1
|
Nunes LGA, Weingrill RB, Fredrick SBJ, Lorca R, Lee MJ, Atif SM, Chicco AJ, Rosario FJ, Urschitz J. Trophoblast-specific Deptor knockdown enhances trophoblast nutrient transport and fetal growth in mice. Acta Physiol (Oxf) 2025; 241:e70012. [PMID: 40042094 PMCID: PMC11932668 DOI: 10.1111/apha.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 03/26/2025]
Abstract
AIM Silencing of DEP-domain containing mTOR-interacting protein (DEPTOR), an endogenous inhibitor of the mammalian target of rapamycin (mTOR) pathway, increases mTOR signaling and System A/L amino acid transport activity in cultured primary human trophoblast cells. However, there is no evidence supporting the regulatory role of DEPTOR signaling in placental function in vivo. We hypothesized that trophoblast-specific Deptor knockdown (KD) in mice increases trophoblast mTOR signaling, amino acid transport, and enhances fetal growth. METHODS We generated trophoblast-specific DeptorKD transgenic mice, and at embryonic day 18.5, placentas were analyzed to confirm knockdown efficiency, specificity, and mTOR signaling pathway levels. Trophoblast plasma membrane (TPM) System A/L amino acid transport expression and activity were also determined. We also examined the relationship between birthweight and DEPTOR protein levels in human placentas collected at term from appropriate for gestational age (AGA) and large for gestational age (LGA) pregnancies. RESULTS Reducing trophoblast Deptor RNA levels increased placental mTOR signaling, System A/L transporter expression/activity, and fetal growth in mice. Similarly, human LGA placentas displayed decreased DEPTOR protein levels, inversely correlated to birthweight and BMI. CONCLUSIONS This is the first report showing that trophoblast-specific DeptorKD is sufficient to activate mTOR signaling, a master regulator of placental function, which increases the TPM System A and L amino acid transporter expression and activity. We also propose that Deptor expression is mechanistically linked to placental mTOR signaling and fetal growth. Furthermore, modulation of DEPTOR signaling may represent a promising approach to improve outcomes in pregnancies characterized by abnormal fetal growth.
Collapse
Affiliation(s)
- Lance GA Nunes
- Institute for Biogenesis, University of Hawaii, John A Burns School of Medicine, Honolulu, HI, United States
| | - Rodrigo B Weingrill
- Institute for Biogenesis, University of Hawaii, John A Burns School of Medicine, Honolulu, HI, United States
| | | | - Ramon Lorca
- Department of Obstetrics and Gynecology, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| | - Men-Jean Lee
- Department of Obstetrics and Gynecology, University of Hawaii, John A Burns School of Medicine, Honolulu, HI, United States
| | - Shaikh M Atif
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| | - Adam J Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Fredrick J Rosario
- Department of Obstetrics and Gynecology, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| | - Johann Urschitz
- Institute for Biogenesis, University of Hawaii, John A Burns School of Medicine, Honolulu, HI, United States
| |
Collapse
|
2
|
Xu Z, Wang R, Xu Y, Qiu R, Chen J, Liu L, Qian Q. Comparative analysis and process optimization for manufacturing CAR-T using the PiggyBac system derived from cryopreserved versus fresh PBMCs. Sci Rep 2025; 15:5023. [PMID: 39934258 PMCID: PMC11814250 DOI: 10.1038/s41598-025-89686-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/06/2025] [Indexed: 02/13/2025] Open
Abstract
Chimeric antigen receptor T (CAR-T) therapy holds promise for cancer treatment but faces challenges with using fresh patient cells, including manufacturing failures and logistical hurdles. Cryopreserved peripheral blood mononuclear cells (PBMCs) offer a potential solution, and while lentiviral processes have been reported for generating CAR-T from these cells, few studies have demonstrated successful PiggyBac electroporation methods. Therefore, the objectives of our study were twofold: Firstly, to conduct a comparative study on cryopreserved PBMCs, fresh PBMCs, and their respective preparations of CAR-T. Secondly, to establish a PiggyBac electroporation CAR-T preparation process using cryopreserved PBMCs through process optimization. The results revealed that long-term frozen PBMCs viability in a relatively stable manner. CAR-T generated from cryopreserved PBMCs exhibited comparable expansion potential, cell phenotype, differentiation profiles, exhaustion markers, and cytotoxicity against human ovarian cancer cell line (SKOV-3) cells to those derived from fresh PBMCs. Moreover, through process optimization, we further enhanced the proliferation and toxicity of CAR-T. This approach has the potential to revolutionize the CAR-T production model by utilizing healthy donor cells instead of patient cells. This shift could mitigate issues affecting treatment efficacy, such as suboptimal cell condition following illness or delays in cell preparation.
