1
|
Jang JH, Jeong SH. Population pharmacokinetic modeling study and discovery of covariates for the antidepressant sertraline, a serotonin selective reuptake inhibitor. Comput Biol Med 2024; 183:109319. [PMID: 39461103 DOI: 10.1016/j.compbiomed.2024.109319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
The purpose of this study was to discover effective covariates related to explanation of inter-individual pharmacokinetic (PK) variations through population pharmacokinetic (Pop-PK) modeling for sertraline and to provide insight into establishing scientific regimen. The bioequivalence results of sertraline performed on 24 healthy Korean men and the physiological and biochemical parameters derived from each individual were used as data to develop a Pop-PK model of sertraline for Koreans. And the relevant effectiveness of ∗10 allele polymorphisms of CYP2D6 in sertraline PK polymorphisms was further confirmed through a modeling approach. The Pop-PK profiles of sertraline were explained by the basic structure of sequential 2-absorption with 1-compartment, and in terms of inter-individual PK diversity, the volume of distribution could be significantly correlated with estimated glomerular filtration rate (eGFR) and clearance with total protein levels. CYP2D6∗10 allele was not significant in interpreting sertraline PK diversity. As a result of model simulation, the concentration of sertraline in serum significantly increased as total protein and eGFR levels became higher and lower, respectively. The mean serum concentrations of sertraline at steady-state differed by up to 2.12 times from 10.36 to 22.02 ng/mL depending on changes in total protein and eGFR levels, and the fluctuations between the maximum and minimum concentration values ranged from 2.02 to 29.51 to 4.31-63.78 ng/mL. The factor that significantly influenced change in mean serum concentration of sertraline at steady-state was the total protein level, which was interpreted to be closely related to the change in clearance due to the high serum protein binding of sertraline.
Collapse
Affiliation(s)
- Ji-Hun Jang
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, 61186, Gwangju, Republic of Korea
| | - Seung-Hyun Jeong
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, 57922, Suncheon-si, Jeollanam-do, Republic of Korea; College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 57922, Suncheon-Si, Republic of Korea.
| |
Collapse
|
2
|
Kaneko H, Korenaga R, Nakamura R, Kawai S, Ando T, Shiroishi M. Binding characteristics of the doxepin E/Z-isomers to the histamine H 1 receptor revealed by receptor-bound ligand analysis and molecular dynamics study. J Mol Recognit 2024:e3098. [PMID: 38924170 DOI: 10.1002/jmr.3098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/14/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
Doxepin is an antihistamine and tricyclic antidepressant that binds to the histamine H1 receptor (H1R) with high affinity. Doxepin is an 85:15 mixture of the E- and Z-isomers. The Z-isomer is well known to be more effective than the E-isomer, whereas based on the crystal structure of the H1R/doxepin complex, the hydroxyl group of Thr1123.37 is close enough to form a hydrogen bond with the oxygen atom of the E-isomer. The detailed binding characteristics and reasons for the differences remain unclear. In this study, we analyzed doxepin isomers bound to the receptor following extraction from a purified H1R protein complexed with doxepin. The ratio of the E- and Z-isomers bound to wild-type (WT) H1R was 55:45, indicating that the Z-isomer was bound to WT H1R with an approximately 5.2-fold higher affinity than the E-isomer. For the T1123.37V mutant, the E/Z ratio was 89:11, indicating that both isomers have similar affinities. Free energy calculations using molecular dynamics (MD) simulations also reproduced the experimental results of the relative binding free energy differences between the isomers for WT and T1123.37V. Furthermore, MD simulations revealed that the hydroxyl group of T1123.37 did not form hydrogen bonds with the E-isomer, but with the adjacent residues in the binding pocket. Analysis of the receptor-bound doxepin and MD simulations suggested that the hydroxyl group of T1123.37 contributes to the formation of a chemical environment in the binding pocket, which is slightly more favorable for the Z-isomer without hydrogen bonding with doxepin.
