1
|
Ahmed R, Tewes F, Aucamp M, Dube A. Formulation and clinical translation of inhalable nanomedicines for the treatment and prevention of pulmonary infectious diseases. Drug Deliv Transl Res 2025:10.1007/s13346-025-01861-5. [PMID: 40301249 DOI: 10.1007/s13346-025-01861-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2025] [Indexed: 05/01/2025]
Abstract
Pulmonary infections caused by bacteria, viruses and fungi are a significant global health issue. Inhalation therapies are gaining interest as an effective approach to directly target infected lung sites and nanoparticle-based pulmonary delivery systems are increasingly investigated for this purpose. In this review, we provide an overview of common pulmonary infectious diseases and review recent work on the application of inhalable nanoparticle-based formulations for pulmonary infectious diseases, the formulation strategies, and the current research for delivering inhalable nanomedicines. We also evaluate the current clinical development status, market landscape, and discuss challenges that impede clinical translation and propose solutions to overcome these obstacles, highlighting promising opportunities for future advancements in the field. Despite advancements made and products reaching the market, notable gap persists in translational research, with challenges in achieving the target product profile, availability of appropriate in vivo disease models, scale-up, and market related questions, likely hindering research translation to the clinic.
Collapse
Affiliation(s)
- Rami Ahmed
- School of Pharmacy, University of the Western Cape, Robert Sobukwe Road, Bellville, 7535, Cape Town, South Africa
| | - Frederic Tewes
- INSERM U1070, Pôle Biologie-Santé - B36, 1 Rue Georges Bonnet, 51106, 86073, POITIERS Cedex 9, TSA, France
| | - Marique Aucamp
- School of Pharmacy, University of the Western Cape, Robert Sobukwe Road, Bellville, 7535, Cape Town, South Africa
| | - Admire Dube
- School of Pharmacy, University of the Western Cape, Robert Sobukwe Road, Bellville, 7535, Cape Town, South Africa.
| |
Collapse
|
2
|
Yang N, Wei L, Teng Y, Yu P, Xiang C, Liu J. Cyclodextrin-based metal-organic frameworks transforming drug delivery. Eur J Med Chem 2024; 274:116546. [PMID: 38823266 DOI: 10.1016/j.ejmech.2024.116546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/03/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
Cyclodextrin-based metal-organic frameworks (CD-MOFs) are gaining traction in the realm of drug delivery due to their inherent versatility and potential to amplify drug efficacy, specificity, and safety. This article explores the predominant preparation techniques for CD-MOFs, encompassing methods like vapor diffusion, microwave-assisted, and ultrasound hydrothermal approaches. Native CD-MOFs present compelling advantages in drug delivery applications. They can enhance drug loading capacity, stability, solubility, and bioavailability by engaging in diverse interactions with drugs, including host-guest, hydrogen bonding, and electrostatic interactions. Beyond their inherent properties, CD-MOFs can be customized as drug carriers through two primary strategies: co-crystallization with functional components and surface post-modifications. These tailored modifications pave the way for controlled release manners. They allow for slow and sustained drug release, as well as responsive releases triggered by various factors such as pH levels, glutathione concentrations, or specific cations. Furthermore, CD-MOFs facilitate targeted delivery strategies, like pulmonary or laryngeal delivery, enhancing drug delivery precision. Overall, the adaptability and modifiability of CD-MOFs underscore their potential as a versatile platform for drug delivery, presenting tailored solutions that cater to diverse biomedical and industrial needs.