Collapse
Affiliation(s)
- Zenghui Xu
- Shanghai Cell Therapy Group Co., Ltd, 1535 Yuanguo Road, Shanghai, 201805, Shanghai, China.
- Shanghai Cell Therapy Research Institute, 1585 Yuanguo Road, Shanghai, 201805, Shanghai, China.
- Shanghai University Mengchao Cancer Hospital, 118 Qianyang Road, Shanghai, 201805, Shanghai, China.
| | - Ruyue Wang
- Shanghai Cell Therapy Group Co., Ltd, 1535 Yuanguo Road, Shanghai, 201805, Shanghai, China
| | - Yuanjian Xu
- Shanghai Cell Therapy Group Co., Ltd, 1535 Yuanguo Road, Shanghai, 201805, Shanghai, China
| | - Ruijuan Qiu
- Shanghai Cell Therapy Group Co., Ltd, 1535 Yuanguo Road, Shanghai, 201805, Shanghai, China
| | - Jiangrui Chen
- Shanghai Cell Therapy Group Co., Ltd, 1535 Yuanguo Road, Shanghai, 201805, Shanghai, China
| | - Linfeng Liu
- Shanghai Cell Therapy Group Co., Ltd, 1535 Yuanguo Road, Shanghai, 201805, Shanghai, China
| | - Qijun Qian
- Shanghai Cell Therapy Group Co., Ltd, 1535 Yuanguo Road, Shanghai, 201805, Shanghai, China.
- Shanghai Cell Therapy Research Institute, 1585 Yuanguo Road, Shanghai, 201805, Shanghai, China.
- Shanghai University Mengchao Cancer Hospital, 118 Qianyang Road, Shanghai, 201805, Shanghai, China.
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai, 200444, Shanghai, China.
| |
Collapse
|
3
|
Meena SS, Kosgei BK, Soko GF, Tingjun C, Chambuso R, Mwaiselage J, Han RPS. Developing anti-TDE vaccine for sensitizing cancer cells to treatment and metastasis control. NPJ Vaccines 2025; 10:18. [PMID: 39870669 PMCID: PMC11772600 DOI: 10.1038/s41541-024-01035-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/21/2024] [Indexed: 01/29/2025] Open
Abstract
Tumor-derived exosomes (TDEs) mediate oncogenic communication, which modifies target cells to reinforce a tumor-promoting microenvironment. TDEs support cancer progression by suppressing anti-tumor immune responses, promoting metastasis, and conferring drug resistance. Thus, targeting TDEs could improve the efficacy of anti-cancer treatments and control metastasis. Current strategies to inhibit TDE-mediated oncogenic communication including drug-based and genetic modification-based inhibition of TDE release and/or uptake, have proved to be inefficient. In this work, we propose TDE surface engineering to express foreign antigens that will trigger life-long anti-TDE immune responses. The possibility of combining the anti-TDE vaccines with other treatments such as chemotherapy, radiotherapy, targeted therapy, and surgery is also explored.
Collapse
Affiliation(s)
- Stephene S Meena
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China.
- Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China.
- Ocean Road Cancer Institute, Dar es Salaam, United Republic of Tanzania.
| | - Benson K Kosgei
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
- Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Geofrey F Soko
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
- Ocean Road Cancer Institute, Dar es Salaam, United Republic of Tanzania
| | - Cheng Tingjun
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
- Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Ramadhani Chambuso
- Department of Global Health and Population, Harvard Chan School of Public Health, Harvard University, Cambridge, MA, USA
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Julius Mwaiselage
- Ocean Road Cancer Institute, Dar es Salaam, United Republic of Tanzania
| | - Ray P S Han
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China.
- Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China.
| |
Collapse
|
4
|
Tang C, Zhang L, Wang J, Zou C, Zhang Y, Yuan J. Engineering Saccharomyces boulardii for Probiotic Supplementation of l-Ergothioneine. Biotechnol J 2024; 19:e202400527. [PMID: 39562168 DOI: 10.1002/biot.202400527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/17/2024] [Accepted: 11/01/2024] [Indexed: 11/21/2024]
Abstract
Saccharomyces boulardii, as a probiotic yeast, has shown great potential in regulating gut health and treating gastrointestinal diseases. Due to its unique antimicrobial and immune-regulating functions, it has become a significant subject of research in the field of probiotics. In this study, we aim to enhance the antioxidant properties of S. boulardii by producing l-ergothioneine (EGT). We first constructed a double knockout of ura3 and trp1 gene in S. boulardii to facilitate plasmid-based expressions. To further enable effective genome editing of S. boulardii, we implemented the PiggyBac system to transpose the heterologous gene expression cassettes into the chromosomes of S. boulardii. By using enhanced green fluorescent protein (EGFP) as the reporter gene, we achieved random chromosomal integration of EGFP expression cassette. By using PiggyBac transposon system, a great variety of EGT-producing strains was obtained, which is not possible for the conventional single target genome editing, and one best isolated top producer reached 17.50 mg/L EGT after 120 h cultivation. In summary, we have applied the PiggyBac transposon system to S. boulardii for the first time for genetic engineering. The engineered probiotic yeast S. boulardii has been endowed with new antioxidant properties and produces EGT. It has potential applications in developing novel therapeutics and dietary supplements for the prevention and treatment of gastrointestinal disorders.
Collapse
Affiliation(s)
- Chaoqun Tang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, Qinghai, China
| | - Lu Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Junyi Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Congjia Zou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Yalin Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, China
| |
Collapse
|
5
|
Morey M, Larrañaga A, Abbah SA, Bohara R, Aljaabary A, Pandit A. Glucose-Responsive Fibrin Hydrogel-Based Multimodal Nucleic Acid Delivery System. Adv Biol (Weinh) 2023; 7:e2300161. [PMID: 37401646 DOI: 10.1002/adbi.202300161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Indexed: 07/05/2023]
Abstract
Nucleic acid therapy has emerged as a potential alternative for promoting wound healing by gene expression modification. On the other hand, protecting the nucleic acid payload from degradation, efficient bioresponsive delivery and effective transfection into cells remain challenging. A glucose-responsive gene delivery system for treating diabetic wounds would be advantageous as it would be responsive to the underlying pathology giving a regulated payload delivery with fewer side effects. Herein a GOx-based glucose-responsive delivery system is designed based on fibrin-coated polymeric microcapsules (FCPMC) using the layer-by-layer (LbL) approach that simultaneously delivers two nucleic acids in diabetic wounds. The designed FCPMC displays an ability to effectively load many nucleic acids in polyplexes and release it over a prolonged period with no cytotoxic effects seen in in vitro studies. Furthermore, the developed system does not show any undesired effects in vivo. When applied to wounds in genetically diabetic db/db mice, the fabricated system on its own improves reepithelialization and angiogenesis while decreasing inflammation. Also, key proteins involved in the wound healing process, i.e., Actn2, MYBPC1, and desmin, are upregulated in the glucose-responsive fibrin hydrogel (GRFHG) treated group of animals. In conclusion, the fabricated hydrogel promotes wound healing. Furthermore, the system may be encapsulated with various therapeutic nucleic acids that aid wound healing.
Collapse
Affiliation(s)
- Mangesh Morey
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Aitor Larrañaga
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Sunny Akogwu Abbah
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Raghvendra Bohara
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Amal Aljaabary
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| |
Collapse
|
6
|
Zhang P, Zhang G, Wan X. Challenges and new technologies in adoptive cell therapy. J Hematol Oncol 2023; 16:97. [PMID: 37596653 PMCID: PMC10439661 DOI: 10.1186/s13045-023-01492-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023] Open
Abstract
Adoptive cell therapies (ACTs) have existed for decades. From the initial infusion of tumor-infiltrating lymphocytes to the subsequent specific enhanced T cell receptor (TCR)-T and chimeric antigen receptor (CAR)-T cell therapies, many novel strategies for cancer treatment have been developed. Owing to its promising outcomes, CAR-T cell therapy has revolutionized the field of ACTs, particularly for hematologic malignancies. Despite these advances, CAR-T cell therapy still has limitations in both autologous and allogeneic settings, including practicality and toxicity issues. To overcome these challenges, researchers have focused on the application of CAR engineering technology to other types of immune cell engineering. Consequently, several new cell therapies based on CAR technology have been developed, including CAR-NK, CAR-macrophage, CAR-γδT, and CAR-NKT. In this review, we describe the development, advantages, and possible challenges of the aforementioned ACTs and discuss current strategies aimed at maximizing the therapeutic potential of ACTs. We also provide an overview of the various gene transduction strategies employed in immunotherapy given their importance in immune cell engineering. Furthermore, we discuss the possibility that strategies capable of creating a positive feedback immune circuit, as healthy immune systems do, could address the flaw of a single type of ACT, and thus serve as key players in future cancer immunotherapy.
