1
|
Mathias SL, Pereira RV, de Menezes AJ, Dufresne A. Optimized One-Pot reaction and characterization of a cyanoethoxyethylated chitosan. Int J Biol Macromol 2025; 310:143500. [PMID: 40286957 DOI: 10.1016/j.ijbiomac.2025.143500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/01/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Chitosan offers a wide range of applications due to its reactive amino groups, which enable various modifications. This study presents the synthesis of a chitosan derivative (ChECEA) using ethyl 2-cyano-3-ethoxyacrylate (ECEA). The reaction was conducted under various conditions to optimize the mass gain of the ChECEA. Stoichiometry (1.5 and 2.0M), temperature (60 to 95 °C), and reaction time (1 to 3.5 h) were varied. The ChECEA was characterized using a variety of techniques, including Fourier Transform Infrared Spectroscopy (FTIR), Nuclear Magnetic Resonance (NMR), Thermogravimetry (TG), Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Zeta Potential, Contact Angle (CA), and Elemental Analysis (EA). FTIR confirmed the successful modification, evidenced by a sharp peak at 2220 cm-1 corresponding to the CN bond stretching. NMR analysis revealed new chemical shifts (166, 158, 115, and 11 ppm), and in combination with EA, was used to estimate the degree of substitution (DS) as 0.640 and 0.725, respectively. TG indicated a decrease in thermal stability and Zeta Potential suggested reduced suspension stability. Conversely, contact angle measurements showed increased hydrophobicity and decreased surface energy. Finally, XRD analysis revealed a decrease in the crystallinity index (from 79 % to 55 %), likely due to the incorporation of cyanoethoxyacrylate groups.
Collapse
Affiliation(s)
- Samir Leite Mathias
- Grupo de Polímeros Provenientes de Fontes Renováveis - GP²FR, Universidade Federal de São Carlos - UFSCar, Campus Sorocaba, Sorocaba, São Paulo, Brazil; Université Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France.
| | - Robson Valentim Pereira
- Grupo de Eletroquímica e Polímeros Naturais (GEPN), Universidade Federal do Rio de Janeiro - UFRJ, Campus Macaé, Macaé, Rio de Janeiro, Brazil
| | - Aparecido Junior de Menezes
- Grupo de Polímeros Provenientes de Fontes Renováveis - GP²FR, Universidade Federal de São Carlos - UFSCar, Campus Sorocaba, Sorocaba, São Paulo, Brazil
| | - Alain Dufresne
- Université Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France
| |
Collapse
|
2
|
Fatima A, Shah S, Rasul A, Abbas G, Mahmood A, Hanif M, Ilyas A, Tahir M, Maheen S, Mubeen I, Zaheer T, Sufian MA, Babar S, Namazi NI. Nanoparticles of quercetin-gellan gum conjugate for the controlled delivery of fluconazole. Colloids Surf B Biointerfaces 2025; 252:114681. [PMID: 40228425 DOI: 10.1016/j.colsurfb.2025.114681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/05/2025] [Accepted: 04/04/2025] [Indexed: 04/16/2025]
Abstract
The aim of the study was to formulate the polymeric nanoparticles for the controlled delivery of fluconazole (FCZ) to enhance its absorption, mucosal adherence, and bioavailability. FCZ-loaded gellan gum-quercetin conjugate (GQC) nanoparticles (FCZ-loaded NGQ) were prepared by ionic gelatin method using GQC, surfactants, co-surfactants, and cross-linker. The nanoparticles were then characterized by various physical and chemical analytical tools such as 1H NMR, FTIR, XRD, DSC, TGA, particle size, zeta potential, and SEM analysis. All the nanoparticles have a nanosized range from 108 nm to 123 nm with a zeta potential of -12 mV to -20 mV which shows their stability. The NGQ3 (optimized formulation) loaded with FCZ have a PDI of 0.20 ± 0.02 and % entrapment efficiency of 32.3 ± 2.8 %. These studies also showed promising results of 85 % drug release, the value for zero order kinetics of R2 was 0.999, mucosal adherence of 24 h, and the highest values of permeation was shown by NGQ3 of 60 %. The improved antifungal activity of prepared NGQ3-DL against Candida albicans was observed compared to the pure drug. The nanoparticles may offer enhanced bioavailability and controlled release of FCZ, making them a potential breakthrough in managing FCZ resistant infections.