Collapse
Affiliation(s)
- Hiroto Kaneko
- Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Ryunosuke Korenaga
- Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Ryota Nakamura
- Department of Applied Electronics, Tokyo University of Science, Tokyo, Japan
| | - Shinnosuke Kawai
- Department of Applied Electronics, Tokyo University of Science, Tokyo, Japan
| | - Tadashi Ando
- Department of Applied Electronics, Tokyo University of Science, Tokyo, Japan
- Research Institute for Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Mitsunori Shiroishi
- Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
3
|
Jang JH, Jeong SH. Structure-Based Analysis of Cefaclor Pharmacokinetic Diversity According to Human Peptide Transporter-1 Genetic Polymorphism. Int J Mol Sci 2024; 25:6880. [PMID: 38999989 PMCID: PMC11241437 DOI: 10.3390/ijms25136880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/15/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Cefaclor is a substrate of human-peptide-transporter-1 (PEPT1), and the impact of inter-individual pharmacokinetic variation due to genetic polymorphisms of solute-carrier-family-15-member-1 (SLC15A1) has been a topic of great debate. The main objective of this study was to analyze and interpret cefaclor pharmacokinetic variations according to genetic polymorphisms in SLC15A1 exons 5 and 16. The previous cefaclor bioequivalence results were integrated with additional SLC15A1 exons 5 and 16 genotyping results. An analysis of the structure-based functional impact of SLC15A1 exons 5 and 16 genetic polymorphisms was recently performed using a PEPT1 molecular modeling approach. In cefaclor pharmacokinetic analysis results according to SLC15A1 exons 5 and 16 genetic polymorphisms, no significant differences were identified between genotype groups. Furthermore, in the population pharmacokinetic modeling, genetic polymorphisms in SLC15A1 exons 5 and 16 were not established as effective covariates. PEPT1 molecular modeling results also confirmed that SLC15A1 exons 5 and 16 genetic polymorphisms did not have a significant effect on substrate interaction with cefaclor and did not have a major effect in terms of structural stability. This was determined by comprehensively considering the insignificant change in energy values related to cefaclor docking due to point mutations in SLC15A1 exons 5 and 16, the structural change in conformations confirmed to be less than 0.05 Å, and the relative stabilization of molecular dynamic simulation energy values. As a result, molecular structure-based analysis recently suggested that SLC15A1 exons 5 and 16 genetic polymorphisms of PEPT1 were limited to being the main focus in interpreting the pharmacokinetic diversity of cefaclor.
Collapse
Affiliation(s)
- Ji-Hun Jang
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Suncheon-si 57922, Republic of Korea;
| | - Seung-Hyun Jeong
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Suncheon-si 57922, Republic of Korea;
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon-si 57922, Republic of Korea
| |
Collapse
|
4
|
Jang JH, Jeong SH, Lee YB. Quantitative assessment of the relevance of organic-anion-transporting-polypeptide 1B1 and 2B1 polymorphisms in fexofenadine pharmacokinetic variants via pharmacometrics. J Pharm Anal 2023. [DOI: 10.1016/j.jpha.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
|
5
|
Establishment of a fexofenadine population pharmacokinetic (PK)–pharmacodynamic (PD) model and exploration of dosing regimens through simulation. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2023. [DOI: 10.1007/s40005-023-00615-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
6
|
Jeong SH, Jang JH, Cho HY, Lee YB. Population Pharmacokinetic (Pop-PK) Analysis of Torsemide in Healthy Korean Males Considering CYP2C9 and OATP1B1 Genetic Polymorphisms. Pharmaceutics 2022; 14:pharmaceutics14040771. [PMID: 35456605 PMCID: PMC9028991 DOI: 10.3390/pharmaceutics14040771] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Torsemide is a diuretic drug used for several cardiovascular and chronic diseases. With regard to the clinical application of torsemide, studies on individualized pharmacotherapy and modeling that take variability in pharmacokinetics (PKs) within a population into account have been rarely reported. Thus, the objective of this study was to perform population pharmacokinetic (Pop-PK) modeling and to identify effective covariates that could explain the inter-individual variability (IIV) of torsemide