Collapse
Affiliation(s)
- Na Yang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Lingling Wei
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Yuou Teng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Cen Xiang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China.
| | - Jiang Liu
- Rosalind Franklin Institute, Harwell campus, OX11 0QS, Oxford, UK; Pharmacology Department, University of Oxford, Mansfield Road, OX1 3QT, Oxford, UK.
| |
Collapse
|
3
|
Gai J, Liu L, Zhang X, Guan J, Mao S. Impact of the diseased lung microenvironment on the in vivo fate of inhaled particles. Drug Discov Today 2024; 29:104019. [PMID: 38729235 DOI: 10.1016/j.drudis.2024.104019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Inhalation drug delivery is superior for local lung disease therapy. However, there are several unique absorption barriers for inhaled drugs to overcome, including limited drug deposition at the target site, mucociliary clearance, pulmonary macrophage phagocytosis, and systemic exposure. Moreover, the respiratory disease state can affect or even destroy the physiology of the lung, thus influencing the in vivo fate of inhaled particles compared with that in healthy lungs. Nevertheless, limited information is available on this effect. Thus, in this review, we present pathological changes of the lung microenvironment under varied respiratory diseases and their influence on the in vivo fate of inhaled particles; such insights could provide a basis for rational inhalation particle design based on specific disease states.
Collapse
Affiliation(s)
- Jiayi Gai
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Liu Liu
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Zhang
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Jian Guan
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Shirui Mao
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China.
| |
Collapse
|
4
|
Leo E, Maretti E. Inhaled Lipid Nanoparticles: A Feasible Tool for a Challenging Route. Curr Drug Deliv 2024; 21:309-311. [PMID: 36762750 DOI: 10.2174/1567201820666230210161253] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 02/11/2023]
Affiliation(s)
- Eliana Leo
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Eleonora Maretti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
5
|
Khadka P, Dummer J, Hill PC, Das SC. The quest to deliver high-dose rifampicin: can the inhaled approach help? Expert Opin Drug Deliv 2024; 21:31-44. [PMID: 38180078 DOI: 10.1080/17425247.2024.2301931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/02/2024] [Indexed: 01/06/2024]
Abstract
INTRODUCTION Tuberculosis (TB) is a global health problem that poses a challenge to global treatment programs. Rifampicin is a potent and highly effective drug for TB treatment; however, higher oral doses than the standard dose (10 mg/kg/day) rifampicin may offer better efficacy in TB treatment. AREAS COVERED High oral dose rifampicin is not implemented in anti-TB regimens yet and requires about a 3-fold increase in dose for increased efficacy. We discuss inhaled delivery of rifampicin as an alternative or adjunct to oral high-dose rifampicin. Clinical results of safety, tolerability, and patient compliance with antibiotic dry powder inhalers are reviewed. EXPERT OPINION Clinical trials suggest that an approximately 3-fold increase in the standard oral dose of rifampicin may be required for better clinical outcomes. On the other hand, animal studies suggest that inhaled rifampicin can deliver a high concentration of the drug to the lungs and achieve approximately double the plasma concentration than that from oral rifampicin. Clinical trials on inhaled antibiotics suggest that dry powder inhalation is a patient-friendly and well-tolerated approach in treating respiratory infections compared to conventional treatments. Rifampicin, a well-known anti-TB drug given orally, is a good candidate for clinical development as a dry powder inhaler.
Collapse
Affiliation(s)
- Prakash Khadka
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Jack Dummer
- Department of Medicine, Otago Medical School, University of Otago, Dunedin, New Zealand
| | - Philip C Hill
- Centre for International Health, University of Otago, Dunedin, New Zealand
| | - Shyamal C Das
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
6
|
Ramachandran S, Prakash P, Mohtar N, Kumar KS, Parumasivam T. Review of inhalable nanoparticles for the pulmonary delivery of anti-tuberculosis drugs. Pharm Dev Technol 2023; 28:978-991. [PMID: 37937865 DOI: 10.1080/10837450.2023.2279691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 09/05/2023] [Indexed: 11/09/2023]
Abstract
Tuberculosis is an airborne disease caused by the pathogen, Mycobacterium tuberculosis, which predominantly affects the lungs. World Health Organization (WHO) has reported that about 85% of TB patients are cured with the existing 6-month antibiotic regimen. However, the lengthy oral administration of high-dose anti-TB drugs is associated with significant side effects and leads to drug resistance cases. Alternatively, reformulating existing anti-tubercular drugs into inhalable nanoparticulate systems is a promising strategy to overcome the challenges associated with oral treatment as they could enhance drug retention in the pulmonary region to achieve an optimal drug concentration in the infected lungs. Hence, this review provides an overview of the literature on inhalable nano-formulations for the delivery of anti-TB drugs, including their formulation techniques and preclinical evaluations between the years 2000 and 2020, gathered from electronic journals via online search engines such as Google Scholar and PubMed. Previous in vitro and in vivo studies highlighted that the nano-size, low toxicity, and high efficacy were among the factors influencing the fate of nanoparticulate system upon deposition in the lungs. Although many preclinical studies have shown that inhalable nanoparticles increased therapeutic efficacy and minimised adverse drug reactions when delivered through the pulmonary route, none of them has progressed into clinical trials to date. This could be attributed to the high cost of inhaled regimes due to the expensive production and characterisation of the nanoparticles as well as the need for an inhalation device as compared to the oral treatment. Another barrier could be the lack of medical acceptance due to insufficient number of trained staff to educate the patients on the correct usage of the inhalation device. Hence, these barriers should be addressed satisfactorily to make the inhaled nanoparticles regimen a reality for the treatment of TB.
