1
|
Nagaraj S, Narayan S. Protective effect of histatin 5 and amphotericin B conjugated nanostructures in C. albicans challenged Swiss albino mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03997-0. [PMID: 40088334 DOI: 10.1007/s00210-025-03997-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 02/27/2025] [Indexed: 03/17/2025]
Abstract
This study explores the development of silica-gold nanostructures conjugated with histatin 5 (H5) and amphotericin B (AmpB) for the management of Candida albicans-induced candidiasis. H5 and AmpB were covalently attached to the silica-gold nanostructures (ASinp-GN) using EDC-NHS chemistry, with fluorescent FITC labeling employed in a parallel experiment to study nanostructure localization. Characterization techniques, including UV-Vis spectroscopy, dynamic light scattering, zeta potential analysis, fluorescence spectroscopy, differential scanning calorimetry, thermogravimetric analysis, high-resolution transmission electron microscopy, atomic force microscopy, and drug release studies, confirmed the successful conjugation and stability of the nanostructures. Biological evaluations using C. albicans demonstrated a minimum inhibitory concentration (MIC50) of 5.42 μM for AmpB in the nanostructures, along with enhanced localization as observed via fluorescence microscopy. The nanostructures effectively inhibited biofilm formation and showed high biocompatibility in hemolysis and MTT assays. In vivo studies using a disseminated candidiasis model in Swiss albino mice revealed significant therapeutic efficacy, evidenced by reduced C. albicans burden, decreased AmpB toxicity, improved heart function, and preserved tissue integrity. These results highlight the role of H5 conjugation in targeted drug delivery, enhancing the therapeutic potential of AmpB while minimizing adverse effects, making it a promising approach for candidiasis management. However, a detailed pharmacokinetic investigation on the use of these nanostructures is warranted before taking this to the clinical side.
Collapse
Affiliation(s)
- Saraswathi Nagaraj
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Shoba Narayan
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| |
Collapse
|
2
|
Lathakumari RH, Vajravelu LK, Satheesan A, Thulukanam J. Advancing cryptococcal treatment: The role of nanoparticles in mitigating antifungal resistance. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 8:100323. [PMID: 39678065 PMCID: PMC11638651 DOI: 10.1016/j.crmicr.2024.100323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Cryptococcus, a ubiquitous and formidable fungal pathogen, contributes to a substantial global disease burden, with nearly 250,000 cases and 181,000 fatalities attributed to cryptococcal meningitis annually worldwide. The invasive nature of Cryptococcus presents significant challenges in treatment and management, as it mostly affects vulnerable populations, including HIV patients, organ transplant recipients, pregnant women, and elderly individuals. Moreover, these difficulties are exacerbated by the development of antifungal resistance, which emphasizes the need for efficient control measures. In this context, research efforts focusing on infection control and novel therapeutic strategies become paramount. Nanoparticle-based therapies emerge as a solution, offering advanced antifungal properties and improved efficacy. Developing effective treatment options requires understanding the complex landscape of cryptococcal infections and the innovative potential of nanoparticle-based therapies. This review highlights the urgent need for novel strategies to combat the growing threat posed by antifungal resistance while offering insights into the intricate realm of cryptococcal infections, particularly focusing on the promising role of nanoparticle-based therapies.