Collapse
Affiliation(s)
- Pengchao Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Guizhong Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, People's Republic of China.
| | - Xiaochun Wan
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
7
|
Hu G, Song M, Wang Y, Hao K, Wang J, Zhang Y. Using a modified piggyBac transposon-combined Cre/loxP system to produce selectable reporter-free transgenic bovine mammary epithelial cells for somatic cell nuclear transfer. Genesis 2023:e23510. [PMID: 36748563 DOI: 10.1002/dvg.23510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 02/08/2023]
Abstract
Transposon systems are widely used for genetic engineering in various model organisms. PiggyBac (PB) has recently been confirmed to have highly efficient transposition in the mouse germ line and mammalian cell lines. In this study, we used a modified PB transposon system mediated by PB transposase (PBase) mRNA carrying the human lactoferrin gene driven by bovine β-casein promoter to transfect bovine mammary epithelial cells (BMECs), and the selectable reporter in two stable transgenic BMEC clones was removed using cell-permeant Cre recombinase. These reporter-free transgenic BMECs were used as donor cells for somatic cell nuclear transfer (SCNT) and exhibited a competence of SCNT embryos similar to stable transgenic BMECs and nontransgenic BMECs. The comprehensive information from this study provided a modified approach using an altered PB transposon system mediated by PBase mRNA in vitro and combined with the Cre/loxP system to produce transgenic and selectable reporter-free donor nuclei for SCNT. Consequently, the production of safe bovine mammary bioreactors can be promoted.
Collapse
Affiliation(s)
- Guangdong Hu
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Meijun Song
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yan Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Kexing Hao
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Jing Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
8
|
The Role of Genetically Modified Human Feeder Cells in Maintaining the Integrity of Primary Cultured Human Deciduous Dental Pulp Cells. J Clin Med 2022; 11:jcm11206087. [PMID: 36294410 PMCID: PMC9605397 DOI: 10.3390/jcm11206087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Tissue-specific stem cells exist in tissues and organs, such as skin and bone marrow. However, their pluripotency is limited compared to embryonic stem cells. Culturing primary cells on plastic tissue culture dishes can result in the loss of multipotency, because of the inability of tissue-specific stem cells to survive in feeder-less dishes. Recent findings suggest that culturing primary cells in medium containing feeder cells, particularly genetically modified feeder cells expressing growth factors, may be beneficial for their survival and proliferation. Therefore, the aim of this study was to elucidate the role of genetically modified human feeder cells expressing growth factors in maintaining the integrity of primary cultured human deciduous dental pulp cells. Feeder cells expressing leukemia inhibitory factor, bone morphogenetic protein 4, and basic fibroblast growth factor were successfully engineered, as evidenced by PCR. Co-culturing with mitomycin-C-treated feeder cells enhanced the proliferation of newly isolated human deciduous dental pulp cells, promoted their differentiation into adipocytes and neurons, and maintained their stemness properties. Our findings suggest that genetically modified human feeder cells may be used to maintain the integrity of primary cultured human deciduous dental pulp cells.
Collapse
|
9
|
Wei M, Mi CL, Jing CQ, Wang TY. Progress of Transposon Vector System for Production of Recombinant Therapeutic Proteins in Mammalian Cells. Front Bioeng Biotechnol 2022; 10:879222. [PMID: 35600890 PMCID: PMC9114503 DOI: 10.3389/fbioe.2022.879222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, mammalian cells have become the primary host cells for the production of recombinant therapeutic proteins (RTPs). Despite that the expression of RTPs in mammalian cells can be improved by directly optimizing or engineering the expression vectors, it is still influenced by the low stability and efficiency of gene integration. Transposons are mobile genetic elements that can be inserted and cleaved within the genome and can change their inserting position. The transposon vector system can be applied to establish a stable pool of cells with high efficiency in RTPs production through facilitating the integration of gene of interest into transcriptionally active sites under screening pressure. Here, the structure and optimization of transposon vector system and its application in expressing RTPs at high level in mammalian cells are reviewed.
