1
|
Rudolph N, Charbe N, Plano D, Shoyaib AA, Pal A, Boyce H, Zhao L, Wu F, Polli J, Dressman J, Cristofoletti R. A physiologically based biopharmaceutics modeling (PBBM) framework for characterizing formulation-dependent food effects: Paving the road towards fed state virtual BE studies for itraconazole amorphous solid dispersions. Eur J Pharm Sci 2025; 209:107047. [PMID: 39983931 DOI: 10.1016/j.ejps.2025.107047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 02/23/2025]
Abstract
This study leverages physiologically based biopharmaceutics modeling (PBBM) to predict the clinical performance of two itraconazole (ITRA) amorphous solid dispersions (ASDs), Sempera® and Tolsura®, under fasted and fed state conditions, exploring the potential of PBBM in predicting formulation-specific food interactions. The ITRA formulations were subjected to extensive in vitro biopharmaceutical testing, including solubility studies and dissolution tests under fasted and fed state conditions, revealing significant differences in dissolution behaviors between Sempera® and Tolsura®. The impact of food and hypochlorhydria on drug absorption was evaluated using a stepwise mechanistic deconvolution-reconvolution PBBM approach, integrating fundamental parameters based on the in vitro data into the final model. Our model not only successfully predicted the effects of acid reducing agents (ARA) and food on the oral absorption of ITRA, but also captured the between-subject variability, demonstrating the utility of this approach in understanding the complex interplay between drug, formulation, and gastrointestinal environment. Most importantly, the PBBM was able to accurately predict the positive impact of food on the absorption of Sempera® and the negative food effect of Tolsura®. The findings highlight the importance of considering formulation characteristics and gastrointestinal physiology, underscoring the potential of PBBM in bioequivalence (BE) assessment of generic formulations under varying physiological conditions, including in the fed state and in hypochlorhydric patients. The successful application of this stepwise and mechanistic PBBM approach suggests a potential pathway for streamlining drug development and may contribute to more informed decision-making for BE assessment.
Collapse
Affiliation(s)
- Niklas Rudolph
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
| | - Nitin Charbe
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - David Plano
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
| | - Abdullah Al Shoyaib
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Arindom Pal
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Heather Boyce
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Liang Zhao
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Fang Wu
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - James Polli
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Jennifer Dressman
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany.
| | - Rodrigo Cristofoletti
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA.
| |
Collapse
|
2
|
Pepin X, Arora S, Borges L, Cano-Vega M, Carducci T, Chatterjee P, Chen G, Cristofoletti R, Dallmann A, Delvadia P, Dressman J, Fotaki N, Gray E, Heimbach T, Holte Ø, Kijima S, Kotzagiorgis E, Lennernäs H, Lindahl A, Loebenberg R, Mackie C, Malamatari M, McAllister M, Mitra A, Moody R, Mudie D, Musuamba Tshinanu F, Polli JE, Rege B, Ren X, Rullo G, Scherholz M, Song I, Stillhart C, Suarez-Sharp S, Tannergren C, Tsakalozou E, Veerasingham S, Wagner C, Seo P. Parameterization of Physiologically Based Biopharmaceutics Models: Workshop Summary Report. Mol Pharm 2024; 21:3697-3731. [PMID: 38946085 PMCID: PMC11304397 DOI: 10.1021/acs.molpharmaceut.4c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024]
Abstract
This Article shares the proceedings from the August 29th, 2023 (day 1) workshop "Physiologically Based Biopharmaceutics Modeling (PBBM) Best Practices for Drug Product Quality: Regulatory and Industry Perspectives". The focus of the day was on model parametrization; regulatory authorities from Canada, the USA, Sweden, Belgium, and Norway presented their views on PBBM case studies submitted by industry members of the IQ consortium. The presentations shared key questions raised by regulators during the mock exercise, regarding the PBBM input parameters and their justification. These presentations also shed light on the regulatory assessment processes, content, and format requirements for future PBBM regulatory submissions. In addition, the day 1 breakout presentations and discussions gave the opportunity to share best practices around key questions faced by scientists when parametrizing PBBMs. Key questions included measurement and integration of drug substance solubility for crystalline vs amorphous drugs; impact of excipients on apparent drug solubility/supersaturation; modeling of acid-base reactions at the surface of the dissolving drug; choice of dissolution methods according to the formulation and drug properties with a view to predict the in vivo performance; mechanistic modeling of in vitro product dissolution data to predict in vivo dissolution for various patient populations/species; best practices for characterization of drug precipitation from simple or complex formulations and integration of the data in PBBM; incorporation of drug permeability into PBBM for various routes of uptake and prediction of permeability along the GI tract.
