1
|
Sim YS, Wong LC, Yeoh SC, Almashhadani A, Alrimawi BH, Goh CF. Skin penetration enhancers: Mechanistic understanding and their selection for formulation and design. Drug Deliv Transl Res 2025:10.1007/s13346-025-01809-9. [PMID: 39982640 DOI: 10.1007/s13346-025-01809-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2025] [Indexed: 02/22/2025]
Abstract
The skin functions as a formidable barrier, particularly the stratum corneum, effectively restricting the penetration of most substances, including therapeutic agents. To circumvent this barrier, skin penetration enhancers (SPEs) are frequently employed to transiently increase skin permeability, facilitating drug absorption without causing irritation or damage. Despite advancements in dermal formulation development, a deeper understanding of the fundamental science underpinning drug delivery via SPEs remains essential. This review delivers a critical update on conventional SPEs, exploring their mechanisms in promoting drug permeation across the skin. In addition to offering an overview of percutaneous drug delivery, we examine the prevailing theories on how SPEs enhance drug transport. Furthermore, we address the intricate interplay between SPEs, drugs and the skin, providing valuable insights into how the molecular properties and permeation behaviours of SPEs influence their efficacy. This comprehensive review aims to support the ongoing development of optimised drug delivery systems for dermal applications by elucidating the complexities and challenges involved in using SPEs effectively.
Collapse
Affiliation(s)
- Yee Shan Sim
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Li Ching Wong
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Soo Chin Yeoh
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Abdulsalam Almashhadani
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Bilal Harieth Alrimawi
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Choon Fu Goh
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia.
| |
Collapse
|
2
|
Chavan GS, Belgamwar A, Patil KD, Agrawal YO. Mechanistic Understanding of Onychomycosis Progression and Current Advancement in the Transungual Drug Delivery System. Crit Rev Ther Drug Carrier Syst 2025; 42:89-125. [PMID: 40084518 DOI: 10.1615/critrevtherdrugcarriersyst.2024053869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Onychomycosis, a nail infection prevalent in 50 to 60% of all nail illnesses globally, caused by dermatophytes, poses significant challenges to current therapies due to their limitations in effective administration. This review explores recent advancements in novel drug delivery systems while exploring the molecular mechanisms underlying onychomycosis progression. The physicochemical properties of antifungal treatments and the intricate structure of the nail plate present challenges and can be addressed by nanotechnology-enabled solutions. Furthermore, the review extensively covers diagnostic methods crucial for accurate onychomycosis identification. This review offers insights to enhance onychomycosis management by elucidating mechanistic aspects of the disease. Emphasizing the role of nanotechnology in drug delivery systems, it addresses current treatment challenges using innovative approaches. Moreover, the evaluation of various formulations highlights opportunities to improve therapeutic efficacy. Overall, this comprehensive review explores the current status, challenges, diagnostics advances, and novel approaches for the administration of drugs for the management of onychomycosis.
Collapse
Affiliation(s)
- Gaurav S Chavan
- Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra, India
| | - Aarti Belgamwar
- Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule
| | - Kiran D Patil
- Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule
| | | |
Collapse
|
3
|
Brouwer CPJM, Theelen B, van der Linden Y, Sarink N, Rahman M, Alwasel S, Cafarchia C, Welling MM, Boekhout T. Combinatory Use of hLF(1-11), a Synthetic Peptide Derived from Human Lactoferrin, and Fluconazole/Amphotericin B against Malassezia furfur Reveals a Synergistic/Additive Antifungal Effect. Antibiotics (Basel) 2024; 13:790. [PMID: 39200089 PMCID: PMC11351325 DOI: 10.3390/antibiotics13080790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 09/01/2024] Open
Abstract
OBJECTIVE The increasing resistance of Malassezia yeasts against commonly used antifungal drugs dictates the need for novel antifungal compounds. Human lactoferrin-based peptides show a broad spectrum of antimicrobial activities. Various assays were performed to find the optimal growth conditions of the yeasts and to assess cell viability, using media with low lipid content to avoid peptide binding to medium components. METHODS In the current study, we tested the antimicrobial susceptibility of 30 strains of M. furfur that cover the known IGS1 genotypic variation. RESULTS hLF(1-11) inhibited the growth of all species tested, resulting in minimum inhibitory concentrations (MIC) values ranging from 12.5 to 100 μg/mL. In the combinatory tests, the majority of fractional inhibitory concentration indexes (FIC) for the tested strains of M. furfur were up to 1.0, showing that there is a synergistic or additive effect on the efficacy of the antifungal drugs when used in combination with hLF(1-11). CONCLUSION Results showed that hLF(1-11) could be combined with fluconazole or amphotericin for the antimicrobial treatment of resistant strains, enhancing the potency of these antifungal drugs, resulting in an improved outcome for the patient.
Collapse
Affiliation(s)
- Carlo P. J. M. Brouwer
- CBMR Scientific Inc., Edmonton, AB T6J4V9, Canada
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; (B.T.); (N.S.)
| | - Bart Theelen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; (B.T.); (N.S.)