Collapse
Affiliation(s)
- Sowmya Ramachandran
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| | - Priyanka Prakash
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| | - Noratiqah Mohtar
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| | - K Sudesh Kumar
- School of Biological Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| | - Thaigarajan Parumasivam
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| |
Collapse
|
7
|
Khadka P, Dummer J, Hill PC, Katare R, Das SC. A review of formulations and preclinical studies of inhaled rifampicin for its clinical translation. Drug Deliv Transl Res 2022; 13:1246-1271. [PMID: 36131190 PMCID: PMC9491662 DOI: 10.1007/s13346-022-01238-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2022] [Indexed: 11/15/2022]
Abstract
Inhaled drug delivery is a promising approach to achieving high lung drug concentrations to facilitate efficient treatment of tuberculosis (TB) and to reduce the overall duration of treatment. Rifampicin is a good candidate for delivery via the pulmonary route. There have been no clinical studies yet at relevant inhaled doses despite the numerous studies investigating its formulation and preclinical properties for pulmonary delivery. This review discusses the clinical implications of pulmonary drug delivery in TB treatment, the drug delivery systems reported for pulmonary delivery of rifampicin, animal models, and the animal studies on inhaled rifampicin formulations, and the research gaps hindering the transition from preclinical development to clinical investigation. A review of reports in the literature suggested there have been minimal attempts to test inhaled formulations of rifampicin in laboratory animals at relevant high doses and there is a lack of appropriate studies in animal models. Published studies have reported testing only low doses (≤ 20 mg/kg) of rifampicin, and none of the studies has investigated the safety of inhaled rifampicin after repeated administration. Preclinical evaluations of inhaled anti-TB drugs, such as rifampicin, should include high-dose formulations in preclinical models, determined based on allometric conversions, for relevant high-dose anti-TB therapy in humans.
Collapse
Affiliation(s)
- Prakash Khadka
- School of Pharmacy, University of Otago, Dunedin, 9054, New Zealand
| | - Jack Dummer
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
| | - Philip C Hill
- Centre for International Health, Department of Preventive and Social Medicine, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
| | - Rajesh Katare
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, 9054, New Zealand
| | - Shyamal C Das
- School of Pharmacy, University of Otago, Dunedin, 9054, New Zealand.
| |
Collapse
|
8
|
Gairola A, Benjamin A, Weatherston JD, Cirillo JD, Wu HJ. Recent Developments in Drug Delivery for Treatment of Tuberculosis by Targeting Macrophages. ADVANCED THERAPEUTICS 2022; 5:2100193. [PMID: 36203881 PMCID: PMC9531895 DOI: 10.1002/adtp.202100193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Indexed: 11/10/2022]
Abstract
Tuberculosis (TB) is among the greatest public health and safety concerns in the 21st century, Mycobacterium tuberculosis, which causes TB, infects alveolar macrophages and uses these cells as one of its primary sites of replication. The current TB treatment regimen, which consist of chemotherapy involving a combination of 3-4 antimicrobials for a duration of 6-12 months, is marked with significant side effects, toxicity, and poor compliance. Targeted drug delivery offers a strategy that could overcome many of the problems of current TB treatment by specifically targeting infected macrophages. Recent advances in nanotechnology and material science have opened an avenue to explore drug carriers that actively and passively target macrophages. This approach can increase the drug penetration into macrophages by using ligands on the nanocarrier that interact with specific receptors for macrophages. This review encompasses the recent development of drug carriers specifically targeting macrophages actively and passively. Future directions and challenges associated with development of effective TB treatment is also discussed.