Collapse
Affiliation(s)
- Rahul Harikumar Lathakumari
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Kattankulathur 603203, Chennai, Tamil Nadu, India
| | - Leela Kakithakara Vajravelu
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Kattankulathur 603203, Chennai, Tamil Nadu, India
| | - Abhishek Satheesan
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Kattankulathur 603203, Chennai, Tamil Nadu, India
| | - Jayaprakash Thulukanam
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Kattankulathur 603203, Chennai, Tamil Nadu, India
| |
Collapse
|
3
|
Dash SK, Benival D, Jindal AB. Formulation Strategies to Overcome Amphotericin B Induced Toxicity. Mol Pharm 2024; 21:5392-5412. [PMID: 39373243 DOI: 10.1021/acs.molpharmaceut.4c00485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Fungal infection poses a major global threat to public health because of its wide prevalence, severe mortality rate, challenges involved in diagnosis and treatment, and the emergence of drug-resistant fungal strains. Millions of people are getting affected by fungal infection, and around 3.8 million people face death per year due to fungal infection, as per the latest report. The polyene antibiotic AmB has an extensive record of use as a therapeutic moiety against systemic fungal infection and leishmaniasis since 1960. AmB has broad-spectrum fungistatic and fungicidal activity. AmB exerts its therapeutic activity at the cellular level by binding to fungal sterol and forming hydrophilic pores, releasing essential cellular components and ions into the extracellular fluid, leading to cell death. Despite using AmB as an antifungal and antileishmanial at a broad scale, its clinical use is limited due to drug-induced nephrotoxicity resulting from binding the aggregated form of the drug to mammalian sterol. To mitigate AmB-induced toxicity and to get better anti-fungal therapeutic outcomes, researchers have developed nanoformulations, self-assembled formulations, prodrugs, cholesterol- and albumin-based AmB formulations, AmB-mAb combination therapy, and AmB cochleates. These formulations have helped to reduce toxicity to a certain extent by controlling the aggregation state of AmB, providing sustained drug release, and altering the physicochemical and pharmacokinetic parameters of AmB. Although the preclinical outcome of AmB formulations is quite satisfactory, its parallel result at the clinical level is insignificant. However, the safety and efficacy of AmB therapy can be improved at the clinical stage by continuous investigation and collaboration among researchers, clinicians, and pharmaceutical companies.
Collapse
Affiliation(s)
- Sanat Kumar Dash
- Department of Pharmacy, Birla Institute of Technology and Science Pilani (BITS Pilani), Pilani Campus, Pilani, Rajasthan 333031, India
| | - Derajram Benival
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Gandhinagar, Gujurat 382355, India
| | - Anil B Jindal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani (BITS Pilani), Pilani Campus, Pilani, Rajasthan 333031, India
| |
Collapse
|
4
|
Schaefer S, Corrigan N, Brunke S, Lenardon MD, Boyer C. Combatting Fungal Infections: Advances in Antifungal Polymeric Nanomaterials. Biomacromolecules 2024; 25:5670-5701. [PMID: 39177507 DOI: 10.1021/acs.biomac.4c00866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Fungal pathogens cause over 6.5 million life-threatening systemic infections annually, with mortality rates ranging from 20 to 95%, even with medical intervention. The World Health Organization has recently emphasized the urgent need for new antifungal drugs. However, the range of effective antifungal agents remains limited and resistance is increasing. This Review explores the current landscape of fungal infections and antifungal drugs, focusing on synthetic polymeric nanomaterials like nanoparticles that enhance the physicochemical properties of existing drugs. Additionally, we examine intrinsically antifungal polymers that mimic naturally occurring peptides. Advances in polymer characterization and synthesis now allow precise design and screening for antifungal activity, biocompatibility, and drug interactions. These antifungal polymers represent a promising new class of drugs for combating fungal infections.
Collapse
Affiliation(s)
- Sebastian Schaefer
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales 2052, Australia
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, 07745 Jena, Germany
| | - Nathaniel Corrigan
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, 07745 Jena, Germany
| | - Megan D Lenardon
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales 2052, Australia
| | - Cyrille Boyer
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
| |
Collapse
|
5
|
Porras JD, Diaz IL, Perez LD. Synthesis of PEGylated amphiphilic block copolymers with pendant linoleic moieties by combining ring-opening polymerization and click chemistry. Biopolymers 2024; 115:e23582. [PMID: 38680100 DOI: 10.1002/bip.23582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
This study focused on synthesizing and characterizing PEGylated amphiphilic block copolymers with pendant linoleic acid (Lin) moieties as an alternative to enhance their potential in drug delivery applications. The synthesis involved a two-step process, starting with ring-opening polymerization of ε-caprolactone (CL) and propargylated cyclic carbonate (MCP) to obtain PEG-b-P(CL-co-MCP) copolymers, which were subsequently modified via click chemistry. Various reaction conditions were explored to improve the yield and efficiency of the click chemistry step. The use of anisole as a solvent, N-(3-azidopropyl)linoleamide as a substrate, and a reaction temperature of 60°C proved to be highly efficient, achieving nearly 100% conversion at a low catalyst concentration. The resulting copolymers exhibited controlled molecular weights and low polydispersity, confirming the successful synthesis. Furthermore, click chemistry allows for the attachment of Lin moieties to the copolymer, enhancing its hydrophobic character, as deduced from their significantly lower critical micelle concentration than that of traditional PEG-b-PCL systems, which is indicative of enhanced stability against dilution. The modified copolymers exhibited improved thermal stability, making them suitable for applications that require high processing temperatures. Dynamic light scattering and transmission electron microscopy confirmed the formation of micellar structures with sizes below 100 nm and minimal aggregate formation. Additionally, 1H NMR spectroscopy in deuterated water revealed the presence of core-shell micelles, which provided higher kinetic stability against dilution.