Collapse
Affiliation(s)
- Azka Fatima
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Pakistan
| | - Shahid Shah
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Pakistan
| | - Akhtar Rasul
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Pakistan
| | - Ghulam Abbas
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Pakistan.
| | - Abid Mahmood
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Pakistan
| | - Muhammad Hanif
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University Multan, Pakistan.
| | - Alina Ilyas
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Pakistan
| | - Maira Tahir
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Pakistan
| | - Safirah Maheen
- Faculty of Pharmacy, college of Pharmacy, University of Sargodha, Sargodha
| | - Iqra Mubeen
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Pakistan
| | - Tahira Zaheer
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Pakistan
| | - Muhammad Abu Sufian
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Pakistan
| | - Saleha Babar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Pakistan
| | - Nader I Namazi
- Department of Pharmaceutics and Pharmaceutical Industries, College of Pharmacy, Taibah University, Madinah 41477, Saudi Arabia
| |
Collapse
|
3
|
Waqar MA. A comprehensive review on recent advancements in drug delivery via selenium nanoparticles. J Drug Target 2025; 33:157-170. [PMID: 39392210 DOI: 10.1080/1061186x.2024.2412142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/06/2024] [Indexed: 10/12/2024]
Abstract
Nanotechnology has significantly impacted drug discovery and development over the past three decades, offering novel insights and expanded treatment options. Key to this field is nanoparticles, ranging from 1 to 100 nanometres, with unique properties distinct from larger materials. Selenium nanoparticles (SeNPs) are particularly promising due to their low toxicity and selective cytotoxicity against cancer cells. They have shown efficacy in reducing various cancers types and mitigating conditions like diabetic nephropathy and neurological disorders, such as Alzheimer's disease. This review highlights SeNPs' role in enhancing drug delivery systems, improving the absorption of water-soluble compounds, proteins, peptides, vaccines, and other biological therapies. By modifying nanoparticle surfaces with targeting ligands, drug delivery can achieve precise site-specific delivery, increasing effectiveness. SeNPs can be synthesised through physical, chemical, and biological methods, each offering advantages in stability, size, and application potential. Additionally, SeNPs enhance immune responses and reduce oxidative stress, validating their role in biotherapy and nanomedicine. Their ability to target macrophages and regulate polarisation underscores their potential in antimicrobial therapies. Recent advancements, such as mannosylated SeNPs for targeted delivery, exemplify innovative nanotechnology applications in medicine. Overall, SeNPs represent a promising frontier in nanomedicine, offering new avenues for treating and managing various diseases.
Collapse
Affiliation(s)
- Muhammad Ahsan Waqar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| |
Collapse
|
4
|
Cao H, Zeng Y, Yuan X, Wang JK, Tay CY. Waste-to-resource: Extraction and transformation of aquatic biomaterials for regenerative medicine. BIOMATERIALS ADVANCES 2025; 166:214023. [PMID: 39260186 DOI: 10.1016/j.bioadv.2024.214023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/16/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
The fisheries and aquaculture industry are known for generating substantial waste or by-products, often underutilized, or relegated to low-value purposes. However, this overlooked segment harbors a rich repository of valuable bioactive materials of which have a broad-spectrum of high-value applications. As the blue economy gains momentum and fisheries expand, sustainable exploitation of these aquatic resources is increasingly prioritized. In this review, we present a comprehensive overview of technology-enabled methods for extracting and transforming aquatic waste into valuable biomaterials and their recent advances in regenerative medicine applications, focusing on marine collagen, chitin/chitosan, calcium phosphate and bioactive-peptides. We discuss the inherent bioactive qualities of these "waste-to-resource" aquatic biomaterials and identify opportunities for their use in regenerative medicine to advance healthcare while achieving the Sustainable Development Goals.