- Division of Pediatric Infectious Diseases, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Youp van der Linden
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; (B.T.); (N.S.)
| | - Nick Sarink
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; (B.T.); (N.S.)
| | | | - Saleh Alwasel
- College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Claudia Cafarchia
- Dipartimento di Medicina Veterinaria, Università degli Studi “Aldo Moro”, 70121 Bari, Italy;
| | - Mick M. Welling
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; (B.T.); (N.S.)
- College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
4
|
Li M, Chen X, Su X, Gao W. The Preparation and Evaluation of a Hydrochloride Hydrogel Patch with an Iontophoresis-Assisted Release of Terbinafine for Transdermal Delivery. Gels 2024; 10:456. [PMID: 39057479 PMCID: PMC11275388 DOI: 10.3390/gels10070456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Background: Terbinafine hydrochloride (TEB) is a broad-spectrum antifungal medication commonly used to treat fungal infections of the skin. This study designed a hydrogel patch assisted by an iontophoresis system to enhance the transdermal permeability of TEB, enabling deeper penetration into the skin layers. Methods: The influences of current intensity, pH levels, and drug concentration on the TEB hydrogel patch's permeability were explored using an adaptive ion electroosmosis system. The pharmacokinetic profile, facilitated by iontophoresis for transdermal permeation, was analyzed through the application of microdialysis technology. Scanning electron microscopy and transmission electron microscopy were employed to assess the impact of ion electroosmotic systems on skin integrity. Results: The cumulative drug accumulation within 8 h of the TEB hydrogel patches, assisted by iontophoresis, was 2.9 and 7.9 times higher than without iontophoresis assistance and TEB cream in the control group, respectively. TEB hydrogel patches assisted by iontophoresis can significantly increase the permeability of TEB, and the AUC(0-8 h) was 3.4 and 5.4 times higher, while the Cmax was 4.2 and 7.3 times higher than the TEB hydrogel patches without iontophoresis, respectively. This system has no significant impact on deep-layer cells. Conclusions: This system may offer a safe and effective clinical strategy for the local treatment of deep antifungal infections.
Collapse
Affiliation(s)
| | | | | | - Wenyan Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China; (M.L.)
| |
Collapse
|
5
|
Miranda M, Volmer Z, Cornick A, Goody A, Cardoso C, Pais AACC, Brown M, Vitorino C. In vitro studies into establishing therapeutic bioequivalence of complex topical products: Weight of evidence. Int J Pharm 2024; 656:124012. [PMID: 38537923 DOI: 10.1016/j.ijpharm.2024.124012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/15/2024]
Abstract
Over the past decade, topically applied drug products have experienced extraordinary price increases, due to the shortage of multisource generic drug products. This occurrence is mainly related to the underlying challenges evolved in topical bioequivalence documentation. Although there has been continuing regulatory efforts to present surrogate in vitro methods to clinical endpoint studies, there is still a continued need for cost- and time-efficient alternatives that account for product specificities. Hence, this work intended to expose bioequivalence assessment issues for complex topical formulations, and more specifically those related with product efficacy guidance. As a model drug and product, a bifonazole 10 mg/g cream formulation was selected and two different batches of the commercially available Reference Product (RP) were used: RP1 that displayed lower viscosity and RP4 which presented high, but not the highest, viscosity. In vitro human skin permeation testing (IVPT) was carried out and the results were evaluated by means of the traditional bioequivalence assessment approach proposed by the EMA, as well as by the Scaled Average Bioequivalence assessment approach proposed by the FDA. Based on previous experience, there was an expectation of a high level of variability in the results, thus alternative methods to evaluate local drug skin availability were developed. More specifically, an infected skin disease model, where ex vivo human skin was infected and ATP levels were used as a biological marker for monitoring antifungal activity after product application. The results showed that permeation equivalence could not be supported between the different RP batches. In contrast, this statistical difference between the formulation batches was not indicated in the disease model. Nevertheless, in pivotal IVPT studies, the lowest permeant formulation (RP4) evidenced a higher antifungal in vitro activity as reported by the lower levels of ATP. A critical appraisal of the results is likewise presented, focusing on an outlook of the real applicability of the regulatory guidances on this subject.
Collapse
Affiliation(s)
- Margarida Miranda
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Monte de Caparica, Portugal; Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, Portugal; Laboratórios Basi, Mortágua, Portugal; Faculty of Pharmacy, University of Coimbra, Portugal
| | - Zoe Volmer
- MedPharm Ltd, Surrey Research Centre, Guildford, Surrey, UK
| | - Alicia Cornick
- MedPharm Ltd, Surrey Research Centre, Guildford, Surrey, UK
| | - Aidan Goody
- MedPharm Ltd, Surrey Research Centre, Guildford, Surrey, UK
| | | | - Alberto A C C Pais
- Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, Portugal
| | - Marc Brown
- MedPharm Ltd, Surrey Research Centre, Guildford, Surrey, UK.