Collapse
Affiliation(s)
- Mian Wei
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
| | - Chun-Liu Mi
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
| | - Chang-Qin Jing
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Chang-Qin Jing, ; Tian-Yun Wang,
| | - Tian-Yun Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
- *Correspondence: Chang-Qin Jing, ; Tian-Yun Wang,
| |
Collapse
|
10
|
Lin Z, Liu X, Liu T, Gao H, Wang S, Zhu X, Rong L, Cheng J, Cai Z, Xu F, Tan X, Lv L, Li Z, Sun Y, Qian Q. Evaluation of Nonviral piggyBac and lentiviral Vector in Functions of CD19chimeric Antigen Receptor T Cells and Their Antitumor Activity for CD19 + Tumor Cells. Front Immunol 2022; 12:802705. [PMID: 35082789 PMCID: PMC8784881 DOI: 10.3389/fimmu.2021.802705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Nonviral transposon piggyBac (PB) and lentiviral (LV) vectors have been used to deliver chimeric antigen receptor (CAR) to T cells. To understand the differences in the effects of PB and LV on CAR T-cell functions, a CAR targeting CD19 was cloned into PB and LV vectors, and the resulting pbCAR and lvCAR were delivered to T cells to generate CD19pbCAR and CD19lvCAR T cells. Both CD19CAR T-cell types were strongly cytotoxic and secreted high IFN-γ levels when incubated with Raji cells. TNF-α increased in CD19pbCAR T cells, whereas IL-10 increased in CD19lvCAR T cells. CD19pbCAR and CD19lvCAR T cells showed similar strong anti-tumor activity in Raji cell-induced mouse models, slightly reducing mouse weight while enhancing mouse survival. High, but not low or moderate, concentrations of CD19pbCAR T cells significantly inhibited Raji cell-induced tumor growth in vivo. These CD19pbCAR T cells were distributed mostly in mesenteric lymph nodes, bone marrow of the femur, spleen, kidneys, and lungs, specifically accumulating at CD19-rich sites and CD19-positive tumors, with CAR copy number being increased on day 7. These results indicate that pbCAR has its specific activities and functions in pbCAR T cells, making it a valuable tool for CAR T-cell immunotherapy.
Collapse
MESH Headings
- Animals
- Antigens, CD19/genetics
- Antigens, CD19/immunology
- Antigens, CD19/metabolism
- Cell Line, Tumor
- Cells, Cultured
- Cytotoxicity, Immunologic/immunology
- DNA Transposable Elements/genetics
- DNA Transposable Elements/immunology
- Female
- Genetic Vectors/genetics
- Genetic Vectors/immunology
- Humans
- Immunotherapy, Adoptive/methods
- Lentivirus/genetics
- Lentivirus/immunology
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Neoplasms/immunology
- Neoplasms/pathology
- Neoplasms/therapy
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Tumor Burden/immunology
- Xenograft Model Antitumor Assays/methods
- Mice
Collapse
Affiliation(s)
- Zhicai Lin
- Medical, Cell Product and R&D Department, Center for Cell Pharmaceuticals, Shanghai Cell Therapy Group, Shanghai, China
| | - Xiangzhen Liu
- Medical, Cell Product and R&D Department, Center for Cell Pharmaceuticals, Shanghai Cell Therapy Group, Shanghai, China
| | - Tao Liu
- R&D Department, Nucleotide Center, Shanghai Cell Therapy Group, Shanghai, China
| | - Haixia Gao
- R&D Department, Nucleotide Center, Shanghai Cell Therapy Group, Shanghai, China
| | - Sitong Wang
- Medical, Cell Product and R&D Department, Center for Cell Pharmaceuticals, Shanghai Cell Therapy Group, Shanghai, China
| | - Xingli Zhu
- Medical, Cell Product and R&D Department, Center for Cell Pharmaceuticals, Shanghai Cell Therapy Group, Shanghai, China
| | - Lijie Rong
- Medical, Cell Product and R&D Department, Center for Cell Pharmaceuticals, Shanghai Cell Therapy Group, Shanghai, China
| | - Jingbo Cheng
- Medical, Cell Product and R&D Department, Center for Cell Pharmaceuticals, Shanghai Cell Therapy Group, Shanghai, China
| | - Zhigang Cai
- Medical, Cell Product and R&D Department, Center for Cell Pharmaceuticals, Shanghai Cell Therapy Group, Shanghai, China
| | - Fu Xu
- Medical, Cell Product and R&D Department, Center for Cell Pharmaceuticals, Shanghai Cell Therapy Group, Shanghai, China
| | - Xue Tan
- Medical, Cell Product and R&D Department, Center for Cell Pharmaceuticals, Shanghai Cell Therapy Group, Shanghai, China
| | - Linjie Lv
- Medical, Cell Product and R&D Department, Center for Cell Pharmaceuticals, Shanghai Cell Therapy Group, Shanghai, China
| | - Zhong Li
- Medical, Cell Product and R&D Department, Center for Cell Pharmaceuticals, Shanghai Cell Therapy Group, Shanghai, China