Collapse
Affiliation(s)
- Xavier Pepin
- Regulatory
Affairs, Simulations Plus Inc., 42505 10th Street West, Lancaster, California 93534-7059, United States
| | - Sumit Arora
- Janssen
Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Luiza Borges
- ANVISA, SIA Trecho 5́, Guara, Brasília, Federal District 71205-050, Brazil
| | - Mario Cano-Vega
- Drug
Product Technologies, Amgen Inc., Thousand Oaks, California 91320-1799, United
States
| | - Tessa Carducci
- Analytical
Commercialization Technology, Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, New Jersey 07065, United States
| | - Parnali Chatterjee
- Office
of
Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research
(CDER), Food and Drug Administration (FDA), Silver Spring, Maryland 20903-1058, United
States
| | - Grace Chen
- Takeda
Development Center Americas Inc., 300 Shire Way, Lexington, Massachusetts 02421, United States
| | - Rodrigo Cristofoletti
- College
of Pharmacy, University of Florida, 6550 Sanger Rd., Orlando, Florida 32827, United States
| | - André Dallmann
- Bayer
HealthCare SAS, 59000 Lille, France, on behalf of Bayer
AG, Pharmacometrics/Modeling and Simulation, Systems Pharmacology
& Medicine, PBPK, Leverkusen, Germany
| | - Poonam Delvadia
- Office
of Translational Science, Office of Clinical Pharmacology (OCP), Center
for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland 20903-1058, United States
| | - Jennifer Dressman
- Fraunhofer Institute of Translational Medicine and Pharmacology, Frankfurt am Main 60596, Germany
| | - Nikoletta Fotaki
- University of Bath, Claverton Down, Bath BA2
7AY, United Kingdom
| | - Elizabeth Gray
- Office
of
Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research
(CDER), Food and Drug Administration (FDA), Silver Spring, Maryland 20903-1058, United
States
| | - Tycho Heimbach
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Øyvind Holte
- Norwegian Medical Products Agency, Oslo 0213, Norway
| | - Shinichi Kijima
- Office
of New Drug V, Pharmaceuticals and Medical
Devices Agency (PMDA), Tokyo 100-0013, Japan
| | - Evangelos Kotzagiorgis
- European Medicines Agency (EMA), Domenico Scarlattilaan 6, Amsterdam 1083 HS, The Netherlands
| | - Hans Lennernäs
- Translational
Drug Discovery and Development, Department of Pharmaceutical Bioscience, Uppsala University, Uppsala 751 05, Sweden
| | | | - Raimar Loebenberg
- Faculty
of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmontonton T6G 2E1, Canada
| | - Claire Mackie
- Janssen
Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Maria Malamatari
- Medicines & Healthcare Products Regulatory Agency, 10 S Colonnade, London SW1W 9SZ, United Kingdom
| | - Mark McAllister
- Global
Biopharmaceutics, Drug Product Design, Pfizer, Sandwich CT13 9NJ, United Kingdom
| | - Amitava Mitra
- Clinical
Pharmacology, Kura Oncology Inc., Boston, Massachusetts 02210, United States
| | - Rebecca Moody
- Office
of
Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research
(CDER), Food and Drug Administration (FDA), Silver Spring, Maryland 20903-1058, United
States
| | - Deanna Mudie
- Global
Research and Development, Small Molecules, Lonza, 63045 NE Corporate
Pl., Bend, Oregon 97701, United States
| | - Flora Musuamba Tshinanu
- Belgian Federal Agency for Medicines and Health Products, Galileelaan 5/03, Brussel 1210, Belgium
| | - James E. Polli
- School
of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Bhagwant Rege
- Office
of
Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research
(CDER), Food and Drug Administration (FDA), Silver Spring, Maryland 20903-1058, United
States
| | - Xiaojun Ren
- PK
Sciences/Translational Medicine, BioMedical Research, Novartis, One Health Plaza, East Hanover, New Jersey 07936, United States
| | - Gregory Rullo
- Regulatory
CMC, AstraZeneca, 1 Medimmune Way, Gaithersburg, Maryland 20878, United States
| | - Megerle Scherholz
- Pharmaceutical
Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Ivy Song
- Takeda
Development Center Americas Inc., 300 Shire Way, Lexington, Massachusetts 02421, United States
| | - Cordula Stillhart
- Pharmaceutical
R&D, F. Hoffmann-La Roche Ltd., Basel 4070, Switzerland
| | - Sandra Suarez-Sharp
- Regulatory
Affairs, Simulations Plus Inc., 42505 10th Street West, Lancaster, California 93534-7059, United States
| | - Christer Tannergren
- Biopharmaceutics
Science, New Modalities & Parenteral Product Development, Pharmaceutical
Technology & Development, Operations, AstraZeneca, Gothenburg 431 50, Sweden
| | - Eleftheria Tsakalozou
- Division
of Quantitative Methods and Modeling, Office of Research and Standards,
Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20903-1058, United
States
| | - Shereeni Veerasingham
- Pharmaceutical
Drugs Directorate (PDD), Health Canada, 1600 Scott St., Ottawa K1A 0K9, Canada
| | - Christian Wagner
- Global
Drug Product Development, Global CMC Development, the Healthcare Business of Merck KGaA, Darmstadt D-64293, Germany
| | - Paul Seo
- Office
of Translational Science, Office of Clinical Pharmacology (OCP), Center
for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland 20903-1058, United States
| |
Collapse
|
3
|
Handa U, Malik A, Guarve K, Rani N, Sharma P. Supersaturation Behavior: Investigation of Polymers Impact on Nucleation Kinetic Profile for Rationalizing the Polymeric Precipitation Inhibitors. Curr Drug Deliv 2024; 21:1422-1432. [PMID: 37907490 DOI: 10.2174/0115672018261505231018100329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/26/2023] [Accepted: 09/01/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND Although nucleation kinetic data is quite important for the concept of supersaturation behavior, its part in rationalizing the crystallization inhibitor has not been well understood. OBJECTIVE This study aimed to investigate the nucleation kinetic profile of Dextromethorphan HBr (as an ideal drug, BCS-II) by measuring liquid-liquid phase segregation, nucleation induction time, and Metastable Zone width. METHODS Surfeit action was examined by a superfluity assay of the drug. The concentration was scrutinized by light scattering techniques (UV spectrum (novel method) and Fluorometer (CL 53)). RESULTS The drug induction time was 20 min without polymer and 90 and 110 min with polymers, such as HPMC K15M and Xanthan Gum, respectively. Therefore, the order of the polymer's ability to inhibit nucleation was Xanthan Gum > HPMC K15M in the medium (7.4 pH). Similarly, the drug induction time was 30 min without polymer and 20, 110, and 90 min with polymers, such as Sodium CMC, HPMC K15M, and Xanthan Gum, respectively. Therefore, the order of the polymer's ability to inhibit nucleation was HPMC K15M > Xanthan Gum > Sodium CMC in SIFsp (6.8 pH), which synchronizes the polymer's potentiality to interdict the drug precipitation. CONCLUSION The HPMC K15M and xanthan Gum showed the best crystallization inhibitor effect for the maintenance of superfluity conditions till the drug absorption time. The xanthan gum is based on the "glider" concept, and this shows the novelty of this preliminary research. The screening methodology used for rationalizing the best polymers used in the superfluity formulations development successfully.
