1
|
Channer B, Matt SM, Nickoloff-Bybel EA, Pappa V, Agarwal Y, Wickman J, Gaskill PJ. Dopamine, Immunity, and Disease. Pharmacol Rev 2023; 75:62-158. [PMID: 36757901 PMCID: PMC9832385 DOI: 10.1124/pharmrev.122.000618] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
The neurotransmitter dopamine is a key factor in central nervous system (CNS) function, regulating many processes including reward, movement, and cognition. Dopamine also regulates critical functions in peripheral organs, such as blood pressure, renal activity, and intestinal motility. Beyond these functions, a growing body of evidence indicates that dopamine is an important immunoregulatory factor. Most types of immune cells express dopamine receptors and other dopaminergic proteins, and many immune cells take up, produce, store, and/or release dopamine, suggesting that dopaminergic immunomodulation is important for immune function. Targeting these pathways could be a promising avenue for the treatment of inflammation and disease, but despite increasing research in this area, data on the specific effects of dopamine on many immune cells and disease processes remain inconsistent and poorly understood. Therefore, this review integrates the current knowledge of the role of dopamine in immune cell function and inflammatory signaling across systems. We also discuss the current understanding of dopaminergic regulation of immune signaling in the CNS and peripheral tissues, highlighting the role of dopaminergic immunomodulation in diseases such as Parkinson's disease, several neuropsychiatric conditions, neurologic human immunodeficiency virus, inflammatory bowel disease, rheumatoid arthritis, and others. Careful consideration is given to the influence of experimental design on results, and we note a number of areas in need of further research. Overall, this review integrates our knowledge of dopaminergic immunology at the cellular, tissue, and disease level and prompts the development of therapeutics and strategies targeted toward ameliorating disease through dopaminergic regulation of immunity. SIGNIFICANCE STATEMENT: Canonically, dopamine is recognized as a neurotransmitter involved in the regulation of movement, cognition, and reward. However, dopamine also acts as an immune modulator in the central nervous system and periphery. This review comprehensively assesses the current knowledge of dopaminergic immunomodulation and the role of dopamine in disease pathogenesis at the cellular and tissue level. This will provide broad access to this information across fields, identify areas in need of further investigation, and drive the development of dopaminergic therapeutic strategies.
Collapse
Affiliation(s)
- Breana Channer
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Stephanie M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Emily A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Vasiliki Pappa
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Yash Agarwal
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Jason Wickman
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| |
Collapse
|
2
|
Mao Q, Pan H, Zhang Y, Zhang Y, Zhu Q, Hong Y, Huang Z, Li Y, Feng X, Fang Y, Chen W, Chen P, Shen B, Ouyang H, Liang Y. GelNB molecular coating as a biophysical barrier to isolate intestinal irritating metabolites and regulate intestinal microbial homeostasis in the treatment of inflammatory bowel disease. Bioact Mater 2023; 19:251-267. [PMID: 35510173 PMCID: PMC9046703 DOI: 10.1016/j.bioactmat.2022.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/23/2022] [Accepted: 04/01/2022] [Indexed: 11/26/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, immune-mediated inflammatory disease characterized by the destruction of the structure and function of the intestinal epithelial barrier. Due to the poor remission effect and severe adverse events associated with current clinical medications, IBD remains an incurable disease. Here, we demonstrated a novel treatment strategy with high safety and effective inflammation remission via tissue-adhesive molecular coating. The molecular coating is composed of o-nitrobenzaldehyde (NB)-modified Gelatin (GelNB), which can strongly bond with -NH2 on the intestinal surface of tissue to form a thin biophysical barrier. We found that this molecular coating was able to stay on the surface of the intestine for long periods of time, effectively protecting the damaged intestinal epithelium from irritations of external intestinal metabolites and harmful flora. In addition, our results showed that this coating not only provided a beneficial environment for cell migration and proliferation to promote intestinal repair and regeneration, but also achieved a better outcome of IBD by reducing intestinal inflammation. Moreover, the in vivo experiments showed that the GelNB was better than the classic clinical medication-mesalazine. Therefore, our molecular coating showed potential as a promising strategy for the prevention and treatment of IBD.