Collapse
Affiliation(s)
- Huaqi Cao
- China-Singapore International Joint Research Institute (CSIJRI), China Singapore Guangzhou Knowledge City, Huangpu District, Guangzhou, PR China
| | - Yuanjin Zeng
- China-Singapore International Joint Research Institute (CSIJRI), China Singapore Guangzhou Knowledge City, Huangpu District, Guangzhou, PR China
| | - Xueyu Yuan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China; School of Materials Science and Engineering, Nanyang Technological University, N4.1, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jun Kit Wang
- School of Materials Science and Engineering, Nanyang Technological University, N4.1, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Chor Yong Tay
- China-Singapore International Joint Research Institute (CSIJRI), China Singapore Guangzhou Knowledge City, Huangpu District, Guangzhou, PR China; School of Materials Science and Engineering, Nanyang Technological University, N4.1, 50 Nanyang Avenue, Singapore 639798, Singapore; Center for Sustainable Materials (SusMat), Nanyang Technological University, Singapore 637553, Singapore; Nanyang Environment & Water Research Institute, 1 CleanTech Loop, CleanTech One, Singapore 637141, Singapore.
| |
Collapse
|
5
|
Kim MJ, Yoon SB, Ji HB, Kim CR, Han JH, Kim SN, Min CH, Lee C, Chang LS, Choy YB. In Situ Hydrogel with Immobilized Mn-Porphyrin for Reactive Oxygen Species Scavenging, Oxygen Generation, and Risedronate Delivery in Bone Defect Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40682-40694. [PMID: 39046105 DOI: 10.1021/acsami.4c08350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
We propose a hydrogel immobilized with manganese porphyrin (MnP), a biomimetic superoxide dismutase (SOD), and catalase (CAT) to modulate reactive oxygen species (ROS) and hypoxia that impede the repair of large bone defects. Our hydrogel synthesis involved thiolated chitosan and polyethylene glycol-maleimide conjugated with MnPs (MnP-PEG-MAL), which enabled in situ gelation via a click reaction. Through optimization, a hydrogel with mechanical properties and catalytic effects favorable for bone repair was selected. Additionally, the hydrogel was incorporated with risedronate to induce synergistic effects of ROS scavenging, O2 generation, and sustained drug release. In vitro studies demonstrated enhanced proliferation and differentiation of MG-63 cells and suppressed proliferation and differentiation of RAW 264.7 cells in ROS-rich environments. In vivo evaluation of a calvarial bone defect model revealed that this multifunctional hydrogel facilitated significant bone regeneration. Therefore, the hydrogel proposed in this study is a promising strategy for addressing complex wound environments and promoting effective bone healing.
Collapse
Affiliation(s)
- Min Ji Kim
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Soo Bin Yoon
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University, Seoul 03080, Republic of Korea
| | - Han Bi Ji
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Cho Rim Kim
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae Hoon Han
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Se-Na Kim
- Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
| | - Chang Hee Min
- Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
| | - Cheol Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Lan Sook Chang
- Department of Plastic and Reconstructive Surgery, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Young Bin Choy
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University, Seoul 03080, Republic of Korea
- Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Innovative Medical Technology Research Institute, Seoul National University Hospital, Seoul 03122, Republic of Korea
- ToBIOS Inc., 3F, 9-7 Seongbuk-ro 5-gil, Seongbuk-gu, Seoul 02880, Republic of Korea
| |
Collapse
|
6
|
Jain A, Dawre S. A Comprehensive Review on Prospects of Polymeric Nanoparticles for Treatment of Diabetes Mellitus: Receptors-Ligands, In vitro & In vivo Studies. RECENT PATENTS ON NANOTECHNOLOGY 2024; 18:457-478. [PMID: 37534486 DOI: 10.2174/1872210517666230803091245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 08/04/2023]
Abstract
As per International Diabetes Federation Report 2022, worldwide diabetes mellitus (DM) caused 6.7M moralities and ~537M adults suffering from diabetes mellitus. It is a chronic condition due to β-cell destruction or insulin resistance that leads to insulin deficiency. This review discusses Type-1 DM and Type-2 DM pathophysiology in detail, with challenges in management and treatment. The toxicity issues of conventional drugs and insulin injections are complex to manage. Thus, there is a need for technological intervention. In recent years, nanotechnology has found a fruitful advancement of novel drug delivery systems that might potentially increase the efficacy of anti-diabetic drugs. Amongst nano-formulations, polymeric nanoparticles have been studied to enhance the bioavailability and efficacy of anti-diabetic drugs and insulin. In the present review, we summarized polymeric nanoparticles with different polymers utilized to deliver anti-diabetic drugs with in vitro and in vivo studies. Furthermore, this review also includes the role of receptors and ligands in diabetes mellitus and the utilization of receptor-ligand interaction to develop targeted nanoparticles. Additionally, we discussed the utility of nanoparticles for the delivery of phytoconstituents which aids in protecting the oxidative stress generated during diabetes mellitus. Atlast, this article also comprises of numerous patents that have been filed or granted for the delivery of antidiabetic and anticancer molecules for the treatment of diabetes mellitus and pancreatic cancer.