| | - Carla Vitorino
- Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Portugal; Polo das Ciências da Saúde, Azinhaga Santa Comba Polo 3, Coimbra, 3000-548 Portugal.
| |
Collapse
|
6
|
Yu HL, Goh CF. Glycols: The ubiquitous solvent for dermal formulations. Eur J Pharm Biopharm 2024; 196:114182. [PMID: 38224756 DOI: 10.1016/j.ejpb.2024.114182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/15/2023] [Accepted: 01/10/2024] [Indexed: 01/17/2024]
Abstract
Glycols stand out as one of the most commonly employed safe and effective excipients for pharmaceutical and cosmeceutical products. Their widespread adoption can be attributed to their exceptional solvency characteristics and their ability to interact effectively with skin lipids and keratin for permeation enhancement. Notably, propylene glycol enjoys significant popularity in this regard. Ongoing research endeavours have been dedicated to scrutinising the impact of glycols on dermal drug delivery and shedding light on the intricate mechanisms by which glycols enhance skin permeation. This review aims to mitigate the discordance within the existing literature, assemble a holistic understanding of the impact of glycols on the percutaneous absorption of active compounds and furnish the reader with a profound comprehension of the foundational facets pertaining to their skin permeation enhancement mechanisms, while simultaneously delving deeper into the intricacies of these processes.
Collapse
Affiliation(s)
- Hai Long Yu
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia
| | - Choon Fu Goh
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia.
| |
Collapse
|
7
|
Phagna M, Badhwar R, Singh M, Alhalmi A, Khan R, Noman OM, Alahdab A. Development and Characterization of Terbinafine-Loaded Nanoemulgel for Effective Management of Dermatophytosis. Gels 2023; 9:894. [PMID: 37998984 PMCID: PMC10670648 DOI: 10.3390/gels9110894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Dermatophytosis, the most prevalent fungal infection, is witnessing a rising incidence annually. To address this challenge, we developed a terbinafine-loaded oil-in-water nanoemulsion (TH-NE) through the aqueous microtitration method. The formulation comprised olive oil (oil phase), Span 80 (surfactant), and propylene glycol (co-surfactant). Pseudo-phase ternary diagrams and thermodynamic studies underscored the stability of TH-NE. Employing the Box-Behnken design (BBD), we optimized TH-NE, which resulted in a remarkable particle size of 28.07 nm ± 0.5, a low polydispersity index (PDI) of 0.1922 ± 0.1, and a substantial negative zeta potential of -41.87 mV ± 1. Subsequently, TH-NE was integrated into a 1.5% carbopol matrix, yielding a nanoemulgel (TH-NEG). Texture analysis of TH-NEG demonstrated a firmness of 168.00 g, a consistency of 229.81 g/s, negative cohesiveness (-83.36 g), and a work of cohesion at -107.02 g/s. In vitro drug release studies revealed an initial burst effect followed by sustained release, with TH-NEG achieving an impressive 88% release over 48 h, outperforming TH-NE (74%) and the marketed formulation (66%). Ex vivo release studies mirrored these results, with TH-NEG (86%) and TH-NE (71%) showcasing sustained drug release in comparison to the marketed formulation (67%). Confocal microscopy illustrated that TH-NEG and TH-NE penetrated to depths of 30 µm and 25 µm, respectively, into the epidermal layer. Furthermore, dermatokinetic studies highlighted the enhanced drug penetration of TH-NEG compared to TH-NE through mouse skin. In summary, our study establishes TH-NEG as a promising carrier for terbinafine in treating dermatophytosis, offering improved drug delivery and sustained release potential.
Collapse
Affiliation(s)
- Mayank Phagna
- Department of Pharmaceutics, SGT College of Pharmacy, SGT University, Gurugram 122001, India; (M.P.); (R.B.)
| | - Reena Badhwar
- Department of Pharmaceutics, SGT College of Pharmacy, SGT University, Gurugram 122001, India; (M.P.); (R.B.)
| | - Manvi Singh
- Department of Pharmaceutics, SGT College of Pharmacy, SGT University, Gurugram 122001, India; (M.P.); (R.B.)
| | - Abdulsalam Alhalmi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (A.A.); (R.K.)
| | - Rahmuddin Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (A.A.); (R.K.)