Collapse
Affiliation(s)
- Uditi Handa
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar-135001, Haryana, India
- Department of Pharmaceutics, MM College of Pharmacy, MM (DU), Mullana, Ambala, Haryana, India
| | - Anuj Malik
- Department of Pharmaceutics, MM College of Pharmacy, MM (DU), Mullana, Ambala, Haryana, India
| | - Kumar Guarve
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar-135001, Haryana, India
| | - Nidhi Rani
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Prerna Sharma
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar-135001, Haryana, India
| |
Collapse
|
4
|
Moens F, Larsson A, De Blaiser A, Vandevijver G, Spreafico F, Nicolas JM, Lacombe L, Segregur D, Flanagan T, Berben P. Contribution of the Dynamic Intestinal Absorption Model (Diamod) to the Development of a Patient-Centric Drug Formulation. Mol Pharm 2023; 20:6197-6212. [PMID: 37955627 DOI: 10.1021/acs.molpharmaceut.3c00607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Compound X is a weak basic drug targeting the early stages of Parkinson's disease, for which a theoretical risk assessment has indicated that elevated gastric pH conditions could potentially result in reduced plasma concentrations. Different in vitro dissolution methodologies varying in level of complexity and a physiologically based pharmacokinetic (PBPK) absorption model demonstrated that the dissolution, solubility, and intestinal absorption of compound X was indeed reduced under elevated gastric pH conditions. These observations were confirmed in a crossover pharmacokinetic study in Beagle dogs. As a result, the development of a formulation resulting in robust performance that is not sensitive to the exposed gastric pH levels is of crucial importance. The dynamic intestinal absorption MODel (Diamod), an advanced in vitro gastrointestinal transfer tool that allows to study the gastrointestinal dissolution and interconnected permeation of drugs, was selected as an in vitro tool for the formulation optimization activities given its promising predictive capacity and its capability to generate insights into the mechanisms driving formulation performance. Different pH-modifiers were screened for their potential to mitigate the pH-effect by decreasing the microenvironmental pH at the dissolution surface. Finally, an optimized formulation containing a clinically relevant dose of the drug and a functional amount of the selected pH-modifier was evaluated for its performance in the Diamod. This monolayer tablet formulation resulted in rapid gastric dissolution and supersaturation, inducing adequate intestinal supersaturation and permeation of compound X, irrespective of the gastric acidity level in the stomach. In conclusion, this study describes the holistic biopharmaceutics approach driving the development of a patient-centric formulation of compound X.
Collapse
Affiliation(s)
| | - Adam Larsson
- ProDigest BV, Technologiepark 82, 9052 Ghent, Belgium
| | | | | | | | - Jean-Marie Nicolas
- UCB Pharma SA, Early Solutions, Chemin du Foriest 1, 1420 Braine l'Alleud, Belgium
| | - Lucie Lacombe
- UCB Pharma SA, Product Design & Performance, Chemin du Foriest 1, 1420 Braine l'Alleud, Belgium
| | - Domagoj Segregur
- UCB Pharma SA, Product Design & Performance, Chemin du Foriest 1, 1420 Braine l'Alleud, Belgium
| | - Talia Flanagan
- UCB Pharma SA, Product Design & Performance, Chemin du Foriest 1, 1420 Braine l'Alleud, Belgium
| | - Philippe Berben
- UCB Pharma SA, Product Design & Performance, Chemin du Foriest 1, 1420 Braine l'Alleud, Belgium
| |
Collapse
|
5
|
Reppas C, Kuentz M, Bauer-Brandl A, Carlert S, Dallmann A, Dietrich S, Dressman J, Ejskjaer L, Frechen S, Guidetti M, Holm R, Holzem FL, Karlsson Ε, Kostewicz E, Panbachi S, Paulus F, Senniksen MB, Stillhart C, Turner DB, Vertzoni M, Vrenken P, Zöller L, Griffin BT, O'Dwyer PJ. Leveraging the use of in vitro and computational methods to support the development of enabling oral drug products: An InPharma commentary. Eur J Pharm Sci 2023; 188:106505. [PMID: 37343604 DOI: 10.1016/j.ejps.2023.106505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 06/23/2023]
Abstract
Due to the strong tendency towards poorly soluble drugs in modern development pipelines, enabling drug formulations such as amorphous solid dispersions, cyclodextrins, co-crystals and lipid-based formulations are frequently applied to solubilize or generate supersaturation in gastrointestinal fluids, thus enhancing oral drug absorption. Although many innovative in vitro and in silico tools have been introduced in recent years to aid development of enabling formulations, significant knowledge gaps still exist with respect to how best to implement them. As a result, the development strategy for enabling formulations varies considerably within the industry and many elements of empiricism remain. The InPharma network aims to advance a mechanistic, animal-free approach to the assessment of drug developability. This commentary focuses current status and next steps that will be taken in InPharma to identify and fully utilize 'best practice' in vitro and in silico tools for use in physiologically based biopharmaceutic models.