Collapse
Affiliation(s)
- Julian D Porras
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Bogotá, Bogotá, Colombia
| | - Ivonne L Diaz
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Bogotá, Bogotá, Colombia
| | - Leon D Perez
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Bogotá, Bogotá, Colombia
| |
Collapse
|
6
|
Quejada LF, Hernandez AX, Chitiva LC, Bravo-Chaucanés CP, Vargas-Casanova Y, Faria RX, Costa GM, Parra-Giraldo CM. Unmasking the Antifungal Activity of Anacardium occidentale Leaf Extract against Candida albicans. J Fungi (Basel) 2024; 10:464. [PMID: 39057348 PMCID: PMC11277670 DOI: 10.3390/jof10070464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/03/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Invasive fungal disease causes high morbidity and mortality among immunocompromised patients. Resistance to conventional antifungal drugs and the toxicity associated with high doses highlight the need for effective antifungal therapies. In this study, the antifungal potential of the ethanolic extract of Anacardium occidentale (Cashew Leaf) leaves were evaluated against Candida albicans and C. auris. The antifungal activity was tested by the broth microdilution method and growth kinetic test. To further explore its antifungal action mode, spectrofluorophotometry, confocal microscopy and scanning and transmission electron microscopy were performed. Additionally, heterozygous knockout strains associated with resistance to oxidative stress were included in the study. We found that A. occidentale could inhibit the proliferation and growth of C. albicans at concentrations of 62.5 and 125 μg/mL. The doubling time was also drastically affected, going from 2.8 h to 22.5 h, which was also observed in C. auris. The extract induced the accumulation of intracellular reactive oxygen species (ROS), resulting in endoplasmic reticulum stress and mitochondrial dysfunction, while it did not show cytotoxicity or hemolytic activity at the concentrations evaluated. Our work preliminarily elucidated the potential mechanisms of A. occidentale against C. albicans on a cellular level, and might provide a promising option for the design of a new treatment for invasive candidiasis.
Collapse
Affiliation(s)
- Luis F. Quejada
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 No. 43-82, 110231 Bogotá, Colombia; (L.F.Q.); (C.P.B.-C.); (Y.V.-C.)
| | - Andrea X. Hernandez
- Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 No. 43-82, 110231 Bogotá, Colombia; (A.X.H.); (L.C.C.); (G.M.C.)
| | - Luis C. Chitiva
- Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 No. 43-82, 110231 Bogotá, Colombia; (A.X.H.); (L.C.C.); (G.M.C.)
| | - Claudia P. Bravo-Chaucanés
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 No. 43-82, 110231 Bogotá, Colombia; (L.F.Q.); (C.P.B.-C.); (Y.V.-C.)
| | - Yerly Vargas-Casanova
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 No. 43-82, 110231 Bogotá, Colombia; (L.F.Q.); (C.P.B.-C.); (Y.V.-C.)
| | - Robson X. Faria
- Laboratório de Toxoplasmose e outras Protozooses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz-FIOCRUZ, Rio de Janeiro 21045-900, RJ, Brazil;
| | - Geison M. Costa
- Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 No. 43-82, 110231 Bogotá, Colombia; (A.X.H.); (L.C.C.); (G.M.C.)
| | - Claudia M. Parra-Giraldo
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 No. 43-82, 110231 Bogotá, Colombia; (L.F.Q.); (C.P.B.-C.); (Y.V.-C.)