| | - Omar M. Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ahmad Alahdab
- Institute of Pharmacy, Clinical Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489 Greifswald, Germany
| |
Collapse
|
8
|
Hassan SU, Khalid I, Hussain L, Imam MT, Shahid I. Topical Delivery of Terbinafine HCL Using Nanogels: A New Approach to Superficial Fungal Infection Treatment. Gels 2023; 9:841. [PMID: 37998931 PMCID: PMC10670406 DOI: 10.3390/gels9110841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 11/25/2023] Open
Abstract
This study investigated pH-responsive Terbinafine HCL (TBH)-loaded nanogels as a new approach to treating superficial fungal infections. Acrylic acid (AA) is a synthetic monomer that was crosslinked with a natural polymer (gelatin) using a free radical polymerization technique to fabricate gelatin-g-poly-(acrylic acid) nanogels. Ammonium persulphate (APS) and N, N'-methylene bisacrylamide (MBA) were used as the initiator and crosslinker, respectively. Developed gelatin-g-poly-(acrylic acid) nanogels were evaluated for the swelling study (pH 1.2, 5, 7.4), DEE, particle size, FTIR, thermal stability (TGA, DSC), XRD, SEM, DEE, and in vitro drug release study to obtain optimized nanogels. Optimized nanogels were incorporated into 1% HPMC gel and then evaluated in comparison with Lamisil cream 1% for TBH stratum corneum retention, skin irritation, and in vitro and in vivo antifungal activity studies. Optimized nanogels (AAG 7) demonstrated a 255 nm particle size, 82.37% DEE, pH-dependent swelling, 92.15% of drug release (pH) 7.4 within 12 h, and a larger zone of inhibition compared to Lamisil cream. HPMC-loaded nanogels significantly improved the TBH skin retention percentage, as revealed by an ex vivo skin retention study, indicating the usefulness of nanogels for topical use. In vivo studies conducted on animal models infected with a fungal infection have further confirmed the effectiveness of nanogels compared with the Lamisil cream. Hence, Gelatin-g-poly-(acrylic acid) nanogels carrying poorly soluble TBH can be a promising approach for treating superficial fungal infections.
Collapse
Affiliation(s)
- Shams ul Hassan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan;
| | - Ikrima Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan;
| | - Liaqat Hussain
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan;
| | - Mohammad T. Imam
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia;
| | - Imran Shahid
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| |
Collapse
|
9
|
Hammoudi Halat D, Younes S, Mourad N, Rahal M. Allylamines, Benzylamines, and Fungal Cell Permeability: A Review of Mechanistic Effects and Usefulness against Fungal Pathogens. MEMBRANES 2022; 12:membranes12121171. [PMID: 36557078 PMCID: PMC9781035 DOI: 10.3390/membranes12121171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 05/30/2023]
Abstract
Allylamines, naftifine and terbinafine, and the benzylamine, butenafine, are antifungal agents with activity on the fungal cell membrane. These synthetic compounds specifically inhibit squalene epoxidase, a key enzyme in fungal sterol biosynthesis. This results in a deficiency in ergosterol, a major fungal membrane sterol that regulates membrane fluidity, biogenesis, and functions, and whose damage results in increased membrane permeability and leakage of cellular components, ultimately leading to fungal cell death. With the fungal cell membrane being predominantly made up of lipids including sterols, these lipids have a vital role in the pathogenesis of fungal infections and the identification of improved therapies. This review will focus on the fungal cell membrane structure, activity of allylamines and benzylamines, and the mechanistic damage they cause to the membrane. Furthermore, pharmaceutical preparations and clinical uses of these drugs, mainly in dermatophyte infections, will be reviewed.
Collapse
Affiliation(s)
- Dalal Hammoudi Halat
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese International University, Bekaa 146404, Lebanon
| | - Samar Younes
- Department of Biomedical Sciences, School of Pharmacy, Lebanese International University, Bekaa 146404, Lebanon
| | - Nisreen Mourad
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese International University, Bekaa 146404, Lebanon
| | - Mohamad Rahal
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese International University, Bekaa 146404, Lebanon
| |
Collapse
|
10
|
Thermodynamic Correlation between Liquid-Liquid Phase Separation and Crystalline Solubility of Drug-Like Molecules. Pharmaceutics 2022; 14:pharmaceutics14122560. [PMID: 36559054 PMCID: PMC9782016 DOI: 10.3390/pharmaceutics14122560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
The purpose of the present study was to experimentally confirm the thermodynamic correlation between the intrinsic liquid−liquid phase separation (LLPS) concentration (S0LLPS) and crystalline solubility (S0c) of drug-like molecules. Based on the thermodynamic principles, the crystalline solubility LLPS concentration melting point (Tm) equation (CLME) was derived (log10S0C=log10S0LLPS−0.0095Tm−310 for 310 K). The S0LLPS values of 31 drugs were newly measured by simple bulk phase pH-shift or solvent-shift precipitation tests coupled with laser-assisted visual turbidity detection. To ensure the precipitant was not made crystalline at <10 s, the precipitation tests were also performed under the polarized light microscope. The calculated and observed log10S0C values showed a good correlation (root mean squared error: 0.40 log unit, absolute average error: 0.32 log unit).