- Department of Immunotherapy, Shanghai Cell Therapy Research Institute, Shanghai, China
| | - Yan Sun
- Medical, Cell Product and R&D Department, Center for Cell Pharmaceuticals, Shanghai Cell Therapy Group, Shanghai, China
| | - Qijun Qian
- Medical, Cell Product and R&D Department, Center for Cell Pharmaceuticals, Shanghai Cell Therapy Group, Shanghai, China
- Department of Immunotherapy, Shanghai Cell Therapy Research Institute, Shanghai, China
- Shanghai Menchao Cancer Hospital, Shanghai University, Shanghai, China
| |
Collapse
|
11
|
Khayeka-Wandabwa C, Zhao J, Pathak JL, Wu H, Bureik M. Upregulation of estrogen receptor alpha (ERα) expression in transgenic mice expressing human CYP4Z1. Breast Cancer Res Treat 2021; 191:319-326. [PMID: 34725776 DOI: 10.1007/s10549-021-06435-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/25/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE CYP4Z1 is a human cytochrome P450 enzyme involved in breast cancer progression and prognosis, but its functional role in these processes is not understood. In order to gain more insight into CYP4Z1's properties it was recombinantly expressed in a host animal that does not have an endogenous homologue. METHODS We generated a transgenic mouse model that specifically expresses human CYP4Z1 in breast tissue under the control of the whey acidic protein promoter. Complementary experiments were done using cell lines derived from human breast cell. RESULTS Induction of CYP4Z1 expression led to reduction of body weight, activity, and birth rates. Histological analysis revealed no evidence for tumor formation. However, a strong increase in estrogen receptor alpha was observed by immunohistochemistry; weaker but significantly increased immunoreactivity was also detected for collagen I and fibronectin. Overexpression of CYP4Z1 in the human breast cancer cell line MCF7 also led to increased ERα expression. Moreover, increased expression of both CYP4Z1 and ERα was observed in MCF-10A normal breast cells upon cocultivation with MCF-7 cells (with or without overexpression of CYP4Z1). CONCLUSION These data suggest that CYP4Z1 facilitates breast cancer development by induction of ERα expression via an as yet undefined mechanism.
Collapse
Affiliation(s)
| | - Jie Zhao
- School of Pharmaceutical Science and Technology (SPST), Tianjin University, Tianjin, China
| | - Janak L Pathak
- School of Pharmaceutical Science and Technology (SPST), Tianjin University, Tianjin, China.,Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huiyuan Wu
- School of Pharmaceutical Science and Technology (SPST), Tianjin University, Tianjin, China
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology (SPST), Tianjin University, Tianjin, China.
| |
Collapse
|
12
|
Rodriguez-Polo I, Mißbach S, Petkov S, Mattern F, Maierhofer A, Grządzielewska I, Tereshchenko Y, Urrutia-Cabrera D, Haaf T, Dressel R, Bartels I, Behr R. A piggyBac-based platform for genome editing and clonal rhesus macaque iPSC line derivation. Sci Rep 2021; 11:15439. [PMID: 34326359 PMCID: PMC8322147 DOI: 10.1038/s41598-021-94419-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
Non-human primates (NHPs) are, due to their close phylogenetic relationship to humans, excellent animal models to study clinically relevant mutations. However, the toolbox for the genetic modification of NHPs is less developed than those for other species like mice. Therefore, it is necessary to further develop and refine genome editing approaches in NHPs. NHP pluripotent stem cells (PSCs) share key molecular signatures with the early embryo, which is an important target for genomic modification. Therefore, PSCs are a valuable test system for the validation of embryonic genome editing approaches. In the present study, we made use of the versatility of the piggyBac transposon system for different purposes in the context of NHP stem cell technology and genome editing. These include (1) Robust reprogramming of rhesus macaque fibroblasts to induced pluripotent stem cells (iPSCs); (2) Culture of the iPSCs under feeder-free conditions even after removal of the transgene resulting in transgene-free iPSCs; (3) Development of a CRISPR/Cas-based work-flow to edit the genome of rhesus macaque PSCs with high efficiency; (4) Establishment of a novel protocol for the derivation of gene-edited monoclonal NHP-iPSC lines. These findings facilitate efficient testing of genome editing approaches in NHP-PSC before their in vivo application.