Collapse
Affiliation(s)
- Arinjay Jain
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKMS, NMIMS, Babulde Banks of Tapi River, Mumbai-Agra Road, Shirpur, Maharashtra, 425405, India
| | - Shilpa Dawre
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKMS, NMIMS, Babulde Banks of Tapi River, Mumbai-Agra Road, Shirpur, Maharashtra, 425405, India
| |
Collapse
|
7
|
Azhar F, Naureen H, Shahnaz G, Hamdani SDA, Kiani MH, Khattak S, Manna MK, Babar MM, Rajadas J, Rahdar A, Díez-Pascual AM. Development of chitosan based β-carotene mucoadhesive formulation for skin cancer treatment. Int J Biol Macromol 2023; 253:126659. [PMID: 37660856 DOI: 10.1016/j.ijbiomac.2023.126659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Mucopermeating nanoformulations can enhance mucosal penetration of poorly soluble drugs at their target site. In this work, thiolated chitosan (TCS)-lithocholic acid (LA) nanomicelles loaded with β-carotene, a safe phytochemical with anticancer properties, were designed to improve the pharmaceutical and pharmacological drug profile. The TCS-LA nanomicelles were characterized by FTIR to confirm the presence of the thiol group that favors skin adhesion, and to corroborate the conjugation of hydrophobic LA with hydrophilic CS to form an amphiphilic polymer derivative. Their crystalline nature and thermal behavior were investigated by XRD and DSC analyses, respectively. According to DLS and TEM, their average size was <300 nm, and their surface charge was +27.0 mV. β-carotene entrapment and loading efficiencies were 64 % and 58 %, respectively. In vitro mucoadhesion and ex vivo mucopenetration analyses further corroborated the potential of the nanoformulation to deliver the drug in a sustained manner under conditions mimicking cancer micro-environment. Anticancer studies in mice demonstrated that the loaded nanomicelles delayed skin cancer growth, as revealed by both morphological and biochemical parameters. Based on the results obtained herein, it can be concluded that drug-loaded TCS-LA is a novel, stable, effective and safe mucoadhesive formulation of β-carotene for the potential treatment of skin cancer.
Collapse
Affiliation(s)
- Farah Azhar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan; Stanford Advanced Drug Delivery and Regenerative Biomaterials Lab, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| | - Humaira Naureen
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan.
| | - Gul Shahnaz
- Department of Pharmacy, Quaid-e-Azam University, Islamabad, Pakistan.
| | - Syed Damin Abbas Hamdani
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan.
| | | | - Shahana Khattak
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Manoj Kumar Manna
- Stanford Advanced Drug Delivery and Regenerative Biomaterials Lab, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Mustafeez Mujtaba Babar
- Stanford Advanced Drug Delivery and Regenerative Biomaterials Lab, Stanford University School of Medicine, Stanford University, Stanford, CA, USA; Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan.