Collapse
|
11
|
Puri V, Froelich A, Shah P, Pringle S, Chen K, Michniak-Kohn B. Quality by Design Guided Development of Polymeric Nanospheres of Terbinafine Hydrochloride for Topical Treatment of Onychomycosis Using a Nano-Gel Formulation. Pharmaceutics 2022; 14:pharmaceutics14102170. [PMID: 36297605 PMCID: PMC9611585 DOI: 10.3390/pharmaceutics14102170] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/29/2022] [Accepted: 10/07/2022] [Indexed: 11/28/2022] Open
Abstract
Superficial fungal diseases of the skin and nails are an increasingly common occurrence globally, requiring effective topical treatment to avoid systemic adverse effects. Polymeric nanoparticles have demonstrated sustained and effective drug delivery in a variety of topical formulations. The aim of this project was to develop polymeric antifungal nanospheres containing terbinafine hydrochloride (TBH) to be loaded into a hydrogel formulation for topical nail drug delivery. A quality by design (QbD) approach was used to achieve optimized particles with the desired quality target product profile (QTPP). Polyvinyl alcohol (PVA) at 2% w/v and a drug to polymer ratio of 1:4, together with a robust set of processes and material attributes, resulted in nanoparticles of 108.7 nm with a polydispersity index (PDI) of 0.63, 57.43% recovery, and other desirable characteristics such as zeta potential (ZP), particle shape, aggregation, etc. The nanospheres were incorporated into a carbomer-based gel, and the delivery of TBH through this formulation was evaluated by means of in vitro drug release testing (IVRT) and ex vivo nail permeation study. The gel containing the TBH nanospheres demonstrated a slower and controlled drug release profile compared with the control gel, in addition to a more efficient delivery into the nail. These antifungal nanospheres can be utilized for topical therapy of a multitude of superficial fungal infections.
Collapse
Affiliation(s)
- Vinam Puri
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08855, USA
- Center for Dermal Research, Life Science Building, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Anna Froelich
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Parinbhai Shah
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08855, USA
- Center for Dermal Research, Life Science Building, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Shernelle Pringle
- Department of Biomedical Sciences, School of Graduate Studies, Rutgers, The State University of New Jersey, Piscataway, NJ 08855, USA
| | - Kevin Chen
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08855, USA
- Center for Dermal Research, Life Science Building, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Bozena Michniak-Kohn
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08855, USA
- Center for Dermal Research, Life Science Building, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Correspondence: ; Tel.: +1-(848)-445-3589
| |
Collapse
|
12
|
Miranda M, Veloso C, Brown M, A. C. C. Pais A, Cardoso C, Vitorino C. Topical bioequivalence: Experimental and regulatory considerations following formulation complexity. Int J Pharm 2022; 620:121705. [DOI: 10.1016/j.ijpharm.2022.121705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 10/18/2022]
|
13
|
El-Sayed SE, Abdelaziz NA, Osman HEH, El-Housseiny GS, Aleissawy AE, Aboshanab KM. Lysinibacillus Isolate MK212927: A Natural Producer of Allylamine Antifungal ‘Terbinafine’. Molecules 2021; 27:molecules27010201. [PMID: 35011429 PMCID: PMC8746802 DOI: 10.3390/molecules27010201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/24/2021] [Accepted: 12/25/2021] [Indexed: 11/17/2022] Open
Abstract
Resistance to antifungal agents represents a major clinical challenge, leading to high morbidity and mortality rates, especially in immunocompromised patients. In this study, we screened soil bacterial isolates for the capability of producing metabolites with antifungal activities via the cross-streak and agar cup-plate methods. One isolate, coded S6, showed observable antifungal activity against Candida (C.) albicans ATCC 10231 and Aspergillus (A.) niger clinical isolate. This strain was identified using a combined approach of phenotypic and molecular techniques as Lysinibacillus sp. MK212927. The purified metabolite displayed fungicidal activity, reserved its activity in a relatively wide range of temperatures (up to 60 °C) and pH values (6–7.8) and was stable in the presence of various enzymes and detergents. As compared to fluconazole, miconazole and Lamisil, the minimum inhibitory concentration of the metabolite that showed 90% inhibition of the growth (MIC90) was equivalent to that of Lamisil, half of miconazole and one fourth of fluconazole. Using different spectroscopic techniques such as FTIR, UV spectroscopy, 1D NMR and 2D NMR techniques, the purified metabolite was identified as terbinafine, an allylamine antifungal agent. It is deemed necessary to note that this is the first report of terbinafine production by Lysinibacillus sp. MK212927, a fast-growing microbial source, with relatively high yield and that is subject to potential optimization for industrial production capabilities.
Collapse
Affiliation(s)
- Sayed E. El-Sayed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU), Sixth of October City 12451, Egypt; (S.E.E.-S.); (N.A.A.)
| | - Neveen A. Abdelaziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU), Sixth of October City 12451, Egypt; (S.E.E.-S.); (N.A.A.)