Collapse
Affiliation(s)
- Christos Reppas
- Department of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Martin Kuentz
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz CH 4132, Switzerland
| | - Annette Bauer-Brandl
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
| | | | - André Dallmann
- Pharmacometrics/Modeling and Simulation, Research and Development, Pharmaceuticals, Bayer AG, Leverkusen, Germany
| | - Shirin Dietrich
- Department of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Jennifer Dressman
- Fraunhofer Institute of Translational Medicine and Pharmacology, Frankfurt am Main, Germany
| | - Lotte Ejskjaer
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Sebastian Frechen
- Pharmacometrics/Modeling and Simulation, Research and Development, Pharmaceuticals, Bayer AG, Leverkusen, Germany
| | - Matteo Guidetti
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark; Solvias AG, Department for Solid-State Development, Römerpark 2, 4303 Kaiseraugst, Switzerland
| | - René Holm
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
| | - Florentin Lukas Holzem
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark; Pharmaceutical R&D, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | | | - Edmund Kostewicz
- Fraunhofer Institute of Translational Medicine and Pharmacology, Frankfurt am Main, Germany
| | - Shaida Panbachi
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz CH 4132, Switzerland
| | - Felix Paulus
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
| | - Malte Bøgh Senniksen
- Fraunhofer Institute of Translational Medicine and Pharmacology, Frankfurt am Main, Germany; Pharmaceutical R&D, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Cordula Stillhart
- Pharmaceutical R&D, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | | | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Paul Vrenken
- Department of Pharmacy, National and Kapodistrian University of Athens, Greece; Pharmacometrics/Modeling and Simulation, Research and Development, Pharmaceuticals, Bayer AG, Leverkusen, Germany
| | - Laurin Zöller
- AstraZeneca R&D, Gothenburg, Sweden; Fraunhofer Institute of Translational Medicine and Pharmacology, Frankfurt am Main, Germany
| | | | | |
Collapse
|
6
|
Niessen J, López Mármol Á, Ismail R, Schiele JT, Rau K, Wahl A, Sauer K, Heinzerling O, Breitkreutz J, Koziolek M. Application of biorelevant in vitro assays for the assessment and optimization of ASD-based formulations for pediatric patients. Eur J Pharm Biopharm 2023; 185:13-27. [PMID: 36813089 DOI: 10.1016/j.ejpb.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/01/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
Amorphous solid dispersions (ASD) have been a successful formulation strategy to overcome the poor aqueous solubility of many novel drugs, but the development of pediatric formulations presents a special challenge due to variable gastrointestinal conditions in children. It was the aim of this work to design and apply a staged biopharmaceutical test protocol for the in vitro assessment of ASD-based pediatric formulations. Ritonavir was used as a model drug with poor aqueous solubility. Based on the commercial ASD powder formulation, a mini-tablet and a conventional tablet formulation were prepared. Drug release from the three formulations was studied in different biorelevant in vitro assays (i.e. MicroDiss, two-stage, transfer model, tiny-TIM) to consider different aspects of human GI physiology. Data from the two-stage and transfer model tests indicated that by controlled disintegration and dissolution excessive primary precipitation can be prevented. However, this advantage of the mini-tablet and tablet formulation did not translate into better performance in tiny-TIM. Here, the in vitro bioaccessibility was comparable for all three formulations. In the future, the staged biopharmaceutical action plan established herein will support the development of ASD-based pediatric formulations by improving the mechanistic understanding so that formulations are developed for which drug release is robust against variable physiological conditions.
Collapse
Affiliation(s)
- Janis Niessen
- Abbvie Deutschland GmbH & Co. KG, Small Molecule CMC Development, Knollstrasse, Ludwigshafen, Germany
| | - Álvaro López Mármol
- Abbvie Deutschland GmbH & Co. KG, Small Molecule CMC Development, Knollstrasse, Ludwigshafen, Germany
| | - Ruba Ismail
- Abbvie Deutschland GmbH & Co. KG, Small Molecule CMC Development, Knollstrasse, Ludwigshafen, Germany
| | - Julia T Schiele
- Abbvie Deutschland GmbH & Co. KG, Small Molecule CMC Development, Knollstrasse, Ludwigshafen, Germany
| | - Karola Rau
- Abbvie Deutschland GmbH & Co. KG, Small Molecule CMC Development, Knollstrasse, Ludwigshafen, Germany
| | - Andrea Wahl
- Abbvie Deutschland GmbH & Co. KG, Small Molecule CMC Development, Knollstrasse, Ludwigshafen, Germany
| | - Kerstin Sauer
- Abbvie Deutschland GmbH & Co. KG, Small Molecule CMC Development, Knollstrasse, Ludwigshafen, Germany
| | - Oliver Heinzerling
- Abbvie Deutschland GmbH & Co. KG, Small Molecule CMC Development, Knollstrasse, Ludwigshafen, Germany
| | - Jörg Breitkreutz
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Düsseldorf, Germany
| | - Mirko Koziolek
- Abbvie Deutschland GmbH & Co. KG, Small Molecule CMC Development, Knollstrasse, Ludwigshafen, Germany.
| |
Collapse
|
7
|
Adhikari A, Seo PR, Polli JE. Dissolution-Hollow Fiber Membrane (D-HFM) System to Anticipate Biopharmaceutics Risk of Tablets and Capsules. J Pharm Sci 2023; 112:751-759. [PMID: 36202250 DOI: 10.1016/j.xphs.2022.09.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 02/18/2023]
Abstract
A dissolution-hollow fiber membrane (D-HFM) system with relatively high area/volume ratio was previously characterized and showed favorably high percent drug absorption. Also, it's in vitro permeation constant (Kp.Ç.) was close to in vivo human permeation constant (kp). The objective of the current study was to predict the in vivo human absorption profile and biopharmaceutic performance of five drug products using the D-HFM system. Four immediate-release (IR) and one extended-release (ER) solid oral dosage form were subjected to the D-HFM system. Tablets and capsule dissolution were also measured using USP apparatus II. Drug solutions were also subjected to D-HFM testing. Predicted and observed absorption profiles in D-HFM system showed close agreement for each solid oral dosage form. Levy-Polli plots from D-HFM system successfully predicted the four IR products to be low biopharmaceutic risk due to permeation rate limited or mixed dissolution/permeation rate limited absorption, and successfully predicted metoprolol ER product to be high biopharmaceutic risk due to dissolution rate limited absorption. These observations showed potential of the in vitro D-HFM system to be utilized in biopharmaceutics risk assessment of in vivo tablet and capsule performance.