| | - Jayakumar Rajadas
- Stanford Advanced Drug Delivery and Regenerative Biomaterials Lab, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
8
|
Saifi Z, Ralli T, Rizwanullah M, Alam M, Vohora D, Mir SR, Amin S, Ameen S. BBD Driven Fabrication of Hydroxyapatite Engineered Risedronate Loaded Thiolated Chitosan Nanoparticles and Their In Silico, In Vitro, and Ex Vivo Studies. MICROMACHINES 2023; 14:2182. [PMID: 38138351 PMCID: PMC10745864 DOI: 10.3390/mi14122182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023]
Abstract
Risedronate sodium (RIS) exhibits limited bioavailability and undesirable gastrointestinal effects when administered orally, necessitating the development of an alternative formulation. In this study, mPEG-coated nanoparticles loaded with RIS-HA-TCS were created for osteoporosis treatment. Thiolated chitosan (TCS) was synthesized using chitosan and characterized using DSC and FTIR, with thiol immobilization assessed using Ellman's reagent. RIS-HA nanoparticles were fabricated and conjugated with synthesized TCS. Fifteen batches of RIS-HA-TCS nanoparticles were designed using the Box-Behnken design process. The nanoparticles were formulated through the ionic gelation procedure, employing tripolyphosphate (TPP) as a crosslinking agent. In silico activity comparison of RIS and RIS-HA-TCS for farnesyl pyrophosphate synthetase enzyme demonstrated a higher binding affinity for RIS. The RIS-HA-TCS nanoparticles exhibited 85.4 ± 2.21% drug entrapment efficiency, a particle size of 252.1 ± 2.44 nm, and a polydispersity index of 0.2 ± 0.01. Further conjugation with mPEG resulted in a particle size of 264.9 ± 1.91 nm, a PDI of 0.120 ± 0.01, and an encapsulation efficiency of 91.1 ± 1.17%. TEM confirmed the spherical particle size of RIS-HA-TCS and RIS-HA-TCS-mPEG. In vitro release studies demonstrated significantly higher release for RIS-HS-TCS-mPEG (95.13 ± 4.64%) compared to RIS-HA-TCS (91.74 ± 5.13%), RIS suspension (56.12 ± 5.19%), and a marketed formulation (74.69 ± 3.98%). Ex vivo gut permeation studies revealed an apparent permeability of 0.5858 × 10-1 cm/min for RIS-HA-TCS-mPEG, surpassing RIS-HA-TCS (0.4011 × 10-4 cm/min), RIS suspension (0.2005 × 10-4 cm/min), and a marketed preparation (0.3401 × 10-4 cm/min).
Collapse
Affiliation(s)
- Zoya Saifi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (Z.S.); (M.R.)
| | - Tanya Ralli
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (Z.S.); (M.R.)
| | - Md. Rizwanullah
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (Z.S.); (M.R.)
| | - Meraj Alam
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (Z.S.); (M.R.)
| | - Divya Vohora
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Showkat R. Mir
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Saima Amin
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (Z.S.); (M.R.)
| | - Sadia Ameen
- Advanced Materials and Devices Laboratory, Department of Bio-Convergence Sciences, Jeonbuk National University, Advanced Science Campus, Jeonju 56212, Republic of Korea
| |
Collapse
|
9
|
Tang W, Wang J, Hou H, Li Y, Wang J, Fu J, Lu L, Gao D, Liu Z, Zhao F, Gao X, Ling P, Wang F, Sun F, Tan H. Review: Application of chitosan and its derivatives in medical materials. Int J Biol Macromol 2023; 240:124398. [PMID: 37059277 DOI: 10.1016/j.ijbiomac.2023.124398] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Chitin is a natural polymeric polysaccharide extracted from marine crustaceans, and chitosan is obtained by removing part of the acetyl group (usually more than 60 %) in chitin's structure. Chitosan has attracted wide attention from researchers worldwide due to its good biodegradability, biocompatibility, hypoallergenic and biological activities (antibacterial, immune and antitumor activities). However, research has shown that chitosan does not melt or dissolve in water, alkaline solutions and general organic solvents, which greatly limits its application range. Therefore, researchers have carried out extensive and in-depth chemical modification of chitosan and prepared a variety of chitosan derivatives, which have expanded the application field of chitosan. Among them, the most extensive research has been conducted in the pharmaceutical field. This paper summarizes the application of chitosan and chitosan derivatives in medical materials over the past five years.