| | - Hosam-Eldin Hussein Osman
- Department of Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Ghadir S. El-Housseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., Cairo 11566, Egypt;
| | - Ahmed E. Aleissawy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., Cairo 11566, Egypt;
| | - Khaled M. Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., Cairo 11566, Egypt;
- Correspondence: ; Tel.: +20-100-758-2620
| |
Collapse
|
14
|
Gnat S, Łagowski D, Dyląg M, Zielinski J, Nowakiewicz A. In vitro evaluation of photodynamic activity of methylene blue against Trichophyton verrucosum azole-susceptible and -resistant strains. JOURNAL OF BIOPHOTONICS 2021; 14:e202100150. [PMID: 34185387 DOI: 10.1002/jbio.202100150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
The intense search for the "Holy Grail" of antifungal therapy can be observed today. The searches are not limited only to discovery of potential antifungal drugs, but also new therapeutic strategies involving the use of chemosensitizers to achieve synergistic effect or physicochemical factors inducing stress conditions in fungal cells. In this study was examined in vitro effectiveness of photodynamic antifungal strategy with methylene blue using a light beam with a wavelength equal to 635 nm toward the Trichophyton verrucosum susceptible and itraconazole- and/or fluconazole-resistant strains. Methylene blue used at concentration equal to 5 μg/mL and in the presence of 40 J/cm2 of light energy showed fungicidal effect toward the susceptible strains. However, for azole-resistant isolates, only the energy dose equal to 60 J/cm2 at 5 μg/mL of methylene blue allowed to kill the pathogen. This study confirms that methylene blue induced by red light has a definite inhibitory effect on zoophilic dermatophytes.
Collapse
Affiliation(s)
- Sebastian Gnat
- Faculty of Veterinary Medicine, Department of Veterinary Microbiology, University of Life Sciences, Lublin, Poland
| | - Dominik Łagowski
- Faculty of Veterinary Medicine, Department of Veterinary Microbiology, University of Life Sciences, Lublin, Poland
| | - Mariusz Dyląg
- Faculty of Biological Sciences, Department of Mycology and Genetics, University of Wroclaw, Wroclaw, Poland
| | - Jessica Zielinski
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Aneta Nowakiewicz
- Faculty of Veterinary Medicine, Department of Veterinary Microbiology, University of Life Sciences, Lublin, Poland
| |
Collapse
|
15
|
Pence IJ, Kuzma BA, Brinkmann M, Hellwig T, Evans CL. Multi-window sparse spectral sampling stimulated Raman scattering microscopy. BIOMEDICAL OPTICS EXPRESS 2021; 12:6095-6114. [PMID: 34745724 PMCID: PMC8547998 DOI: 10.1364/boe.432177] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Stimulated Raman scattering (SRS) is a nondestructive and rapid technique for imaging of biological and clinical specimens with label-free chemical specificity. SRS spectral imaging is typically carried out either via broadband methods, or by tuning narrowband ultrafast light sources over narrow spectral ranges thus specifically targeting vibrational frequencies. We demonstrate a multi-window sparse spectral sampling SRS (S4RS) approach where a rapidly-tunable dual-output all-fiber optical parametric oscillator is tuned into specific vibrational modes across more than 1400 cm-1 during imaging. This approach is capable of collecting SRS hyperspectral images either by scanning a full spectrum or by rapidly tuning into select target frequencies, hands-free and automatically, across the fingerprint, silent, and high wavenumber windows of the Raman spectrum. We further apply computational techniques for spectral decomposition and feature selection to identify a sparse subset of Raman frequencies capable of sample discrimination. Here we have applied this novel method to monitor spatiotemporal dynamic changes of active pharmaceutical ingredients in skin, which has particular relevance to topical drug product delivery.
Collapse
Affiliation(s)
- Isaac J Pence
- Wellman Center for Photomedicine, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Benjamin A Kuzma
- Wellman Center for Photomedicine, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | | - Tim Hellwig
- Refined Laser Systems GmbH, Münster, Germany
| | - Conor L Evans
- Wellman Center for Photomedicine, Massachusetts General Hospital, Charlestown, MA 02129, USA
| |
Collapse
|
16
|
In Vitro-In Vivo Correlation in Dermal Delivery: The Role of Excipients. Pharmaceutics 2021; 13:pharmaceutics13040542. [PMID: 33924434 PMCID: PMC8069833 DOI: 10.3390/pharmaceutics13040542] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/30/2021] [Accepted: 04/10/2021] [Indexed: 11/30/2022] Open
Abstract
The composition of topical and transdermal formulations is known to determine the rate and the extent of drug delivery to and through the skin. However, to date, the role of excipients in these formulations on skin delivery of actives has received little attention from scientists in the field. Monitoring skin absorption of both drug and vehicle may provide insights into the mechanism by which excipients promote permeation and may facilitate the design of effective and safer products. Previously, we have investigated the use of quantitative Confocal Raman Spectroscopy (CRS) to investigate the delivery of an active to the skin, and we also reported the first fully quantitative study that compared this method with the well-established in vitro permeation test (IVPT) model. To further explore the potential of quantitative CRS in assessing topical delivery, the present work investigated the effects of commonly used excipients on the percutaneous absorption of a model drug, ibuprofen (IBU). Permeation of IBU and selected solvents following finite dose applications to human skin was determined in vitro and in vivo by Franz diffusion studies and quantitative CRS, respectively. The solvents used were propylene glycol (PG), dipropylene glycol (DPG), tripropylene glycol (TPG), and polyethylene glycol 300 (PEG 300). Overall, the cumulative amounts of IBU that permeated at 24 h in vitro were similar for PG, DPG, and TPG (p > 0.05). These three vehicles outperformed PEG 300 (p < 0.05) in terms of drug delivery. Concerning the vehicles, the rank order for in vitro skin permeation was DPG ≥ PG > TPG, while PEG 300 did not permeate the skin. A linear relationship between maximum vehicle and IBU flux in vitro was found, with a correlation coefficient (R2) of 0.95. When comparing in vitro with in vivo data, a positive in vitro–in vivo (IVIV) correlation between the cumulative permeation of IBU in vitro and the total amount of IBU that penetrated the stratum corneum (SC) in vivo was observed, with a Pearson correlation coefficient (R2) of 0.90. A strong IVIV correlation, R2 = 0.82, was found following the linear regression of the cumulative number of solvents permeated in vitro and the corresponding skin uptake in vivo measured with CRS. This is the first study to correlate in vivo permeation of solvents measured by CRS with data obtained by in vitro diffusion studies. The IVIV correlations suggest that CRS is a powerful tool for profiling drug and vehicle delivery from dermal formulations. Future studies will examine additional excipients with varying physicochemical properties. Ultimately, these findings are expected to lead to new approaches for the design, evaluation, and optimization of formulations that target actives to and through the skin.