Collapse
Affiliation(s)
- Anirudh Gairola
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Aaron Benjamin
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Joshua D Weatherston
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Jeffrey D Cirillo
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Hung-Jen Wu
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
9
|
Truzzi E, Capocefalo A, Meneghetti F, Maretti E, Mori M, Iannuccelli V, Domenici F, Castellano C, Leo E. Design and physicochemical characterization of novel hybrid SLN-liposome nanocarriers for the smart co-delivery of two antitubercular drugs. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Sarkar K, Kumar M, Jha A, Bharti K, Das M, Mishra B. Nanocarriers for tuberculosis therapy: Design of safe and effective drug delivery strategies to overcome the therapeutic challenges. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Yaghmur A, Mu H. Recent advances in drug delivery applications of cubosomes, hexosomes, and solid lipid nanoparticles. Acta Pharm Sin B 2021; 11:871-885. [PMID: 33996404 PMCID: PMC8105777 DOI: 10.1016/j.apsb.2021.02.013] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
The use of lipid nanocarriers for drug delivery applications is an active research area, and a great interest has particularly been shown in the past two decades. Among different lipid nanocarriers, ISAsomes (Internally self-assembled somes or particles), including cubosomes and hexosomes, and solid lipid nanoparticles (SLNs) have unique structural features, making them attractive as nanocarriers for drug delivery. In this contribution, we focus exclusively on recent advances in formation and characterization of ISAsomes, mainly cubosomes and hexosomes, and their use as versatile nanocarriers for different drug delivery applications. Additionally, the advantages of SLNs and their application in oral and pulmonary drug delivery are discussed with focus on the biological fates of these lipid nanocarriers in vivo. Despite the demonstrated advantages in in vitro and in vivo evaluations including preclinical studies, further investigations on improved understanding of the interactions of these nanoparticles with biological fluids and tissues of the target sites is necessary for efficient designing of drug nanocarriers and exploring potential clinical applications.
Collapse
Affiliation(s)
- Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø 2100, Denmark
| | - Huiling Mu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø 2100, Denmark
| |
Collapse
|
12
|
Toxicity studies of highly bioavailable isoniazid loaded solid lipid nanoparticles as per Organisation for Economic Co-operation and Development (OECD) guidelines. Eur J Pharm Biopharm 2021; 160:82-91. [DOI: 10.1016/j.ejpb.2021.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 11/18/2022]
|
13
|
Ramalingam P, Ganesan P, Prabakaran DS, Gupta PK, Jonnalagadda S, Govindarajan K, Vishnu R, Sivalingam K, Sodha S, Choi DK, Ko YT. Lipid Nanoparticles Improve the Uptake of α-Asarone Into the Brain Parenchyma: Formulation, Characterization, In Vivo Pharmacokinetics, and Brain Delivery. AAPS PharmSciTech 2020; 21:299. [PMID: 33140227 DOI: 10.1208/s12249-020-01832-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/25/2020] [Indexed: 01/05/2023] Open
Abstract
Treatment of brain-related diseases is one of the most strenuous challenges in drug delivery research due to numerous hurdles, including poor blood-brain barrier penetration, lack of specificity, and severe systemic toxicities. Our research primarily focuses on the delivery of natural therapeutic compound, α-asarone, for the treatment of brain-related diseases. However, α-asarone has poor aqueous solubility, bioavailability, and stability, all of which are critical issues that need to be addressed. This study aims at formulating a lipid nanoparticulate system of α-asarone (A-LNPs) that could be used as a brain drug delivery system. The physicochemical, solid-state properties, stability, and in vitro and in vivo studies of the A-LNPs were characterized. The release of α-asarone from the A-LNPs was prolonged and sustained. After intravenous administration of A-LNPs or free α-asarone, significantly higher levels of α-asarone from the A-LNPs were detected in murine plasma and brain parenchyma fractions, confirming the ability of A-LNPs to not only maintain a therapeutic concentration of α-asarone in the plasma, but also transport α-asarone across the blood-brain barrier. These findings confirm that lipid nanoparticulate systems enable penetration of natural therapeutic compound α-asarone through the blood-brain barrier and may be a candidate for the treatment of brain-related diseases.