Collapse
Affiliation(s)
- Qijiang Mao
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Laparoscopic Technology of Zhejiang province, Hangzhou, 310016, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou, 310028, China
| | - Haoqi Pan
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yiyin Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yi Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiuwen Zhu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Hong
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengze Huang
- Key Laboratory of Laparoscopic Technology of Zhejiang province, Hangzhou, 310016, China
| | - Yang Li
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310028, China
| | - Xu Feng
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yifeng Fang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - WenChao Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Pengfei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Bo Shen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Laparoscopic Technology of Zhejiang province, Hangzhou, 310016, China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuelong Liang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Laparoscopic Technology of Zhejiang province, Hangzhou, 310016, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou, 310028, China
| |
Collapse
|
3
|
Analysis of Gut Microbiota in Patients with Exacerbated Symptoms of Schizophrenia following Therapy with Amisulpride: A Pilot Study. Behav Neurol 2022; 2022:4262094. [PMID: 35287288 PMCID: PMC8917950 DOI: 10.1155/2022/4262094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 02/18/2022] [Indexed: 11/24/2022] Open
Abstract
Evidence is mounting that the gut microbiome is related to the underlying pathogenesis of schizophrenia. However, effects of amisulpride on gut microbiota are poorly defined. This study was aimed at analyzing cytokines and fecal microbiota in patients with exacerbated symptoms of schizophrenia treated with amisulpride during four weeks of their hospital stay. In the present study, feces collected from patients with schizophrenia were analyzed using 16S rRNA pyrosequencing and bioinformatic analyses to ascertain gut microbiome composition and fasting peripheral blood cytokines. We found that patients undergoing treatment of schizophrenia with amisulpride had distinct changes in gut microbial composition at the genus level, increased levels of short-chain fatty acid-producing bacteria (Dorea and Butyricicoccus), and reduced levels of pathogenic bacteria (Actinomyces and Porphyromonas), but the level of Desulfovibrio was still high. We also found a significant downregulation of butanoate metabolism based on functional analysis of the microbiome. After treatment, elevated levels of interleukin- (IL-) 4 and decreased levels of IL-6 were found. Our findings extend prior work and suggest a possible pharmacological mechanism of amisulpride treatment for schizophrenia, which acts via mediation of the gut microbiome.
Collapse
|
4
|
Beiranvand M. A review of the biological and pharmacological activities of mesalazine or 5-aminosalicylic acid (5-ASA): an anti-ulcer and anti-oxidant drug. Inflammopharmacology 2021; 29:1279-1290. [PMID: 34410540 DOI: 10.1007/s10787-021-00856-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/24/2021] [Indexed: 11/28/2022]
Abstract
Mesalazine, also known as 5-aminosalicylic acid (5-ASA), is a synthetic drug from the family of nonsteroidal anti-inflammatory drugs (NSAIDs) used for inflammatory diseases of the gastrointestinal tract. However, 5-ASA has also been used for various other diseases due to its pharmacological effects, but they are usually scattered across various publications, which may limit further research and clinical use of this drug. This review is a summary of published information on the biological and pharmacological effects of 5-ASA with the aim of identifying its anti-oxidant role and medicinal use. 5-ASA data have been collected from 1987 to February 2021 using major databases such as Web of Science, PubMed, Elsevier, Wiley Online Library, Springer, Google Scholar, etc. According to research, the pharmacological and biological effects of 5-ASA include treatment of inflammatory bowel disease, and anti-oxidant, anti-inflammatory, antibacterial, antifungal, anticancer, anti-amyloid, gastric protection (gastroprotective), and antidiverticulosis properties. Numerous pharmacological studies have shown that 5-ASA is an anti-oxidant and anti-ulcer compound with high therapeutic potential that, if the appropriate dose is discovered, its chemical structure changes and its effectiveness is optimized, 5-ASA has been used experimentally for other diseases.
Collapse
Affiliation(s)
- Mohammad Beiranvand
- Department of Biology, Faculty of Basic Sciences, Lorestan University, Khorramabad, Iran.
| |
Collapse
|
5
|
Zhang X, Han Y, Huang W, Jin M, Gao Z. The influence of the gut microbiota on the bioavailability of oral drugs. Acta Pharm Sin B 2021; 11:1789-1812. [PMID: 34386321 PMCID: PMC8343123 DOI: 10.1016/j.apsb.2020.09.013] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/27/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023] Open
Abstract
Due to its safety, convenience, low cost and good compliance, oral administration attracts lots of attention. However, the efficacy of many oral drugs is limited to their unsatisfactory bioavailability in the gastrointestinal tract. One of the critical and most overlooked factors is the symbiotic gut microbiota that can modulate the bioavailability of oral drugs by participating in the biotransformation of oral drugs, influencing the drug transport process and altering some gastrointestinal properties. In this review, we summarized the existing research investigating the possible relationship between the gut microbiota and the bioavailability of oral drugs, which may provide great ideas and useful instructions for the design of novel drug delivery systems or the achievement of personalized medicine.
