1
|
Opolot EE, Goshevski F, Chaudhary R, Kilgore JA, Williams NS, von Recum HA, Desai AB. Sustained Release of Antifibrotic Nintedanib from Polymer Microparticles Reduces Dosing Frequency While Reducing Inflammation in Murine Idiopathic Pulmonary Fibrosis. Ann Biomed Eng 2025:10.1007/s10439-025-03729-8. [PMID: 40210794 DOI: 10.1007/s10439-025-03729-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/29/2025] [Indexed: 04/12/2025]
Abstract
PURPOSE Idiopathic pulmonary fibrosis (IPF) is a life-threatening, progressive lung disease with limited therapeutic options, often resulting in poor patient outcomes. Current treatments, such as Nintedanib (NTB) and Pirfenidone (PFD), require frequent administration, leading to adverse effects and low patient adherence. The purpose of this study was to investigate a sustained-release drug delivery system utilizing microparticles (MPs) composed of insoluble beta-cyclodextrin (β-CD) polymers to enhance the bioavailability and extend the release of NTB and PFD. METHODS A multidisciplinary approach, including in silico modeling, in vitro assays, and in vivo studies, was employed to assess the efficacy of β-CD-polymer MPs as drug carriers. RESULTS Molecular docking simulations and surface plasmon resonance studies demonstrated a stronger binding affinity of NTB to β-CD-polymer MPs compared to PFD, suggesting an extended delivery profile for NTB over PFD. Pharmacokinetic analysis in healthy mice confirmed sustained-release profiles for both drugs, with NTB maintaining therapeutic plasma concentrations for over 70 h. In a bleomycin-induced IPF mouse model, NTB-loaded β-CD-polymer MPs significantly reduced pro-inflammatory markers and required fewer injections than the standard daily NTB regimen. CONCLUSION These findings indicate that β-CD-polymer MPs may serve as a promising platform for reducing dosing frequency of NTB and enhancing therapeutic outcomes in the treatment of IPF.
Collapse
Affiliation(s)
- Emmanuel Einyat Opolot
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Filip Goshevski
- Department of Medicine and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Rahul Chaudhary
- Department of Medicine and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Jessica A Kilgore
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Noelle S Williams
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Horst A von Recum
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Amar B Desai
- Department of Medicine and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
2
|
Huling J, Oschatz S, Lange H, Sterenczak KA, Stahnke T, Markhoff J, Stachs O, Möller S, Undre N, Peil A, Jünemann A, Grabow N, Fuellen G, Eickner T. γ-Cyclodextrin hydrogel for the sustained release of josamycin for potential ocular application. Drug Deliv 2024; 31:2361168. [PMID: 38899440 PMCID: PMC11191840 DOI: 10.1080/10717544.2024.2361168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Glaucoma is the leading cause of blindness worldwide. However, its surgical treatment, in particular via trabeculectomy, can be complicated by fibrosis. In current clinical practice, application of the drug, Mitomycin C, prevents or delays fibrosis, but can lead to additional side effects, such as bleb leakage and hypotony. Previous in silico drug screening and in vitro testing has identified the known antibiotic, josamycin, as a possible alternative antifibrotic medication with potentially fewer side effects. However, a suitable ocular delivery mechanism for the hydrophobic drug to the surgical site does not yet exist. Therefore, the focus of this paper is the development of an implantable drug delivery system for sustained delivery of josamycin after glaucoma surgery based on crosslinked γ-cyclodextrin. γ-Cyclodextrin is a commonly used solubilizer which was shown to complex with josamycin, drastically increasing the drug's solubility in aqueous solutions. A simple γ-cyclodextrin crosslinking method produced biocompatible hydrogels well-suited for implantation. The crosslinked γ - cyclodextrin retained the ability to form complexes with josamycin, resulting in a 4-fold higher drug loading efficiency when compared to linear dextran hydrogels, and prolonged drug release over 4 days.