Collapse
|
14
|
Baranyai Z, Soria‐Carrera H, Alleva M, Millán‐Placer AC, Lucía A, Martín‐Rapún R, Aínsa JA, la Fuente JM. Nanotechnology‐Based Targeted Drug Delivery: An Emerging Tool to Overcome Tuberculosis. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000113] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zsuzsa Baranyai
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC–Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
| | - Héctor Soria‐Carrera
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC–Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
- Biomateriales y Nanomedicina (CIBER‐BBN), Instituto de Salud Carlos III CIBER de Bioingeniería Madrid 28029 Spain
| | - Maria Alleva
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC–Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
| | - Ana C. Millán‐Placer
- Departamento de Microbiología, Facultad de Medicina Universidad de Zaragoza C/ Domingo Miral s/n Zaragoza 50009 Spain
- Instituto de Investigación Sanitaria Aragón (IIS‐Aragón) Zaragoza 50009 Spain
| | - Ainhoa Lucía
- Departamento de Microbiología, Facultad de Medicina Universidad de Zaragoza C/ Domingo Miral s/n Zaragoza 50009 Spain
- Instituto de Investigación Sanitaria Aragón (IIS‐Aragón) Zaragoza 50009 Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
- CIBER de Enfermedades Respiratorias (CIBERES) Instituto de Salud Carlos III Madrid 28029 Spain
| | - Rafael Martín‐Rapún
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC–Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
- Departamento de Química Orgánica Facultad de Ciencias Universidad de Zaragoza Zaragoza 50009 Spain
- Biomateriales y Nanomedicina (CIBER‐BBN), Instituto de Salud Carlos III CIBER de Bioingeniería Madrid 28029 Spain
| | - José A. Aínsa
- Departamento de Microbiología, Facultad de Medicina Universidad de Zaragoza C/ Domingo Miral s/n Zaragoza 50009 Spain
- Instituto de Investigación Sanitaria Aragón (IIS‐Aragón) Zaragoza 50009 Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
- CIBER de Enfermedades Respiratorias (CIBERES) Instituto de Salud Carlos III Madrid 28029 Spain
| | - Jesús M. la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC–Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
- Biomateriales y Nanomedicina (CIBER‐BBN), Instituto de Salud Carlos III CIBER de Bioingeniería Madrid 28029 Spain
| |
Collapse
|
15
|
Hädrich G, Boschero RA, Appel AS, Falkembach M, Monteiro M, da Silva PEA, Dailey LA, Dora CL. Tuberculosis Treatment Facilitated by Lipid Nanocarriers: Can Inhalation Improve the Regimen? Assay Drug Dev Technol 2020; 18:298-307. [PMID: 33054379 DOI: 10.1089/adt.2020.998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB) remains a major global health problem. Conventional treatments fail either because of poor patient compliance with the drug regimen or due to the emergence of multidrug-resistant TB. Thus, not only has the discovery of new compounds and new therapeutic strategies been the focus of many types of research but also new routes of administration. Pulmonary drug delivery possesses many advantages, including the noninvasive route of administration, low metabolic activity, and control environment for systemic absorption, and avoids first-pass metabolism. The use of lipid nanocarriers provides several advantages such as protection of the compound's degradation, increased bioavailability, and controlled drug release. In this study, we review some points related to how the use of lipid nanocarriers can improve TB treatment with inhaled nanomedicines. This review also discusses the current approaches and formulations developed to achieve optimal pulmonary drug delivery systems with nanocarriers targeting alveolar macrophages.