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Caja S/N, 28040 Madrid, Spain
| |
Collapse
|
7
|
Jain VK, Jain K, Popli H. Conjugates of amphotericin B to resolve challenges associated with its delivery. Expert Opin Drug Deliv 2024; 21:187-210. [PMID: 38243810 DOI: 10.1080/17425247.2024.2308073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
INTRODUCTION Amphotericin B (AmB), a promising antifungal and antileishmanial drug, acts on the membrane of microorganisms. The clinical use of AmB is limited due to issues associated with its delivery including poor solubility and bioavailability, instability in acidic media, poor intestinal permeability, dose and aggregation state dependent toxicity, parenteral administration, and requirement of cold chain for transport and storage, etc. AREAS COVERED Scientists have formulated and explored various covalent conjugates of AmB to reduce its toxicity with increase in solubility, oral bioavailability, and payload or loading of AmB by using various polymers, lipids, carbon-based nanocarriers, metallic nanoparticles, and vesicular carriers, etc. In this article, we have reviewed various conjugates of AmB with polymers and nanomaterials explored for its delivery to give a deep insight regarding further exploration in future. EXPERT OPINION Covalent conjugates of AmB have been investigated by scientists, and preliminary in vitro and animal investigations have given successful results, which are required to be validated further with systematic investigation on safety and therapeutic efficacy in animals followed by clinical trials.
Collapse
Affiliation(s)
- Vineet Kumar Jain
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Keerti Jain
- Drug Delivery and Nanomedicine Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, India
| | - Harvinder Popli
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| |
Collapse
|
8
|
Román-Vargas Y, Porras-Arguello JD, Blandón-Naranjo L, Pérez-Pérez LD, Benjumea DM. Evaluation of the Analgesic Effect of High-Cannabidiol-Content Cannabis Extracts in Different Pain Models by Using Polymeric Micelles as Vehicles. Molecules 2023; 28:molecules28114299. [PMID: 37298776 DOI: 10.3390/molecules28114299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 06/12/2023] Open
Abstract
Currently, cannabis is considered an attractive option for the treatment of various diseases, including pain management. Thus, developing new analgesics is paramount for improving the health of people suffering from chronic pain. Safer natural derivatives such as cannabidiol (CBD) have shown excellent potential for the treatment of these diseases. This study aimed to evaluate the analgesic effect of a CBD-rich cannabis extract (CE) encapsulated in polymeric micelles (CBD/PMs) using different pain models. The PEG-PCL polymers were characterized by gel permeation chromatography and 1H-NMR spectroscopy. PMs were prepared by solvent evaporation and characterized by dynamic light scattering (DLS) and transmission electron microscopy. The analgesic activity of CBD/PMs and nonencapsulated CE rich in CBD (CE/CBD) was evaluated using mouse thermal, chemical, and mechanical pain models. The acute toxicity of the encapsulated CE was determined by oral administration in mice at a dose of 20 mg/kg for 14 days. The release of CBD from the nanoparticles was assessed in vitro using a dialysis experiment. CBD/PMs with an average hydrodynamic diameter of 63.8 nm obtained from a biocompatible polyethylene glycol-block-polycaprolactone copolymer were used as nanocarriers for the extract formulations with 9.2% CBD content, which corresponded with a high encapsulation efficiency of 99.9%. The results of the pharmacological assays indicated that orally administered CBD/PMs were safe and exerted a better analgesic effect than CE/CBD. The micelle formulation had a significant analgesic effect in a chemical pain model, reaching a percentage of analgesia of 42%. CE was successfully encapsulated in a nanocarrier, providing better stability. Moreover, it proved to be more efficient as a carrier for CBD release. The analgesic activity of CBD/PMs was higher than that of free CE, implying that encapsulation is an efficient strategy for improving stability and functionality. In conclusion, CBD/PMs could be promising therapeutics for pain management in the future.