Collapse
Affiliation(s)
- Ignacio Rodriguez-Polo
- Research Platform Degenerative Diseases, German Primate Center-Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
| | - Sophie Mißbach
- Research Platform Degenerative Diseases, German Primate Center-Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
| | - Stoyan Petkov
- Research Platform Degenerative Diseases, German Primate Center-Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
| | - Felix Mattern
- Institut für Humangenetik, Universität Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany
| | - Anna Maierhofer
- Institut für Humangenetik, Universität Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany
| | - Iga Grządzielewska
- Research Platform Degenerative Diseases, German Primate Center-Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
- Max Planck Molecular Biology Program (M.Sc./Ph.D.), Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Yuliia Tereshchenko
- Research Platform Degenerative Diseases, German Primate Center-Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
- Max Planck Molecular Biology Program (M.Sc./Ph.D.), Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Daniel Urrutia-Cabrera
- Research Platform Degenerative Diseases, German Primate Center-Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
- Cellular Reprogramming Unit, Center for Eye Research Australia, 75 Commercial Road, Melbourne, 3004, Australia
| | - Thomas Haaf
- Institut für Humangenetik, Universität Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany
| | - Ralf Dressel
- German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Humboldtalle 34, 37073, Göttingen, Germany
| | - Iris Bartels
- Institute of Human Genetics, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Rüdiger Behr
- Research Platform Degenerative Diseases, German Primate Center-Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany.
- German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany.
| |
Collapse
|
13
|
Hassanzadeh A, Shamlou S, Yousefi N, Nikoo M, Verdi J. Genetically-Modified Stem Cell in Regenerative Medicine and Cancer Therapy; A New Era. Curr Gene Ther 2021; 22:23-39. [PMID: 34238158 DOI: 10.2174/1566523221666210707125342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/20/2021] [Accepted: 04/25/2021] [Indexed: 11/22/2022]
Abstract
Recently, genetic engineering by various strategies to stimulate gene expression in a specific and controllable mode is a speedily growing therapeutic approach. Genetic modification of human stem or progenitor cells, such as embryonic stem cells (ESCs), neural progenitor cells (NPCs), mesenchymal stem/stromal cells (MSCs), and hematopoietic stem cells (HSCs) for direct delivery of specific therapeutic molecules or genes has been evidenced as an opportune plan in the context of regenerative medicine due to their supported viability, proliferative features, and metabolic qualities. On the other hand, a large number of studies have investigated the efficacy of modified stem cells in cancer therapy using cells from various sources, disparate transfection means for gene delivery, different transfected yields, and wide variability of tumor models. Accordingly, cell-based gene therapy holds substantial aptitude for the treatment of human malignancy as it could relieve signs or even cure cancer succeeding expression of therapeutic or suicide transgene products; however, there exist inconsistent results in this regard. Herein, we deliver a brief overview of stem cell potential to use in cancer therapy and regenerative medicine and importantly discuss stem cells based gene delivery competencies to stimulate tissue repair and replacement in concomitant with their potential to use as an anti-cancer therapeutic strategy, focusing on the last two decades in vivo studies.