Collapse
Affiliation(s)
- Asmita Adhikari
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, USA
| | - Paul R Seo
- Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - James E Polli
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, USA.
| |
Collapse
|
8
|
Stamatopoulos K, Ferrini P, Nguyen D, Zhang Y, Butler JM, Hall J, Mistry N. Integrating In Vitro Biopharmaceutics into Physiologically Based Biopharmaceutic Model (PBBM) to Predict Food Effect of BCS IV Zwitterionic Drug (GSK3640254). Pharmaceutics 2023; 15:pharmaceutics15020521. [PMID: 36839843 PMCID: PMC9965536 DOI: 10.3390/pharmaceutics15020521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
A strategy followed to integrate in vitro solubility and permeability data into a PBBM model to predict the food effect of a BCS IV zwitterionic drug (GSK3640254) observed in clinical studies is described. The PBBM model was developed, qualified and verified using clinical data of an immediate release (IR)-tablet (10-320 mg) obtained in healthy volunteers under fasted and fed conditions. The solubility of GSK3640254 was a function of its ionization state, the media composition and pH, whereas its permeability determined using MDCK cell lines was enhanced by the presence of mixed micelles. In vitro data alongside PBBM modelling suggested that the positive food effect observed in the clinical studies was attributed to micelle-mediated enhanced solubility and permeability. The biorelevant media containing oleic acid and cholesterol in fasted and fed levels enabled the model to appropriately capture the magnitude of the food effect. Thus, by using Simcyp® v20 software, the PBBM model accurately predicted the results of the food effect and predicted data were within a two-fold error with 70% being within 1.25-fold. The developed model strategy can be effectively adopted to increase the confidence of using PBBM models to predict the food effect of BCS class IV drugs.
Collapse
Affiliation(s)
- Konstantinos Stamatopoulos
- Biopharmaceutics, DPD, MDS, GlaxoSmithKline, David Jack Centre, Park Road, Ware SG12 0DP, UK
- Correspondence:
| | - Paola Ferrini
- Analytical Platform and Platform Modernisation, Analytical Development, DPD, MDS, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | - Dung Nguyen
- IVIVT DMPK Research, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, PA 19426, USA
| | - Ying Zhang
- Clinical Pharmacology Modeling and Simulation, GSK, Collegeville, PA 19426, USA
| | - James M. Butler
- Biopharmaceutics, DPD, MDS, GlaxoSmithKline, David Jack Centre, Park Road, Ware SG12 0DP, UK
| | - Jon Hall
- Analytical Development, MDS, GlaxoSmithKline, David Jack Centre, Park Road, Ware SG12 0DP, UK
| | - Nena Mistry
- Biopharmaceutics, DPD, MDS, GlaxoSmithKline, David Jack Centre, Park Road, Ware SG12 0DP, UK
| |
Collapse
|
9
|
Permeation enhancers loaded bilosomes for improved intestinal absorption and cytotoxic activity of doxorubicin. Int J Pharm 2022; 630:122427. [PMID: 36435504 DOI: 10.1016/j.ijpharm.2022.122427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/26/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
The clinical utility of doxorubicin is compromised due to dose related toxic side effects and limited oral bioavailability with no oral formulation being marketed. Enhancement of intestinal absorption and magnification of cytotoxicity can overcome these limitations. Accordingly, the objective was to probe penetration enhancers, bilosomes and their combinations for enhanced intestinal absorption and improved cytotoxicity of doxorubicin. Piperine and dipyridamole were tested as enhancers alone or encapsulated in bilosomes comprising Span60, cholesterol and bile salts. Bilosomes were nanosized spherical vesicles with negative zeta potential and were able to entrap doxorubicin with efficiency ranging from 45.3 % to 53 %. Intestinal absorption studies utilized in-situ rabbit intestinal perfusion which revealed site dependent doxorubicin absorption correlating with regional distribution of efflux transporters. Co-perfusion with the enhancer increased intestinal absorption with further augmentation after bilosomal encapsulation. The latter increased the % fraction absorbed by 4.5-6 and 1.8-2.5-fold from jejuno-ileum and colon, respectively, depending on bilosomes composition. Additionally, doxorubicin cytotoxicity against breast cancer cells (MCF-7) was significantly improved after bilosomal encapsulation and the recorded doxorubicin IC50 value was reduced from 13.3 μM to 0.1 μM for the best formulation. The study introduced bilosomes encapsulating absorption enhancers as promising carriers for enhanced cytotoxicity and oral absorption of doxorubicin.
Collapse
|
10
|
Characterization of Dissolution-Permeation System using Hollow Fiber Membrane Module and Utility to Predict in Vivo Drug Permeation Across BCS Classes. J Pharm Sci 2022; 111:3075-3087. [PMID: 35830941 DOI: 10.1016/j.xphs.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/02/2022] [Accepted: 07/03/2022] [Indexed: 12/14/2022]
Abstract
A dissolution-permeation system has potential to provide insight into the kinetic contributions of dissolution and permeation to overall drug absorption. The goals of the study were to characterize a dissolution-hollow fiber membrane (D-HFM) system and compare its resulting in vitro drug permeation constants (Kp') to in vivo clinical permeation constants (kp), for four drugs in various Biopharmaceutics Classification System (BCS) classes. Model predictions for D-HFM were made based on derived mixing tank (MT) and complete radial (CRM) flow models and independent measurement of membrane permeability. Experimental D-HFM studies included donor flow rate and donor volume sensitivity studies, and drug permeation profile studies. Additionally, for the four drugs, Kp'from D-HFM system was compared to (kp) from literature, as well as Kp' values from side-by-side diffusion cell and dissolution/Caco-2 system. Results show progressive D-HFM system development as a dissolution-permeation tool. Results indicated that D-HFM models using MT or CRM provided close agreement between predicted and observed drug permeation profiles. Drug permeation in D-HFM system was volume dependent, as predicted. Favorably, more drug permeated through the D-HFM system (10-20% in 60 min) compared to side-by-side diffusion cell (1%) and dissolution/Caco-2 system (0.1%). Kp' from D-HFM system was also closer to in vivo kp; the two other in vitro models showed lower Kp'. Overall, studies reflect that HFM module has potential to incorporate drug permeation into the in vitro assessment of in vivo tablet and capsule performance.