PK. Pop-PK modeling for torsemide was performed based on serum concentration data obtained from 112 healthy Korean males and analysis of various genetic and physicochemical parameters. Modeling was performed with nonlinear mixed-effects (NLME) using Phoenix NLME. The finally developed model was fully verified. The model was also reconfirmed using NONMEM software. As a basic model, the PKs of torsemide within the population were well described by a two-compartment model reflecting the lag-time on oral absorption. According to the genetic polymorphisms of OATP1B1 and CYP2C9, significant associations were found in the V/F, CL/F, and CL2/F of torsemide. These were reflected as effective covariates in the final Pop-PK model of torsemide, resulting in an approximately 5–10% improvement in the model parameter IIV values. Considering that torsemide is a substrate for CYP2C9 and OATP1B1, it was important to search for genetic polymorphisms in CYP2C9 and OATP1B1 as covariates to explain the PK diversity of torsemide between individuals. The differences in CL/F and CL2/F between the phenotypes of CYP2C9 were approximately 36.5–51%. The difference in V/F between the phenotypes of OATP1B1 was approximately 41–64.6%. These results suggested that the phenotypes of CYP2C9 and OATP1B1 produced significant differences in torsemide PKs. Considering that CYP2C9 and OATP1B1 phenotypes as covariates affected different PK parameters of torsemide, it could be inferred that torsemide’s cell membrane permeation process by OATP1B1 and the metabolic process by CYP2C9 could independently affect each other in vivo without interplay. There was no significant difference in the parameter estimates between modeling software (Phoenix NLME vs. NONMEM). In this study, the torsemide PK variability between individuals was largely explained. In the future, individualized effective drug therapy of torsemide taking individual patient’s genotypes into account might become possible.
Collapse
Affiliation(s)
- Seung-Hyun Jeong
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea; (S.-H.J.); (J.-H.J.)
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Ji-Hun Jang
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea; (S.-H.J.); (J.-H.J.)
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Hea-Young Cho
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-Do, Korea
- Correspondence: (H.-Y.C.); (Y.-B.L.); Tel.: +82-31-881-7167 (H.-Y.C.); +82-62-530-2931 (Y.-B.L.)
| | - Yong-Bok Lee
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea; (S.-H.J.); (J.-H.J.)
- Correspondence: (H.-Y.C.); (Y.-B.L.); Tel.: +82-31-881-7167 (H.-Y.C.); +82-62-530-2931 (Y.-B.L.)
| |
Collapse
|
7
|
Jeong SH, Jang JH, Lee YB. Population pharmacokinetic analysis of lornoxicam in healthy Korean males considering creatinine clearance and CYP2C9 genetic polymorphism. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00550-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Jeong SH, Jang JH, Lee YB. Pharmacokinetic Comparison between Methotrexate-Loaded Nanoparticles and Nanoemulsions as Hard- and Soft-Type Nanoformulations: A Population Pharmacokinetic Modeling Approach. Pharmaceutics 2021; 13:pharmaceutics13071050. [PMID: 34371740 PMCID: PMC8309067 DOI: 10.3390/pharmaceutics13071050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 12/01/2022] Open
Abstract
The purpose of this study was to identify and explore the differences in pharmacokinetics between different nanoformulations. This was done by comparing the pharmacokinetics of methotrexate-loaded nanoparticles [poly(lactic-co-glycolic acid); size of 163.70 ± 10.25 nm] and nanoemulsions (olive oil and Labrasol; size of 173.77 ± 5.76 nm), which represent hard- and soft-type nanoformulations, respectively. In addition, the population pharmacokinetic modeling approach as a useful tool for the comparison of pharmacokinetics between nanoformulations was newly proposed through this study. Significant pharmacokinetic differences were identified between nanoformulations through the new population pharmacokinetic modeling approach. As a result, the formulation type was explored as a significant covariate. The clearance and bioavailability of methotrexate-loaded nanoemulsions tended to decrease by 99% and increase by 19%, respectively, compared to those of the nanoparticles. The exploration of significant pharmacokinetic differences between drug formulations and their correlations presented in this study provide new perspectives on the development of nanoformulations.