Collapse
Affiliation(s)
- Yoreny Román-Vargas
- Grupo de Toxinología y Alternativas Farmacéuticas y Alimentarias, Departamento de Farmacia, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellín 1226, Colombia
| | - Julián David Porras-Arguello
- Grupo de Investigación Macromoléculas, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Av. Carrera 30 # 45-03, Edif. 476, Bogotá 11001, Colombia
| | - Lucas Blandón-Naranjo
- Grupo Interdisciplinario de Estudios Moleculares-GIEM, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín 1226, Colombia
| | - León Darío Pérez-Pérez
- Grupo de Investigación Macromoléculas, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Av. Carrera 30 # 45-03, Edif. 476, Bogotá 11001, Colombia
| | - Dora María Benjumea
- Grupo de Toxinología y Alternativas Farmacéuticas y Alimentarias, Departamento de Farmacia, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellín 1226, Colombia
| |
Collapse
|
9
|
Nagasa GD, Belete A. Review on Nanomaterials and Nano-Scaled Systems for Topical and Systemic Delivery of Antifungal Drugs. J Multidiscip Healthc 2022; 15:1819-1840. [PMID: 36060421 PMCID: PMC9432385 DOI: 10.2147/jmdh.s359282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
Fungal infections are human infections that topically affect the skin, mucous membranes, or more serious, invasive, and systemic diseases of the internal organs. The design and advancement of the formulation and approach of administration for therapeutic agents depend on many variables. The correlation between the formulations, mode of administration, pharmacokinetics, toxicity and clinical indication must be thoroughly studied for the successful evolution of suitable drug delivery systems. There are several NP formulations that serve as good delivery approaches for antifungal drugs. This paper covers various groups of nanoparticles utilized in antifungal drug delivery, such as phospholipid-based vesicles (nanovesicles), non-phospholipid vesicles, polymeric nanoparticles, inorganic nanoparticles and dendrimers, whereby their advantages and drawbacks are emphasized. Many in vitro or cell culture studies with NP formulations achieve an adequate high drug-loading capacity; they do not reach the clinically significant concentrations anticipated for in vivo studies. Because of this, the transfer of these nano-formulations from the laboratory to the clinic could be aided by focusing studies on overcoming problems related to nanoparticle stability, drug loading, and high production and standardization costs.
Collapse
Affiliation(s)
| | - Anteneh Belete
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
10
|
Bahman F, Butt AM, Ashi L, Mohd Amin MCI, Greish K. Polymeric micelles for oral drug delivery. POLYMERIC MICELLES FOR DRUG DELIVERY 2022:89-113. [DOI: 10.1016/b978-0-323-89868-3.00015-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
11
|
Wang X, Mohammad IS, Fan L, Zhao Z, Nurunnabi M, Sallam MA, Wu J, Chen Z, Yin L, He W. Delivery strategies of amphotericin B for invasive fungal infections. Acta Pharm Sin B 2021; 11:2585-2604. [PMID: 34522599 PMCID: PMC8424280 DOI: 10.1016/j.apsb.2021.04.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/18/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Invasive fungal infections (IFIs) represent a growing public concern for clinicians to manage in many medical settings, with substantial associated morbidities and mortalities. Among many current therapeutic options for the treatment of IFIs, amphotericin B (AmB) is the most frequently used drug. AmB is considered as a first-line drug in the clinic that has strong antifungal activity and less resistance. In this review, we summarized the most promising research efforts on nanocarriers for AmB delivery and highlighted their efficacy and safety for treating IFIs. We have also discussed the mechanism of actions of AmB, rationale for treating IFIs, and recent advances in formulating AmB for clinical use. Finally, this review discusses some practical considerations and provides recommendations for future studies in applying AmB for combating IFIs.