Collapse
|
11
|
Non-Effective Improvement of Absorption for Some Nanoparticle Formulations Explained by Permeability under Non-Sink Conditions. Pharmaceutics 2022; 14:pharmaceutics14040816. [PMID: 35456650 PMCID: PMC9024805 DOI: 10.3390/pharmaceutics14040816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
We evaluated the in vitro permeability of nanoparticle formulations of high and low lipophilic compounds under non-sink conditions, wherein compounds are not completely dissolved. The permeability of the highly lipophilic compound, griseofulvin, was improved by about 30% due to nanonization under non-sink conditions. Moreover, this permeability was about 50% higher than that under sink conditions. On the other hand, for the low lipophilic compound, hydrocortisone, there was no difference in permeability between micro-and nano-sized compounds under non-sink conditions. The nanonization of highly lipophilic compounds improves the permeability of the unstirred water layer (UWL), which in turn improves overall permeability. On the other hand, because the rate-limiting step in permeation for the low lipophilic compounds is the diffusion of the compounds in the membrane, the improvement of UWL permeability by nanonization does not improve the overall permeability. Based on this mechanism, nanoparticle formulations are not effective for low lipophilic compounds. To accurately predict the absorption of nanoparticle formulations, it is necessary to consider their permeability under non-sink conditions which reflect in vivo conditions.
Collapse
|
12
|
Tsakiridou G, O'Dwyer PJ, Margaritis A, Box KJ, Vertzoni M, Kalantzi L, Reppas C. On the usefulness of four in vitro methodologies in screening for product related differences in tacrolimus exposure after oral administration of amorphous solid dispersions with modified release characteristics in the fasted state. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
13
|
Best practices in current models mimicking drug permeability in the gastrointestinal tract - an UNGAP review. Eur J Pharm Sci 2021; 170:106098. [PMID: 34954051 DOI: 10.1016/j.ejps.2021.106098] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/19/2021] [Accepted: 12/15/2021] [Indexed: 12/21/2022]
Abstract
The absorption of orally administered drug products is a complex, dynamic process, dependent on a range of biopharmaceutical properties; notably the aqueous solubility of a molecule, stability within the gastrointestinal tract (GIT) and permeability. From a regulatory perspective, the concept of high intestinal permeability is intrinsically linked to the fraction of the oral dose absorbed. The relationship between permeability and the extent of absorption means that experimental models of permeability have regularly been used as a surrogate measure to estimate the fraction absorbed. Accurate assessment of a molecule's intestinal permeability is of critical importance during the pharmaceutical development process of oral drug products, and the current review provides a critique of in vivo, in vitro and ex vivo approaches. The usefulness of in silico models to predict drug permeability is also discussed and an overview of solvent systems used in permeability assessments is provided. Studies of drug absorption in humans are an indirect indicator of intestinal permeability, but in vitro and ex vivo tools provide initial screening approaches are important tools for direct assessment of permeability in drug development. Continued refinement of the accuracy of in silico approaches and their validation with human in vivo data will facilitate more efficient characterisation of permeability earlier in the drug development process and will provide useful inputs for integrated, end-to-end absorption modelling.
Collapse
|
14
|
O'Dwyer PJ, Box KJ, Imanidis G, Vertzoni M, Reppas C. On the usefulness of four in vitro methods in assessing the intraluminal performance of poorly soluble, ionisable compounds in the fasted state. Eur J Pharm Sci 2021; 168:106034. [PMID: 34628003 PMCID: PMC8665220 DOI: 10.1016/j.ejps.2021.106034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/03/2021] [Accepted: 10/05/2021] [Indexed: 01/12/2023]
Abstract
A small-scale two-stage biphasic system, a small-scale two-stage dissolution-permeation system, the Erweka mini-paddle apparatus, and the BioGIT system were evaluated for their usefulness in assessing the intraluminal performance of two low solubility drugs in the fasted state, one with weakly acidic properties (tested in a salt form, diclofenac potassium) and one with weakly alkaline properties [ritonavir, tested as an amorphous solid dispersion (ASD) formulation]. In all in vitro methods, an immediate-release tablet and a powder formulation of diclofenac potassium were both rapidly dissolved in Level II biorelevant media simulating the conditions in the upper small intestine. Physiologically based biopharmaceutics (PBB) modelling for the tablet formulation resulted in a successful simulation of the average plasma profile in adults, whereas for the powder formulation modelling indicated that gastric emptying and transport through the intestinal epithelium limit the absorption rates. Detailed information on the behaviour of the ritonavir ASD formulation under both simulated gastric and upper small intestinal conditions were crucial for understanding the luminal performance. PBB modelling showed that the dissolution and precipitation parameters, estimated from the Erweka mini-paddle apparatus data and the small-scale two-stage biphasic system data, respectively, were necessary to adequately simulate the average plasma profile after administration of the ritonavir ASD formulation. Simulation of the gastrointestinal transfer process from the stomach to the small intestine was necessary to evaluate the effects of hypochlorhydric conditions on the luminal performance of the ritonavir ASD formulation. Based on this study, the selection of the appropriate in vitro method for evaluating the intraluminal performance of ionisable lipophilic drugs depends on the characteristics of the drug substance. The results suggest that for (salts of) acidic drugs (e.g., diclofenac potassium) it is only an issue of availability and ease of operation of the apparatus. For weakly alkaline substances (e.g., ritonavir), the results indicate that the dynamic dissolution process needs to be simulated, with the type of requested information (e.g., dissolution parameters, precipitation parameters, luminal concentrations) being key for selecting the most appropriate method. Regardless of the ionisation characteristics, early in the drug development process the use of small-scale systems may be inevitable, due to the limited quantities of drug substance available.