Collapse
Affiliation(s)
- Ali Hassanzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Shamlou
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloufar Yousefi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Marzieh Nikoo
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javad Verdi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Faneca H. Non-Viral Gene Delivery Systems. Pharmaceutics 2021; 13:pharmaceutics13040446. [PMID: 33810390 PMCID: PMC8067164 DOI: 10.3390/pharmaceutics13040446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/18/2022] Open
Affiliation(s)
- Henrique Faneca
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| |
Collapse
|
15
|
Shen D, Song C, Miskey C, Chan S, Guan Z, Sang Y, Wang Y, Chen C, Wang X, Müller F, Ivics Z, Gao B. A native, highly active Tc1/mariner transposon from zebrafish (ZB) offers an efficient genetic manipulation tool for vertebrates. Nucleic Acids Res 2021; 49:2126-2140. [PMID: 33638993 PMCID: PMC7913693 DOI: 10.1093/nar/gkab045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
New genetic tools and strategies are currently under development to facilitate functional genomics analyses. Here, we describe an active member of the Tc1/mariner transposon superfamily, named ZB, which invaded the zebrafish genome very recently. ZB exhibits high activity in vertebrate cells, in the range of those of the widely used transposons piggyBac (PB), Sleeping Beauty (SB) and Tol2. ZB has a similar structural organization and target site sequence preference to SB, but a different integration profile with respect to genome-wide preference among mammalian functional annotation features. Namely, ZB displays a preference for integration into transcriptional regulatory regions of genes. Accordingly, we demonstrate the utility of ZB for enhancer trapping in zebrafish embryos and in the mouse germline. These results indicate that ZB may be a powerful tool for genetic manipulation in vertebrate model species.
Collapse
Affiliation(s)
- Dan Shen
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen 63225, Germany
| | - Chengyi Song
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Csaba Miskey
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen 63225, Germany
| | - Shuheng Chan
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhongxia Guan
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yatong Sang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yali Wang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Cai Chen
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaoyan Wang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Ferenc Müller
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen 63225, Germany
| | - Bo Gao
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
16
|
Jia X, Pang X, Yuan Y, Gao Q, Lu M, Zhang G, Dai F, Zhao T. Unpredictable recombination of PB transposon in Silkworm: a potential risk. Mol Genet Genomics 2020; 296:271-277. [PMID: 33201294 DOI: 10.1007/s00438-020-01743-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/27/2020] [Indexed: 12/26/2022]
Abstract
The piggyBac (PB) transposon is the most widely used vector for generating transgenic silkworms. The stability of the PB transposon in the receptor is a serious concern that requires attention because of biosafety concerns. In this study, we found that the transgene silkworm developed loss of reporter gene traits. To further investigate the regularity, we traced the genes and traits of this silkworm. After successful alteration of the silkworm genome with the MASP1 gene (named red-eyed silkworm; RES), silkworm individuals with lost reporter genes were found after long-term transgenerational breeding and were designated as the white-eyed silkworm (WES). PCR amplification indicated that exogenous genes had been lost in the WES. Testing was conducted on the PB transposons, and the left arm (L arm) did not exist; however, the right arm (R arm) was preserved. Amino acid analysis showed that the amino acid content of the WES changed versus the common silkworm and RES. These results indicate that the migration of PB transposons in Bombyx mori does occur and is unpredictable. This is because the silkworm genome contains multiple PB-like sequences that might influence the genetic stability of transgenic lines. When using PB transposons as a transgene vector, it is necessary to fully evaluate and take necessary measures to prevent its re-migration in the recipient organism. Further experiments are needed if we want to clarify the regularity of the retransposition phenomenon and the direct and clear association with similar sequences of transposons.
Collapse
Affiliation(s)
- Xuehua Jia
- State Key Laboratory of Silkworm Genome Biology, College of Textile and Garment, Southwest University, No. 2 Tiansheng Street, Beibei, Chongqing, 400715, China.,Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Xiaoyu Pang
- State Key Laboratory of Silkworm Genome Biology, College of Textile and Garment, Southwest University, No. 2 Tiansheng Street, Beibei, Chongqing, 400715, China.,Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Yajie Yuan
- State Key Laboratory of Silkworm Genome Biology, College of Textile and Garment, Southwest University, No. 2 Tiansheng Street, Beibei, Chongqing, 400715, China
| | - Qiang Gao
- State Key Laboratory of Silkworm Genome Biology, College of Textile and Garment, Southwest University, No. 2 Tiansheng Street, Beibei, Chongqing, 400715, China
| | - Ming Lu
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Guangxian Zhang
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - FangYing Dai
- State Key Laboratory of Silkworm Genome Biology, College of Textile and Garment, Southwest University, No. 2 Tiansheng Street, Beibei, Chongqing, 400715, China.,Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China.,Key Laboratory of Sericultural Biology and Genetic Breeding, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Tianfu Zhao
- State Key Laboratory of Silkworm Genome Biology, College of Textile and Garment, Southwest University, No. 2 Tiansheng Street, Beibei, Chongqing, 400715, China. .,Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China.
| |
Collapse
|