Collapse
Key Words
- ABCD, AmB colloidal dispersion
- AIDS, acquired immunodeficiency syndrome
- AP, antisolvent precipitation
- ARDS, acute respiratory distress syndrome
- AmB, amphotericin B
- AmB-GCPQ, AmB-encapsulated N-palmitoyl-N-methyl-N,N-dimethyl-N,N,N-trimethyl-6-O-glycol-chitosan nanoparticles
- AmB-IONP, AmB-loaded iron oxide nanoparticles
- AmB-PM, AmB-polymeric micelles
- AmB-SD, AmB sodium deoxycholate
- AmBd, AmB deoxycholate
- Amphotericin B
- Aspergillus fumigatus, A. fumigatus
- BBB, blood‒brain barrier
- BCS, biopharmaceutics classification system
- BDDE, butanediol diglycidyl ether
- BSA, bovine serum albumin
- BUN, blood urea nitrogen
- C. Albicans, Candida Albicans
- CFU, colony-forming unit
- CLSM, confocal laser scanning microscope
- CMC, carboxymethylated l-carrageenan
- CP, chitosan-polyethylenimine
- CS, chitosan
- Conjugates
- DDS, drug delivery systems
- DMPC, dimyristoyl phosphatidyl choline
- DMPG, dimyristoyl phosphatidylglycerole
- DMSA, dimercaptosuccinic acid
- Drug delivery
- GNPs, gelatin nanoparticles
- HPH, high-pressure homogenization
- HPMC, hydroxypropyl methylcellulose
- ICV, intensive care unit
- IFIs, invasive fungal infections
- Invasive fungal infections
- L-AmB, liposomal AmB
- LNA, linolenic acid
- MAA, methacrylic acid
- MFC, minimum fungicidal concentrations
- MIC, minimum inhibitory concentration
- MN, microneedles
- MOP, microneedle ocular patch
- MPEG-PCL, monomethoxy poly(ethylene glycol)-poly(epsilon-caprolactone)
- NEs, nanoemulsions
- NLC, nanostructured lipid carriers
- NPs, nanoparticles
- Nanoparticles
- P-407, poloxamer-407
- PAM, polyacrylamide
- PCL, polycaprolactone
- PDA, poly(glycolic acid)
- PDLLA, poly(d,l-lactic acid)
- PDLLGA, poly(d,l-lactic-co-glycolic acid)
- PEG, poly(ethylene glycol)
- PEG-DSPE, PEG-lipid poly(ethylene glycol)-distearoylphosphatidylethanolamine
- PEG-PBC, phenylboronic acid-functionalized polycarbonate/PEG
- PEG-PUC, urea-functionalized polycarbonate/PEG
- PGA-PPA, poly(l-lysine-b-l-phenylalanine) and poly(l-glutamic acid-b-l-phenylalanine)
- PLA, poly(lactic acid)
- PLGA, polyvinyl alcohol poly(lactic-co-glycolic acid)
- PLGA-PLH-PEG, PLGA-b-poly(l-histidine)-b-poly(ethylene glycol)
- PMMA, poly(methyl methacrylate)
- POR, porphyran
- PVA, poly(vinyl alcohol)
- PVP, polyvinylpyrrolidone
- Poor water-solubility
- RBCs, red blood cells
- RES, reticuloendothelial system
- ROS, reactive oxygen species
- SEM, scanning electron microscope
- SL-AmB, sophorolipid-AmB
- SLNs, solid lipid nanoparticles
- Topical administration
- Toxicity
- γ-CD, γ-cyclodextrin
- γ-PGA, γ-poly(gamma-glutamic acid
Collapse
Affiliation(s)
- Xiaochun Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, China
| | - Imran Shair Mohammad
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou 510006, China
| | - Lifang Fan
- Jiangsu Aosaikang Pharmaceutical Co., Ltd., Nanjing 211112, China
| | - Zongmin Zhao
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, USA
| | - Marwa A. Sallam
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Jun Wu
- Department of Geriatric Cardiology, Jiangsu Provincial Key Laboratory of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Lifang Yin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, China
| | - Wei He
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
12
|
Arias ER, Angarita-Villamizar V, Baena Y, Parra-Giraldo C, Perez LD. Phospholipid-Conjugated PEG- b-PCL Copolymers as Precursors of Micellar Vehicles for Amphotericin B. Polymers (Basel) 2021; 13:polym13111747. [PMID: 34071785 PMCID: PMC8199447 DOI: 10.3390/polym13111747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 11/29/2022] Open
Abstract