Collapse
Affiliation(s)
- Jennifer Huling
- Institute for Biomedical Engineering, Rostock University Medical Center, Rostock, Germany
| | - Stefan Oschatz
- Institute for Biomedical Engineering, Rostock University Medical Center, Rostock, Germany
| | - Helge Lange
- Institute for Biomedical Engineering, Rostock University Medical Center, Rostock, Germany
| | | | - Thomas Stahnke
- Department of Ophthalmology, Rostock University Medical Center, Rostock, Germany
| | - Jana Markhoff
- Institute for Biomedical Engineering, Rostock University Medical Center, Rostock, Germany
| | - Oliver Stachs
- Department of Ophthalmology, Rostock University Medical Center, Rostock, Germany
| | - Steffen Möller
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Nasrullah Undre
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Anita Peil
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Anselm Jünemann
- Department of Ophthalmology, Rostock University Medical Center, Rostock, Germany
| | - Niels Grabow
- Institute for Biomedical Engineering, Rostock University Medical Center, Rostock, Germany
- Department Life, Light & Matter (LLM), University of Rostock, Rostock, Germany
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Thomas Eickner
- Institute for Biomedical Engineering, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
3
|
Wang W, Cao X, Cao YN, Liu LL, Zhang SL, Qi WY, Zhang JX, Yang XZ, Li XK, Zao XB, Ye YA. Exploring the Molecular Mechanism of Niuxi-Mugua Formula in Treating Coronavirus Disease 2019 via Network Pharmacology, Computational Biology, and Surface Plasmon Resonance Verification. Curr Comput Aided Drug Des 2024; 20:1113-1129. [PMID: 37855353 DOI: 10.2174/0115734099272592231004170422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND In China, Niuxi-Mugua formula (NMF) has been widely used to prevent and treat coronavirus disease 2019 (COVID-19). However, the mechanism of NMF for treating COVID-19 is not yet fully understood. OBJECTIVE This study aimed to explore the potential mechanism of NMF for treating COVID- 19 by network pharmacology, computational biology, and surface plasmon resonance (SPR) verification. MATERIALS AND METHODS The NMF-compound-target network was constructed to screen the key compounds, and the Molecular Complex Detection (MCODE) tool was used to screen the preliminary key genes. The overlapped genes (OGEs) and the preliminary key genes were further analyzed by enrichment analysis. Then, the correlation analysis of immune signatures and the preliminary key genes was performed. Molecular docking and molecular dynamic (MD) simulation assays were applied to clarify the interactions between key compounds and key genes. Moreover, the SPR interaction experiment was used for further affinity kinetic verification. RESULTS Lipid and atherosclerosis, TNF, IL-17, and NF-kappa B signaling pathways were the main pathways of NMF in the treatment of COVID-19. There was a positive correlation between almost the majority of immune signatures and all preliminary key genes. The key compounds and the key genes were screened out, and they were involved in the main pathways of NMF for treating COVID-19. Moreover, the binding affinities of most key compounds binding to key genes were good, and IL1B-Quercetin had the best binding stability. SPR analysis further demonstrated that IL1B-Quercetin showed good binding affinity. CONCLUSION Our findings provided theoretical grounds for NMF in the treatment of COVID-19.