Collapse
|
9
|
Jeong SH, Jang JH, Cho HY, Lee YB. Population Pharmacokinetic Analysis of Cefaclor in Healthy Korean Subjects. Pharmaceutics 2021; 13:pharmaceutics13050754. [PMID: 34069627 PMCID: PMC8160640 DOI: 10.3390/pharmaceutics13050754] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 01/21/2023] Open
Abstract
The aims of this study were: (1) to perform population pharmacokinetic analysis of cefaclor in healthy Korean subjects, and (2) to investigate possible effects of various covariates on pharmacokinetic parameters of cefaclor. Although cefaclor belongs to the cephalosporin family antibiotic that has been used in various indications, there have been very few population studies on factors affecting its pharmacokinetics. Therefore, this study is very important in that effective therapy could be possible through a population pharmacokinetic study that explores effective covariates related to cefaclor pharmacokinetic diversity between individuals. Pharmacokinetic results of 48 subjects with physical and biochemical parameters were used for the population pharmacokinetic analysis of cefaclor. A one-compartment with lag-time and first-order absorption/elimination was constructed as a base model and extended to include covariates that could influence between-subject variability. Creatinine clearance and body weight significantly influenced systemic clearance and distribution volume of cefaclor. Cefaclor’s final population pharmacokinetic model was validated and some of the population’s pharmacokinetic diversity could be explained. Herein, we first describe the establishment of a population pharmacokinetic model of cefaclor for healthy Koreans that might be useful for customizing cefaclor or exploring additional covariates in patients.
Collapse
Affiliation(s)
- Seung-Hyun Jeong
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea; (S.-H.J.); (J.-H.J.)
| | - Ji-Hun Jang
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea; (S.-H.J.); (J.-H.J.)
| | - Hea-Young Cho
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Korea
- Correspondence: (H.-Y.C.); (Y.-B.L.); Tel.: +82-31-881-7167 (H.-Y.C.); +82-62-530-2931 (Y.-B.L.)
| | - Yong-Bok Lee
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea; (S.-H.J.); (J.-H.J.)
- Correspondence: (H.-Y.C.); (Y.-B.L.); Tel.: +82-31-881-7167 (H.-Y.C.); +82-62-530-2931 (Y.-B.L.)
| |
Collapse
|
10
|
Jeong SH, Jang JH, Cho HY, Lee YB. Pharmacokinetic comparison with different assays for simultaneous determination of cis-, trans-cefprozil diastereomers in human plasma. J Pharm Anal 2020; 11:351-363. [PMID: 34277123 PMCID: PMC8264462 DOI: 10.1016/j.jpha.2020.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 12/03/2022] Open
Abstract
The purpose of this study was to compare pharmacokinetic (PK) parameters obtained using two newly developed assays, HPLC-UV and UPLC-ESI-MS/MS. Selection of assay and results obtained therefrom are very important in PK studies and can have a major impact on the PK-based clinical dose and usage settings. For this study, we developed two new methods that are most commonly used in biosample analysis and focused on PK parameters obtained from them. By HPLC-UV equipped with a Luna-C8 column using UV detector, cefprozil diastereomers were separated using water containing 2% (V/V) acetic acid and acetonitrile as a mobile phase. By UPLC-ESI-MS/MS equipped with a HALO-C18column, cefprozil diastereomers were separated using 0.5% (V/V) aqueous formic acid containing 5 mM ammonium-formate buffer and methanol as a mobile phase. Chromatograms showed high resolution, sensitivity, and selectivity without interference by plasma constituents. Both intra- and inter-day precisions (CV, %) were within 8.88% for HPLC-UV and UPLC-ESI-MS/MS. Accuracy of both methods was 95.67%–107.50%. These two analytical methods satisfied the criteria of international guidance and could be successfully applied to PK study. Comparison of PK parameters between two assays confirmed that there is a difference in the predicted minimum plasma concentrations at steady state, which may affect clinical dose and usage settings. Furthermore, we confirmed possible correlation between PK parameters and various biochemical parameters after oral administration of 1000 mg cefprozil to humans. Development of UPLC-ESI-MS/MS and HPLC-UV methods for cefprozil diastereomers. Comparison of PK parameters obtained using two newly developed assays. Possible correlation between PK parameters and various biochemical parameters.
Collapse
Affiliation(s)
- Seung-Hyun Jeong
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Ji-Hun Jang
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Hea-Young Cho
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-Do, 13488, Republic of Korea
| | - Yong-Bok Lee
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| |
Collapse
|