Collapse
Key Words
- 5-ASA, 5-aminosalicylic acid
- AA, ascorbic acid
- ABC, ATP-binding cassette
- ACS, amphipathic chitosan derivative
- AMI, amiodarone
- AQP4, aquaporin 4
- AR, azoreductase
- ASP, amisulpride
- BBR, berberine
- BCRP, breast cancer resistance protein
- BCS, biopharmaceutics classification system
- BDDCS, the biopharmaceutics drug disposition classification system
- BDEPT, the bacteria-directed enzyme prodrug therapy
- BSH, bile salt hydrolase
- Bioavailability
- CA, cholic acid
- CDCA, chenodeoxycholic acid
- CPP, cell-penetrating peptide
- CS, chitosan
- Colon-specific drug delivery system
- DCA, deoxycholic acid
- DRPs, digoxin reduction products
- EcN, Escherichia coli Nissle 1917
- FA, folate
- FAO, Food and Agriculture Organization of the United Nations
- GCDC, glycochenodeoxycholate
- GL, glycyrrhizic acid
- Gut microbiota
- HFD, high fat diet
- HTC, hematocrit
- IBD, inflammatory bowel disease
- LCA, lithocholic acid
- LPS, lipopolysaccharide
- MATEs, multidrug and toxin extrusion proteins
- MDR1, multidrug resistance gene 1
- MDR1a, multidrug resistance protein-1a
- MKC, monoketocholic acid
- MPA, mycophenolic acid
- MRP2, multidrug resistance-associated protein 2
- NEC, necrotizing enterocolitis
- NMEs, new molecular entities
- NRs, nitroreductases
- NSAIDs, non-steroidal anti-inflammatory drugs
- NaDC, sodium deoxycholate
- NaGC, sodium glycholate
- OATs, organic anion transporters
- OCTNs, organic zwitterion/cation
- OCTs, organic cation transporters
- Oral drugs
- P-gp, P-glycoprotein
- PD, Parkinson's disease
- PPIs, proton pump inhibitors
- PT, pectin
- PWSDs, poorly water-soluble drugs
- Probiotics
- RA, rheumatoid arthritis
- RBC, red blood cell
- SCFAs, short-chain fatty acids
- SGLT-1, sodium-coupled glucose transporter 1
- SLC, solute carrier
- SLN, solid lipid nanoparticle
- SP, sulfapyridine
- SSZ, sulfasalazine
- SVCT-1/2, the sodium-dependent vitamin C transporter-1/2
- T1D, type 1 diabetes
- T1DM, type 1 diabetes mellitus
- T2D, type 2 diabetes
- TCA, taurocholate
- TCDC, taurochenodeoxycholate
- TDCA, taurodeoxycholate
- TLCA, taurolithocholate
- TME, the tumor microenvironment
- UDC, ursodeoxycholic acid
- WHO, World Health Organization
- an OTC drug, an over-the-counter drug
- cgr operon, cardiac glycoside reductase operon
- dhBBR, dihydroberberine
- pKa, dissociation constant
- the GI tract, the gastrointestinal tract
Collapse
Affiliation(s)
- Xintong Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ying Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
6
|
Wang Q, Guan J, Wan J, Li Z. Disulfide based prodrugs for cancer therapy. RSC Adv 2020; 10:24397-24409. [PMID: 35516223 PMCID: PMC9055211 DOI: 10.1039/d0ra04155f] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/19/2020] [Indexed: 12/26/2022] Open
Abstract
Advances in the tumor microenvironment have facilitated the development of novel anticancer drugs and delivery vehicles for improved therapeutic efficacy and decreased side effects. Disulfide bonds with unique chemical and biophysical properties can be used as cleavable linkers for the delivery of chemotherapeutic drugs. Accordingly, small molecule-, peptide-, polymer- and protein-based multifunctional prodrugs bearing cleavable disulfide bonds are well accepted in clinical settings. Herein, we first briefly introduce a number of prodrugs and divide them into three categories, namely, disulfide-containing small molecule conjugates, disulfide-containing cytotoxic agent-targeted fluorescent agent conjugates, and disulfide-containing cytotoxic agent-macromolecule conjugates. Then, we discuss the complex redox environment and the underlying mechanism of free drug release from disulfide based prodrugs in in vivo settings. Based on these insights, we analyze the impact of electronics, steric hindrance and substituent position of the disulfide linker on the extracellular stability and intracellular cleavage rate of disulfide containing prodrugs. Current challenges and future opportunities for the disulfide linker are provided at the end.
Collapse
Affiliation(s)
- Qiang Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology 1037 Luoyu Road Wuhan 430074 China
| | - Jiankun Guan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology 1037 Luoyu Road Wuhan 430074 China
| | - Jiangling Wan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology 1037 Luoyu Road Wuhan 430074 China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology 1037 Luoyu Road Wuhan 430074 China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology Wuhan 430074 China
| |
Collapse
|