Collapse
|
17
|
Ozawa Y, Watanabe Y, Ando D, Koide T, Fukami T. Advanced Formulation Design for Topical Creams Assisted with Vibrational Spectroscopic Imaging. Chem Pharm Bull (Tokyo) 2021; 69:271-277. [PMID: 33642475 DOI: 10.1248/cpb.c20-00979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vibrational spectroscopic imaging has become useful analytical tools for quality control of drug products. In this study, we applied microscopic attenuated total reflection (ATR)-IR and confocal Raman microscopy to elucidate microscopic structure of creams and for the formulation design in the development of semi-solid drug products. The model creams were prepared with prednisolone (PRD) and fluconazole (FLC) as active pharmaceutical ingredients and oily solvents such as mineral oil (MO), isopropyl myristate (IPM), benzyl alcohol (BA) and diethyl sebacate (DES). As a result of microscopic ATR-IR imaging, several domains indicating oily internal phase were observed, which had absorption around 1732 and 1734 cm-1 derived from MO, IPM and DES. In addition, domains of BA around 1009 cm-1 were observed at the complemental or similar position in the formulation with MO or DES, respectively. These results suggested that the creams were oil-in-water type and the distribution of domains would reflect the compatibility of the solvents. The contents of PRD and BA were determined quantitatively in each layer after the intentional separation of the creams and the results agreed well with the imaging analysis. Whereas, confocal Raman imaging allowed to visualize the distribution of the components in depth direction as well as two-dimensional plane. In particular, the Raman imaging would ensure the coexistence of FLC and BA as oily phase in the cream. From these results, the feasibility of spectroscopic imaging techniques was successfully demonstrated for the formulation design of semi-solid dosage forms.
Collapse
Affiliation(s)
- Yosuke Ozawa
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University
| | - Yutaro Watanabe
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University
| | - Daisuke Ando
- Division of Drugs, National Institute of Health Sciences
| | - Tatsuo Koide
- Division of Drugs, National Institute of Health Sciences
| | - Toshiro Fukami
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University
| |
Collapse
|
18
|
Łagowski D, Gnat S, Nowakiewicz A, Osińska M, Dyląg M. Intrinsic resistance to terbinafine among human and animal isolates of Trichophyton mentagrophytes related to amino acid substitution in the squalene epoxidase. Infection 2020; 48:889-897. [PMID: 32770418 PMCID: PMC7674369 DOI: 10.1007/s15010-020-01498-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/30/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Dermatomycoses are the most common fungal infections in the world affecting a significant part of the human and animal population. The majority of zoophilic infections in humans are caused by Trichophyton mentagrophytes. Currently, the first-line drug for both oral and topical therapy is terbinafine. However, an increasing number of cases that are difficult to be cured with this drug have been noted in Europe and Asia. Resistance to terbinafine and other allylamines is very rare and usually correlated with point mutations in the squalene epoxidase gene resulting in single amino acid substitutions in the enzyme, which is crucial in the ergosterol synthesis pathway. PURPOSE Here, we report terbinafine-resistant T. mentagrophytes isolates among which one was an etiological factor of tinea capitis in a man and three were obtained from asymptomatic foxes in Poland. METHODS We used the CLSI protocol to determine antifungal susceptibility profiles of naftifine, amphotericin B, griseofulvin, ketoconazole, miconazole, itraconazole, voriconazole, and ciclopirox. Moreover, the squalene epoxidase gene of the terbinafine-resistant strains was sequenced and analysed. RESULTS In the genomes of all four resistant strains exhibiting elevated MICs to terbinafine (16 to 32 µg/ml), single-point mutations leading to Leu393Phe substitution in the squalene epoxidase enzyme were revealed. Among the other tested substances, a MIC50 value of 1 µg/ml was shown only for griseofulvin. CONCLUSION Finally, our study revealed that the terbinafine resistance phenomenon might not be acquired by exposure to the drug but can be intrinsic. This is evidenced by the description of the terbinafine-resistant strains isolated from the asymptomatic animals.