Collapse
Affiliation(s)
- Gabriela Hädrich
- Department of Pharmaceutical Technology and Biopharmaceutics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,Laboratório de Nanotecnologia, Programa de Pós-graduação em Ciências da Saúde, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Raphael Aparecido Boschero
- Laboratório de Nanotecnologia, Programa de Pós-graduação em Ciências da Saúde, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Arthur Sperry Appel
- Laboratório de Nanotecnologia, Programa de Pós-graduação em Ciências da Saúde, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Mariana Falkembach
- Laboratório de Nanotecnologia, Programa de Pós-graduação em Ciências da Saúde, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Matheus Monteiro
- Laboratório de Nanotecnologia, Programa de Pós-graduação em Ciências da Saúde, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Pedro Eduardo Almeida da Silva
- Nucleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande-FURG, Rio Grande, Brazil
| | - Lea Ann Dailey
- Department of Pharmaceutical Technology and Biopharmacy, University of Vienna, Vienna, Austria
| | - Cristiana Lima Dora
- Laboratório de Nanotecnologia, Programa de Pós-graduação em Ciências da Saúde, Universidade Federal do Rio Grande, Rio Grande, Brazil
| |
Collapse
|
16
|
Guo P, Xue HY, Buttaro BA, Tran NT, Wong HL. Enhanced eradication of intracellular and biofilm-residing methicillin-resistant Staphylococcus aureus (MRSA) reservoirs with hybrid nanoparticles delivering rifampicin. Int J Pharm 2020; 589:119784. [PMID: 32877731 DOI: 10.1016/j.ijpharm.2020.119784] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/08/2020] [Accepted: 08/16/2020] [Indexed: 01/08/2023]
Abstract
Osteomyelitis carries a high risk of recurrence even after extended, aggressive antibiotic therapy. One of the key challenges is to eradicate the reservoirs of methicillin-resistant Staphylococcus aureus (MRSA) inside the host bone cells and their biofilms. Our goal is to develop rifampicin loaded lipid-polymer hybrid nanocarriers (Rf-LPN) and evaluate if they can achieve enhanced rifampicin delivery to eradicate these intracellular and biofilm-residing MRSA. After optimization of the composition, Rf-LPN demonstrated size around 110 nm in diameter that remained stable in serum-supplemented medium, drug payload up to 11.7% and sustained rifampicin release for 2 weeks. When comparing Rf-LPN with free rifampicin, moderate but significant (p < 0.05) improvement of the activities against three osteomyelitis-causing bacteria (USA300-0114, CDC-587, RP-62A) in planktonic form were observed. In comparison, the enhancements in the activities against the biofilms and intracellular MRSA by Rf-LPN were even more substantial. The MBEC50 values against USA300-0114, CDC-587, and RP-62A were 42 vs 155, 70 vs 388, and 265 ng/ml vs over 400 ng/ml, respectively, and up to 18.5-fold reduction in the intracellular MRSA counts in osteoblasts was obtained. Confocal microscope images confirmed extensive accumulation of Rf-LPN inside the biofilm matrix and MRSA-infected osteoblasts. Overall, in this proof-of-concept study we have developed and validated the strategy to exploit the nanoparticle-cell and nanoparticle-biofilm interactions with a new rifampicin nanoformulation for prevention of osteomyelitis recurrence and chronicity caused by the elusive MRSA.