Collapse
Affiliation(s)
- Patrick J O'Dwyer
- Pion Inc. (UK) Ltd., Forest Row, East Sussex, United Kingdom; Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Zografou, Greece; School of Pharmacy, University College Cork, College Road, Cork, Ireland
| | - Karl J Box
- Pion Inc. (UK) Ltd., Forest Row, East Sussex, United Kingdom
| | - Georgios Imanidis
- University of Applied Sciences Northwest. Switzerland. School of Life Sciences, Institute of Pharma Technology, Hofackerstrasse 30, 4132 Muttenz, Switzerland; University of Basel, Department of Pharmaceutical Sciences, Basel, Switzerland
| | - Maria Vertzoni
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Zografou, Greece
| | - Christos Reppas
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Zografou, Greece.
| |
Collapse
|
15
|
Li J, Spivey N, Silchenko S, Gonzalez-Alvarez I, Bermejo M, Hidalgo IJ. A differential equation based modelling approach to predict supersaturation and in vivo absorption from in vitro dissolution-absorption system (idas2) data. Eur J Pharm Biopharm 2021; 165:1-12. [PMID: 33971275 DOI: 10.1016/j.ejpb.2021.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/25/2021] [Accepted: 05/02/2021] [Indexed: 10/21/2022]
Abstract
In vitro dissolution tests are widely used to monitor the quality and consistency of oral solid dosage forms, but to increase the physiological relevance of in vitro dissolution tests, newer systems combine dissolution and permeation measurements. Some of these use artificial membranes while others (e.g., in the in vitro dissolution absorption system 2; IDAS2), utilize cell monolayers to assess drug permeation. We determined the effect of the precipitation inhibitor Hypromellose Acetate Succinate (HPMCAS) on the supersaturation/permeation of Ketoconazole and Dipyridamole in IDAS2 and its effect on their absorption in rats. Thus the main objectives of this study were to determine: (1) whether dissolution and permeation data from IDAS2 could be used to predict rat plasma concentration using an absorption model and (2) whether the effect of the precipitation inhibitor HPMCAS on supersaturation and permeation in IDAS2 was correlated with its effect on systemic absorption in the rat. Predicted drug concentrations in rat plasma, generated using parameters estimated from IDAS2 dissolution/permeation data and a mathematical absorption model, showed good agreement with measured concentrations. While in IDAS2, the prolongation of Ketoconazole's supersaturation caused by HPMCAS led to higher permeation, which paralleled the higher systemic absorption in rats, Dipyridamole showed no supersaturation and, thus, no effect of HPMCAS in dissolution or permeation in IDAS2 and no effect on Dipyridamole absorption in rats. The ability of IDAS2 to detect supersaturation following a pH-shift supports the potential value of this system for studying approaches to enhance intestinal absorption through supersaturation and the accuracy of plasma concentration predictions in rats suggest the possibility of combining IDAS2 with absorption models to predict plasma concentration in different species.
Collapse
Affiliation(s)
- Jibin Li
- Absorption Systems, Exton PA1 9341, USA.
| | | | | | - Isabel Gonzalez-Alvarez
- Department Engineering Pharmacy Section, Miguel Hernandez University, 03550 San Juan de Alicante, Alicante, Spain.
| | - Marival Bermejo
- Department Engineering Pharmacy Section, Miguel Hernandez University, 03550 San Juan de Alicante, Alicante, Spain.
| | | |
Collapse
|
16
|
O'Dwyer PJ, Box KJ, Dressman J, Griffin BT, Henze LJ, Litou C, Pentafragka C, Statelova M, Vertzoni M, Reppas C. Oral biopharmaceutics tools: recent progress from partnership through the Pharmaceutical Education and Research with Regulatory Links collaboration. J Pharm Pharmacol 2021; 73:437-446. [PMID: 33793836 DOI: 10.1093/jpp/rgaa055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To summarise key contributions of the Pharmaceutical Education and Research with Regulatory Links (PEARRL) project (2016-2020) to the optimisation of existing and the development of new biopharmaceutics tools for evaluating the in vivo performance of oral drug products during the development of new drugs and at the regulatory level. KEY FINDINGS Optimised biopharmaceutics tools: Based on new clinical data, the composition of biorelevant media for simulating the fed state conditions in the stomach was simplified. Strategies on how to incorporate biorelevant in vitro data of bio-enabling drug products into physiologically based pharmacokinetic (PBPK) modelling were proposed. Novel in vitro biopharmaceutics tools: Small-scale two-stage biphasic dissolution and dissolution-permeation setups were developed to facilitate understanding of the supersaturation effects and precipitation risks of orally administered drugs. A porcine fasted state simulated intestinal fluid was developed to improve predictions and interpretation of preclinical results using in vitro dissolution studies. Based on new clinical data, recommendations on the design of in vitro methodologies for evaluating the GI drug transfer process in the fed state were suggested. The optimized design of in vivo studies for investigating food effects: A food effect study protocol in the pig model was established which successfully predicted the food-dependent bioavailability of two model compounds. The effect of simulated infant fed state conditions in healthy adults on the oral absorption of model drugs was evaluated versus the fasted state and the fed state conditions, as defined by regulatory agencies for adults. Using PBPK modelling, the extrapolated fasted and infant fed conditions data appeared to be more useful to describe early drug exposure in infants, while extrapolation of data collected under fed state conditions, as defined by regulators for adults, failed to capture in vivo infant drug absorption. SUMMARY Substantial progress has been made in developing an advanced suite of biopharmaceutics tools for streamlining drug formulation screening and supporting regulatory applications. These advances in biopharmaceutics were achieved through networking opportunities and research collaborations provided under the H2020 funded PEARRL project.