Collapse
Affiliation(s)
- Wei Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100700, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xu Cao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yi-Nan Cao
- Sun Simiao Hospital, Beijing University of Chinese Medicine, Tongchuan, 727031, China
| | - Lian-Lian Liu
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Shu-Ling Zhang
- Sun Simiao Hospital, Beijing University of Chinese Medicine, Tongchuan, 727031, China
| | - Wen-Ying Qi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100700, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jia-Xin Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Xian-Zhao Yang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Xiao-Ke Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Xiao-Bin Zao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yong-An Ye
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100700, China
| |
Collapse
|
4
|
Schultz CW, Nevler A. Pyrvinium Pamoate: Past, Present, and Future as an Anti-Cancer Drug. Biomedicines 2022; 10:3249. [PMID: 36552005 PMCID: PMC9775650 DOI: 10.3390/biomedicines10123249] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022] Open
Abstract
Pyrvinium, a lipophilic cation belonging to the cyanine dye family, has been used in the clinic as a safe and effective anthelminthic for over 70 years. Its structure, similar to some polyaminopyrimidines and mitochondrial-targeting peptoids, has been linked with mitochondrial localization and targeting. Over the past two decades, increasing evidence has emerged showing pyrvinium to be a strong anti-cancer molecule in various human cancers in vitro and in vivo. This efficacy against cancers has been attributed to diverse mechanisms of action, with the weight of evidence supporting the inhibition of mitochondrial function, the WNT pathway, and cancer stem cell renewal. Despite the overwhelming evidence demonstrating the efficacy of pyrvinium for the treatment of human cancers, pyrvinium has not yet been repurposed for the treatment of cancers. This review provides an in-depth analysis of the history of pyrvinium as a therapeutic, the rationale and data supporting its use as an anticancer agent, and the challenges associated with repurposing pyrvinium as an anti-cancer agent.
Collapse
Affiliation(s)
- Christopher W. Schultz
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Avinoam Nevler
- Jefferson Pancreas, Biliary, and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
5
|
Dogan AB, Rohner NA, Smith JNP, Kilgore JA, Williams NS, Markowitz SD, von Recum HA, Desai AB. Polymer Microparticles Prolong Delivery of the 15-PGDH Inhibitor SW033291. Pharmaceutics 2021; 14:85. [PMID: 35056981 PMCID: PMC8779392 DOI: 10.3390/pharmaceutics14010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/06/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
As the prevalence of age-related fibrotic diseases continues to increase, novel antifibrotic therapies are emerging to address clinical needs. However, many novel therapeutics for managing chronic fibrosis are small-molecule drugs that require frequent dosing to attain effective concentrations. Although bolus parenteral administrations have become standard clinical practice, an extended delivery platform would achieve steady-state concentrations over a longer time period with fewer administrations. This study lays the foundation for the development of a sustained release platform for the delivery of (+)SW033291, a potent, small-molecule inhibitor of the 15-hydroxyprostaglandin dehydrogenase (15-PGDH) enzyme, which has previously demonstrated efficacy in a murine model of pulmonary fibrosis. Herein, we leverage fine-tuned cyclodextrin microparticles-specifically, β-CD microparticles (β-CD MPs)-to extend the delivery of the 15-PGDH inhibitor, (+)SW033291, to over one week.
Collapse
Affiliation(s)
- Alan B. Dogan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; (A.B.D.); (N.A.R.); (H.A.v.R.)
| | - Nathan A. Rohner
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; (A.B.D.); (N.A.R.); (H.A.v.R.)
| | - Julianne N. P. Smith
- Department of Medicine and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA; (J.N.P.S.); (S.D.M.)
| | - Jessica A. Kilgore
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA; (J.A.K.); (N.S.W.)
| | - Noelle S. Williams
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA; (J.A.K.); (N.S.W.)
| | - Sanford D. Markowitz
- Department of Medicine and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA; (J.N.P.S.); (S.D.M.)
- University Hospitals Seidman Cancer Center, Cleveland, OH 44106, USA
| | - Horst A. von Recum
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; (A.B.D.); (N.A.R.); (H.A.v.R.)
| | - Amar B. Desai
- Department of Medicine and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA; (J.N.P.S.); (S.D.M.)