Collapse
Affiliation(s)
- Pengbo Guo
- School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | - Hui Yi Xue
- School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | - Bettina A Buttaro
- Department of Microbiology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Ngoc T Tran
- School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | - Ho Lun Wong
- School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA.
| |
Collapse
|
17
|
Inhaled nanoparticles-An updated review. Int J Pharm 2020; 587:119671. [PMID: 32702456 DOI: 10.1016/j.ijpharm.2020.119671] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 11/21/2022]
Abstract
We are providing an update to our previously published review paper on inhaled nanoparticles, thus updating with the most recent reports in the literature. The field of nanotechnology may hold the promise of significant improvements in the health and well-being of patients, as well as in manufacturing technologies. The knowledge of the impact of nanomaterials on public health is limited so far. This paper reviews the unique size-controlled properties of nanomaterials, their disposition in the body after inhalation, and the factors influencing the fate of inhaled nanomaterials. The physiology of the lungs makes it an ideal target organ for non-invasive local and systemic drug delivery, especially for protein and poorly water-soluble drugs that have low oral bioavailability via oral administration. More recently, inhaled nanoparticles have been reported to improve therapeutic efficacies and decrease undesirable side effects via pulmonary delivery. The potential application of pulmonary drug delivery of nanoparticles to the lungs, specifically in context of published results reported on nanomaterials in environmental epidemiology and toxicology is reviewed in this paper. This article presents updated delivery systems, process technologies, and potential of inhaled nanoparticles for local and systemic therapies administered to the lungs. The authors acknowledge the contributions of Wei Yang in our 2008 paper published in this journal.
Collapse
|
18
|
Truzzi E, Nascimento TL, Iannuccelli V, Costantino L, Lima EM, Leo E, Siligardi C, Gualtieri ML, Maretti E. In Vivo Biodistribution of Respirable Solid Lipid Nanoparticles Surface-Decorated with a Mannose-Based Surfactant: A Promising Tool for Pulmonary Tuberculosis Treatment? NANOMATERIALS 2020; 10:nano10030568. [PMID: 32245153 PMCID: PMC7153707 DOI: 10.3390/nano10030568] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/21/2022]
Abstract
The active targeting to alveolar macrophages (AM) is an attractive strategy to improve the therapeutic efficacy of ‘old’ drugs currently used in clinical practice for the treatment of pulmonary tuberculosis. Previous studies highlighted the ability of respirable solid lipid nanoparticle assemblies (SLNas), loaded with rifampicin (RIF) and functionalized with a novel synthesized mannose-based surfactant (MS), both alone and in a blend with sodium taurocholate, to efficiently target the AM via mannose receptor-mediated mechanism. Here, we present the in vivo biodistribution of these mannosylated SLNas, in comparison with the behavior of both non-functionalized SLNas and bare RIF. SLNas biodistribution was assessed, after intratracheal instillation in mice, by whole-body real-time fluorescence imaging in living animals and RIF quantification in excised organs and plasma. Additionally, SLNas cell uptake was determined by using fluorescence microscopy on AM from bronchoalveolar lavage fluid and alveolar epithelium from lung dissections. Finally, histopathological evaluation was performed on lungs 24 h after administration. SLNas functionalized with MS alone generated the highest retention in lungs associated with a poor spreading in extra-pulmonary regions. This effect could be probably due to a greater AM phagocytosis with respect to SLNas devoid of mannose on their surface. The results obtained pointed out the unique ability of the nanoparticle surface decoration to provide a potential more efficient treatment restricted to the lungs where the primary tuberculosis infection is located.
Collapse
Affiliation(s)
- Eleonora Truzzi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.T.); (V.I.); (L.C.); (E.L.)
| | - Thais Leite Nascimento
- Laboratory of Pharmaceutical Technology, Federal University of Goiás, Goiânia, Goiás 74605-170, Brazil; (T.L.N.); (E.M.L.)
| | - Valentina Iannuccelli
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.T.); (V.I.); (L.C.); (E.L.)
| | - Luca Costantino
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.T.); (V.I.); (L.C.); (E.L.)
| | - Eliana Martins Lima
- Laboratory of Pharmaceutical Technology, Federal University of Goiás, Goiânia, Goiás 74605-170, Brazil; (T.L.N.); (E.M.L.)
| | - Eliana Leo
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.T.); (V.I.); (L.C.); (E.L.)
| | - Cristina Siligardi
- Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.S.); (M.L.G.)
| | | | - Eleonora Maretti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.T.); (V.I.); (L.C.); (E.L.)
- Correspondence:
| |
Collapse
|