Collapse
Affiliation(s)
- Patrick J O'Dwyer
- School of Pharmacy, University College Cork, Cork, Ireland.,Pion Inc. (UK) Ltd., Forest Row, East Sussex, UK.,Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Zografou, Greece
| | - Karl J Box
- Pion Inc. (UK) Ltd., Forest Row, East Sussex, UK
| | - Jennifer Dressman
- Institute of Translational Medicine and Pharmacology (ITMP), Fraunhofer Gesellschaft, Frankfurt am Main, Germany
| | | | - Laura J Henze
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Chara Litou
- Institute of Translational Medicine and Pharmacology (ITMP), Fraunhofer Gesellschaft, Frankfurt am Main, Germany
| | - Christina Pentafragka
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Zografou, Greece
| | - Marina Statelova
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Zografou, Greece
| | - Maria Vertzoni
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Zografou, Greece
| | - Christos Reppas
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Zografou, Greece
| |
Collapse
|
17
|
O'Dwyer PJ, Box KJ, Koehl NJ, Bennett-Lenane H, Reppas C, Holm R, Kuentz M, Griffin BT. Novel Biphasic Lipolysis Method To Predict in Vivo Performance of Lipid-Based Formulations. Mol Pharm 2020; 17:3342-3352. [PMID: 32787274 DOI: 10.1021/acs.molpharmaceut.0c00427] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The absence of an intestinal absorption sink is a significant weakness of standard in vitro lipolysis methods, potentially leading to poor prediction of in vivo performance and an overestimation of drug precipitation. In addition, the majority of the described lipolysis methods only attempt to simulate intestinal conditions, thus overlooking any supersaturation or precipitation of ionizable drugs as they transition from the acidic gastric environment to the more neutral conditions of the intestine. The aim of this study was to develop a novel lipolysis method incorporating a two-stage gastric-to-intestinal transition and an absorptive compartment to reliably predict in vivo performance of lipid-based formulations (LBFs). Drug absorption was mimicked by in situ quantification of drug partitioning into a decanol layer. The method was used to characterize LBFs from four studies described in the literature, involving three model drugs (i.e., nilotinib, fenofibrate, and danazol) where in vivo bioavailability data have previously been reported. The results from the novel biphasic lipolysis method were compared to those of the standard pH-stat method in terms of reliability for predicting the in vivo performance. For three of the studies, the novel biphasic lipolysis method more reliably predicted the in vivo bioavailability compared to the standard pH-stat method. In contrast, the standard pH-stat method was found to produce more predictive results for one study involving a series of LBFs composed of the soybean oil, glyceryl monolinoleate (Maisine CC), Kolliphor EL, and ethanol. This result was surprising and could reflect that increasing concentrations of ethanol (as a cosolvent) in the formulations may have resulted in greater partitioning of the drug into the decanol absorptive compartment. In addition to the improved predictivity for most of the investigated systems, this biphasic lipolysis method also uses in situ analysis and avoids time- and resource-intensive sample analysis steps, thereby facilitating a higher throughput capacity and biorelevant approach for characterization of LBFs.
Collapse
Affiliation(s)
- Patrick J O'Dwyer
- Pion Inc. (UK) Ltd., Forest Row RH18 5DW, East Sussex, U.K.,Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Zografou 157 72, Greece.,School of Pharmacy, University College Cork, College Road, Cork T12 YN60, Ireland
| | - Karl J Box
- Pion Inc. (UK) Ltd., Forest Row RH18 5DW, East Sussex, U.K
| | - Niklas J Koehl
- School of Pharmacy, University College Cork, College Road, Cork T12 YN60, Ireland
| | | | - Christos Reppas
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Zografou 157 72, Greece
| | - Rene Holm
- Drug Product Development, Janssen Research and Development, Johnson & Johnson, Turnhoutseweg 30, Beerse 2340, Belgium.,Department of Science and Environment, Roskilde University, Roskilde 4000, Denmark
| | - Martin Kuentz
- School of Life Sciences, Institute of Pharma Technology, University of Applied Sciences Northwest Switzerland, Hofackerstrasse 30, Muttenz 4132, Switzerland
| | - Brendan T Griffin
- School of Pharmacy, University College Cork, College Road, Cork T12 YN60, Ireland
| |
Collapse
|
18
|
Impact of HPMCAS on the Dissolution Performance of Polyvinyl Alcohol Celecoxib Amorphous Solid Dispersions. Pharmaceutics 2020; 12:pharmaceutics12060541. [PMID: 32545270 PMCID: PMC7356348 DOI: 10.3390/pharmaceutics12060541] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
Amorphous solid dispersions (ASDs) have been proven to increase the bioavailability of poorly soluble drugs. It is desirable that the ASD provide a rapid dissolution rate and a sufficient stabilization of the generated supersaturation. In many cases, one polymer alone is not able to provide both features, which raises a need for reasonable polymer combinations. In this study we aimed to generate a rapidly dissolving ASD using the hydrophilic polymer polyvinyl alcohol (PVA) combined with a suitable precipitation inhibitor. Initially, PVA and hydroxypropylmethylcellulose acetate succinate (HPMCAS) were screened for their precipitation inhibitory potential for celecoxib in solution. The generated supersaturation in presence of PVA or HPMCAS was further characterized using dynamic light scattering. Binary ASDs of either PVA or HPMCAS (at 10% and 20% drug load) were prepared by hot-melt extrusion and solid-state analytics were conducted using differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD) and fourier-transformed infrared spectroscopy (FT-IR). The non-sink dissolution studies of the binary ASDs revealed a high dissolution rate for the PVA ASDs with subsequent precipitation and for the HPMCAS ASDs a suppressed dissolution. In order to utilize the unexploited potential of the binary ASDs, the PVA ASDs were combined with HPMCAS either predissolved or added as powder and also formulated as ternary ASD. We successfully generated a solid formulation consisting of the powdered PVA ASD and HPMCAS powder, which was superior in monophasic non-sink dissolution and biorelevant biphasic dissolution studies compared to the binary and ternary ASDs.
Collapse
|