Amphotericin B (AmB) is a widely used antifungal that presents a broad action spectrum and few reports on the development of resistance. However, AmB is highly toxic, causing renal failure in a considerable number of treated patients. Although when AmB is transported via polymer micelles (PMs) as delivery vehicles its nephrotoxicity has been successfully attenuated, this type of nanoparticle has limitations, such as low encapsulation capacity and poor stability in aqueous media. In this research, the effect of modifying polyethyleglicol-block-poly(ε-caprolactone) (PEG-b-PCL) with 1,2-distearoyl-sn-glycero-3-phosphorylethanolamine (DSPE) on the performance of PMs as vehicles for AmB was studied. PEG-b-PCL with two different lengths of a PCL segment was prepared via ring opening polymerisation and modified with DSPE at a post-synthesis stage through amidation. Upon modification with DSPE, a copolymer was self-assembled, thereby producing particles with hydrodynamic diameters below 100 nm and a lower critical micelle concentration than that of the raw copolymers. Likewise, in the presence of DSPE, the loading capacity of AmB increased because of the formed intermolecular interactions, such as hydrogen bonds, which also caused a lower aggregation of this drug. The assessment of in vitro toxicity against red blood cells indicated that the toxicity of AmB decreased upon encapsulation; however, its antifungal action against clinical yeasts was maintained and enhanced, as indicated by a decrease in its minimum inhibitory concentration.
Collapse
Affiliation(s)
- Elsa R. Arias
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Bogotá, Carrera 45 N° 26-85, Bogotá 11001, Colombia; (E.R.A.); (V.A.-V.)
| | - Vivian Angarita-Villamizar
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Bogotá, Carrera 45 N° 26-85, Bogotá 11001, Colombia; (E.R.A.); (V.A.-V.)
| | - Yolima Baena
- Grupo de Investigación SILICOMOBA, Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Bogotá, Carrera 30 # 45-03, Bogotá 11001, Colombia
- Correspondence: (Y.B.); (C.P.-G.); (L.D.P.); Tel.: +57-1316-5000 (Y.B. & L.D.P.); +57-1320-8320 (C.P.-G.)
| | - Claudia Parra-Giraldo
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
- Correspondence: (Y.B.); (C.P.-G.); (L.D.P.); Tel.: +57-1316-5000 (Y.B. & L.D.P.); +57-1320-8320 (C.P.-G.)
| | - Leon D. Perez
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Bogotá, Carrera 45 N° 26-85, Bogotá 11001, Colombia; (E.R.A.); (V.A.-V.)
- Correspondence: (Y.B.); (C.P.-G.); (L.D.P.); Tel.: +57-1316-5000 (Y.B. & L.D.P.); +57-1320-8320 (C.P.-G.)
| |
Collapse
|
13
|
Jafari M, Abolmaali SS, Tamaddon AM, Zomorodian K, Sarkari BS. Nanotechnology approaches for delivery and targeting of Amphotericin B in fungal and parasitic diseases. Nanomedicine (Lond) 2021; 16:857-877. [PMID: 33890492 DOI: 10.2217/nnm-2020-0482] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Amphotericin B (AMB), with widespread antifungal and anti-parasitic activities and low cross-resistance with other drugs, has long been identified as a potent antimicrobial drug. However, its clinical toxicities, especially nephrotoxicity, have limited its use in clinical practice. Lately, nano-based systems have been the subject of serious research and becoming an effective strategy to improve toxicity and antimicrobial potency. Commercial AMB lipid formulations have been developed in order to improve the therapeutic index and nephrotoxicity, while limited use is mainly due to their high cost. The review aimed to highlight the updated information on nanotechnology-based approaches to the development of AMB delivery and targeting systems for treatment of fungal diseases and leishmaniasis, regarding therapeutic challenges and achievements of various delivery systems.