| |
Collapse
|
6
|
Local Delivery of Pirfenidone by PLA Implants Modifies Foreign Body Reaction and Prevents Fibrosis. Biomedicines 2021; 9:biomedicines9080853. [PMID: 34440057 PMCID: PMC8389617 DOI: 10.3390/biomedicines9080853] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 01/04/2023] Open
Abstract
Peri-implant fibrosis (PIF) increases the postsurgical risks after implantation and limits the efficacy of the implantable drug delivery systems (IDDS). Pirfenidone (PF) is an oral anti-fibrotic drug with a short (<3 h) circulation half-life and strong adverse side effects. In the current study, disk-shaped IDDS prototype combining polylactic acid (PLA) and PF, PLA@PF, with prolonged (~3 days) PF release (in vitro) was prepared. The effects of the PLA@PF implants on PIF were examined in the rabbit ear skin pocket model on postoperative days (POD) 30 and 60. Matching blank PLA implants (PLA0) and PLA0 with an equivalent single-dose PF injection performed on POD0 (PLA0+injPF) served as control. On POD30, the intergroup differences were observed in α-SMA, iNOS and arginase-1 expressions in PLA@PF and PLA0+injPF groups vs. PLA0. On POD60, PIF was significantly reduced in PLA@PF group. The peri-implant tissue thickness decreased (532 ± 98 μm vs. >1100 μm in control groups) approaching the intact derma thickness value (302 ± 15 μm). In PLA@PF group, the implant biodegradation developed faster, while arginase-1 expression was suppressed in comparison with other groups. This study proves the feasibility of the local control of fibrotic response on implants via modulation of foreign body reaction with slowly biodegradable PF-loaded IDDS.
Collapse
|
7
|
Sharma A, Puri V, Kumar P, Singh I. Rifampicin-Loaded Alginate-Gelatin Fibers Incorporated within Transdermal Films as a Fiber-in-Film System for Wound Healing Applications. MEMBRANES 2020; 11:membranes11010007. [PMID: 33374601 PMCID: PMC7822433 DOI: 10.3390/membranes11010007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 01/09/2023]
Abstract
The various biological and molecular cascades including different stages or phases such as inflammation, tissue proliferation, and remodeling phases, which significantly define the wound healing process. The natural matrix system is suggested to increase and sustain these cascades. Biocompatible biopolymers, sodium alginate and gelatin, and a drug (Rifampicin) were used for the preparation of fibers into a physical crosslinking solution using extrusion-gelation. The formed fibers were then loaded in transdermal films for wound healing applications. Rifampicin, an antibiotic, antibacterial agent was incorporated into fibers and afterwards the fibers were loaded into transdermal films. Initially, rifampicin fibers were developed using biopolymers including alginate and gelatin, and were further loaded into polymeric matrix which led to the formation of transdermal films. The transdermal films were coded as TF1, TF2, TF3 and TF4.The characterization technique, FTIR, was used to describe molecular transitions within fibers, transdermal films, and was further corroborated using SEM and XRD. In mechanical properties, the parameters, such as tensile strength and elongation-at-break (extensibility), were found to be ranged between 2.32 ± 0.45 N/mm2 to 14.32 ± 0.98 N/mm2 and 15.2% ± 0.98% to 30.54% ± 1.08%. The morphological analysis firmed the development of fibers and fiber-loaded transdermal films. Additionally, physical evaluation such as water uptake study, water transmission rate, swelling index, moisture content, and moisture uptake study were executed to describe comparative interpretation of the formulations developed. In vivo studies were executed using a full thickness cutaneous wound healing model, the transdermal films developed showed higher degree of contraction, i.e., 98.85% ± 4.04% as compared to marketed formulation (Povidone). The fiber-in-film is a promising delivery system for loading therapeutic agents for effective wound care management.
Collapse
Affiliation(s)
- Ameya Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (A.S.); (V.P.)
- Chitkara University School of Pharmacy, Chitkara University, Himachal Pradesh 174103, India
| | - Vivek Puri
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (A.S.); (V.P.)
- Chitkara University School of Pharmacy, Chitkara University, Himachal Pradesh 174103, India
| | - Pradeep Kumar
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutic, Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa;
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (A.S.); (V.P.)
- Correspondence:
| |
Collapse
|