID: 32278386 DOI: 10.1016/j.aca.2020.03.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 11/22/2022]
Abstract
DNA aptamers were selected for their ability to bind specifically and quickly to crystalline hydroxyapatite (Ca10(PO4)6(OH)2; HAP), the primary mineral component of enamel and bone. Aptamers were found to have an enhanced percent of G-nucleotides and a propensity for forming a G-quadruplex secondary structure. One aptamer was studied in comparison to control sequences and was found to bind with high affinity and at high loading capacity, with enhanced binding kinetics, and with specificity for crystalline HAP material over amorphous calcium phosphate (ACP) and β-tricalcium phosphate (TCP). The fluorescently-functionalized aptamer was demonstrated to specifically label HAP in a surface binding experiment and suggests the usefulness of this selected aptamer in biomedical or biotechnology fields where the labeling of specific calcium phosphate materials is required.
Collapse
|