Collapse
Affiliation(s)
- Mahboobeh Jafari
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz PO Box 71345-1583, Iran
| | - Samira Sadat Abolmaali
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz PO Box 71345-1583, Iran.,Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
| | - Ali Mohammad Tamaddon
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz PO Box 71345-1583, Iran.,Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
| | - Kamiar Zomorodian
- Department of Parasitology & Mycology, School of Medicines, Shiraz University of Medical Sciences, Shiraz, PO Box 7134845794, Iran.,Basic Sciences in Infectious Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, PO Box 7134845794, Iran
| | - Bahador Shahriarirad Sarkari
- Department of Parasitology & Mycology, School of Medicines, Shiraz University of Medical Sciences, Shiraz, PO Box 7134845794, Iran.,Basic Sciences in Infectious Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, PO Box 7134845794, Iran
| |
Collapse
|
14
|
Angarita-Villamizar AV, Arias ER, Diaz IL, Perez LD. Amphiphilic copolymers modified with oleic acid and cholesterol by combining ring opening polymerization and click chemistry with improved amphotericin B loading capacity. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-020-02392-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Antifungal Resistance in Candida auris: Molecular Determinants. Antibiotics (Basel) 2020; 9:antibiotics9090568. [PMID: 32887362 PMCID: PMC7558570 DOI: 10.3390/antibiotics9090568] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/26/2020] [Accepted: 08/29/2020] [Indexed: 02/06/2023] Open
Abstract
Since Candida auris integrates strains resistant to multiple antifungals, research has been conducted focused on knowing which molecular mechanisms are involved. This review aims to summarize the results obtained in some of these studies. A search was carried out by consulting websites and online databases. The analysis indicates that most C. auris strains show higher resistance to fluconazole, followed by amphotericin B, and less resistance to 5-fluorocytosine and caspofungin. In C. auris, antifungal resistance to amphotericin B has been linked to an overexpression of several mutated ERG genes that lead to reduced ergosterol levels; fluconazole resistance is mostly explained by mutations identified in the ERG11 gene, as well as a higher number of copies of this gene and the overexpression of efflux pumps. For 5-fluorocytosine, it is hypothesized that the resistance is due to mutations in the FCY2, FCY1, and FUR1 genes. Resistance to caspofungin has been associated with a mutation in the FKS1 gene. Finally, resistance to each antifungal is closely related to the type of clade to which the strain belongs.
Collapse
|
16
|
Torrado JJ, Serrano DR, Capilla J. Antifungal and Antiparasitic Drug Delivery. Pharmaceutics 2020; 12:pharmaceutics12040324. [PMID: 32260348 PMCID: PMC7238172 DOI: 10.3390/pharmaceutics12040324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/01/2020] [Indexed: 11/18/2022] Open
Abstract
Fungal and parasitic diseases affect more than a billion people across the globe, one-sixth of the world’s population, mostly located in developing countries. The lack of effective and safer treatments combined with a deficient diagnosis lead to serious chronic illness or even death. There is a mismatch between the rate of drug resistance and the development of new medicines. Formulation of antifungal and antiparasitic drugs adapted to different administration routes is challenging, bearing in mind their poor water solubility, which limits their bioavailability and efficacy. Hence, there is an unmet clinical need to develop vaccines and novel formulations and drug delivery strategies that can improve the bioavailability and therapeutic effect by enhancing their dissolution, increasing their chemical potency, stabilising the drug and targeting high concentration of drug to the infection sites. This Editorial regards the ten research contributions presented in the Special Issue “Antifungal and Antiparasitic Drug Delivery”.
Collapse
Affiliation(s)
- Juan José Torrado
- Departament of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: (J.J.T.); (D.R.S.)
| | - Dolores R. Serrano
- Departament of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: (J.J.T.); (D.R.S.)
| | - Javier Capilla
- Unitat de Microbiologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili and Institut d’Investigació Sanitària Pere Virgili (IISPV), 43201 Reus, Spain;
| |
Collapse
|