Collapse
Affiliation(s)
- Dominik Łagowski
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Institute of Preclinical Veterinary Sciences, University of Life Sciences, Akademicka 12, 20-033, Lublin, Poland
| | - Sebastian Gnat
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Institute of Preclinical Veterinary Sciences, University of Life Sciences, Akademicka 12, 20-033, Lublin, Poland.
| | - Aneta Nowakiewicz
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Institute of Preclinical Veterinary Sciences, University of Life Sciences, Akademicka 12, 20-033, Lublin, Poland
| | - Marcelina Osińska
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Institute of Preclinical Veterinary Sciences, University of Life Sciences, Akademicka 12, 20-033, Lublin, Poland
| | - Mariusz Dyląg
- Department of Mycology and Genetics, Faculty of Biological Sciences, Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
19
|
Rice CA, Troth EV, Russell AC, Kyle DE. Discovery of Anti-Amoebic Inhibitors from Screening the MMV Pandemic Response Box on Balamuthia mandrillaris, Naegleria fowleri, and Acanthamoeba castellanii. Pathogens 2020; 9:E476. [PMID: 32560115 PMCID: PMC7344389 DOI: 10.3390/pathogens9060476] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023] Open
Abstract
Pathogenic free-living amoebae, Balamuthia mandrillaris, Naegleria fowleri, and several Acanthamoeba species are the etiological agents of severe brain diseases, with case mortality rates > 90%. A number of constraints including misdiagnosis and partially effective treatments lead to these high fatality rates. The unmet medical need is for rapidly acting, highly potent new drugs to reduce these alarming mortality rates. Herein, we report the discovery of new drugs as potential anti-amoebic agents. We used the CellTiter-Glo 2.0 high-throughput screening methods to screen the Medicines for Malaria Ventures (MMV) Pandemic Response Box in a search for new active chemical scaffolds. Initially, we screened the library as a single-point assay at 10 and 1 µM. From these data, we reconfirmed hits by conducting quantitative dose-response assays and identified 12 hits against B. mandrillaris, 29 against N. fowleri, and 14 against A. castellanii ranging from nanomolar to low micromolar potency. We further describe 11 novel molecules with activity against B. mandrillaris, 22 against N. fowleri, and 9 against A. castellanii. These structures serve as a starting point for medicinal chemistry studies and demonstrate the utility of phenotypic screening for drug discovery to treat diseases caused by free-living amoebae.
Collapse
Affiliation(s)
- Christopher A. Rice
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
- Center for Tropical and Emerging Global Diseases, Athens, GA 30602, USA; (E.V.T.); (A.C.R.)
| | - Emma V. Troth
- Center for Tropical and Emerging Global Diseases, Athens, GA 30602, USA; (E.V.T.); (A.C.R.)
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - A. Cassiopeia Russell
- Center for Tropical and Emerging Global Diseases, Athens, GA 30602, USA; (E.V.T.); (A.C.R.)
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Dennis E. Kyle
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
- Center for Tropical and Emerging Global Diseases, Athens, GA 30602, USA; (E.V.T.); (A.C.R.)
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
20
|
Abstract
3-O-ethyl l-ascorbic acid (EA), an ether derivative of Vitamin C, is widely used in skincare formulations. Previously, we reported the effects of neat solvents on EA percutaneous absorption and observed that 0.6–7.5% of the applied EA was delivered through the skin over 24 h. In this work, we designed complex formulations using combinations of solvents that may act synergistically and examined their impact on EA permeation in porcine skin in vitro under finite dose conditions. Binary combinations of propylene glycol (PG) with propylene glycol monolaurate (PGML) were effective in enhancing skin permeation of EA compared with individual solvents (p < 0.05). Combining PGML with 1,2-hexanediol (HEX) did not result in significantly higher EA permeation compared with the neat solvents (p > 0.05). Addition of the volatile solvent isopropyl alcohol (IPA) to PG solutions also did not improve EA skin delivery compared with neat PG. Ternary solvent systems containing PG:PGML were subsequently prepared by the addition of a lipophilic solvent, either isopropyl myristate (IPM), medium-chain triglycerides (MCT) or isostearyl isostearate (ISIS). The optimum vehicle, PG:PGML:IPM, promoted up to 70.9% skin delivery of EA. The PG:PGML:ISIS vehicles also promoted EA permeation across the skin, but to a significantly lesser extent than the IPM-containing vehicles. No enhancement of EA delivery was noted for the PG:PGML:MCT mixtures. These results will inform the development of targeted formulations for EA in the future.
Collapse
|
21
|
Iliopoulos F, Sil BC, Monjur Al Hossain A, Moore DJ, Lucas RA, Lane ME. Topical delivery of niacinamide: Influence of neat solvents. Int J Pharm 2020; 579:119137. [DOI: 10.1016/j.ijpharm.2020.119137] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 11/29/2022]
|