Collapse
Affiliation(s)
- Wen Tang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Juan Wang
- Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan 250001, Shandong, China
| | - Huiwen Hou
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Yan Li
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Jie Wang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Jiaai Fu
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Lu Lu
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Didi Gao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Zengmei Liu
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Feiyan Zhao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Xinqing Gao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Peixue Ling
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; School of Pharmaceutical sciences, Shandong University, Jinan 250012, Shandong, China
| | - Fengshan Wang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China; School of Pharmaceutical sciences, Shandong University, Jinan 250012, Shandong, China
| | - Feng Sun
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Haining Tan
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China; School of Pharmaceutical sciences, Shandong University, Jinan 250012, Shandong, China.
| |
Collapse
|
10
|
Prabahar K, Uthumansha U, Elsherbiny N, Qushawy M. Enhanced Skin Permeation and Controlled Release of β-Sitosterol Using Cubosomes Encrusted with Dissolving Microneedles for the Management of Alopecia. Pharmaceuticals (Basel) 2023; 16:ph16040563. [PMID: 37111320 PMCID: PMC10142597 DOI: 10.3390/ph16040563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The use of synthetic medication for treating alopecia is restricted because of systemic exposure and related negative effects. Beta-sitosterol (β-ST), a natural chemical, has lately been studied for its potential to promote hair development. The cubosomes with dissolving microneedles (CUBs-MND) created in this study may be a useful starting point for the creation of a sophisticated dermal delivery system for β-ST. Cubosomes (CUBs) were prepared by the emulsification method, using glyceryl monooleate (GMO) as a lipid polymer. CUBs were loaded with dissolving microneedles (MND) fabricated with HA and a PVP-K90 matrix. An ex vivo skin permeation study and an in vivo hair growth efficacy test of β-ST were performed with both CUB and CUB-MND. The average particle size of the CUBs was determined to be 173.67 ± 0.52 nm, with a low polydispersity index (0.3) and a high zeta potential value that prevents the aggregate formation of dispersed particles. When compared to CUBs alone, CUBs-MND displayed higher permeating levels of β-ST at all-time points. In the animals from the CUB-MND group, significant hair development was observed. According to the results of the current investigation, CUBs that integrate dissolving microneedles of β-ST are superior in terms of transdermal skin penetration and activity for the treatment of alopecia.
Collapse
Affiliation(s)
- Kousalya Prabahar
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Ubaidulla Uthumansha
- Department of Pharmaceutics, Crescent School of Pharmacy, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, India
| | - Nehal Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mona Qushawy
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Alarish 45511, North Sinai, Egypt
| |
Collapse
|
11
|
Shakeel M, Kiani MH, Sarwar HS, Akhtar S, Rauf A, Ibrahim IM, Ajalli N, Shahnaz G, Rahdar A, Díez-Pascual AM. Emulgel-loaded mannosylated thiolated chitosan-coated silver nanoparticles for the treatment of cutaneous leishmaniasis. Int J Biol Macromol 2023; 227:1293-1304. [PMID: 36470432 DOI: 10.1016/j.ijbiomac.2022.11.326] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/16/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Topical treatment of cutaneous leishmaniasis holds great promise for decreasing drug associated side effects and improving efficacy. This study was aimed to develop mannosylated thiolated chitosan-coated silver nanoparticles (MTCAg) loaded emulgel for the treatment of cutaneous leishmaniasis. MTC-Ag were synthesized via a chemical reduction method and were loaded into the emulgel. The nanoparticles had a zeta potential of +19.8 mV, an average particle size of 115 nm and a narrow polydispersity index of 0.26. In-vitro release profiles showed controlled release of silver ions from both the MTC-Ag and the emulgel-loaded MTC-Ag nanoparticles after 24 h. An ex-vivo retention study indicated 5 times higher retention of silver by the emulgel-loaded MTC-Ag than by the MTC-Ag nanoparticles. The in-vitro anti-leishmanial assay revealed that MTC-Ag had an excellent inhibitory effect on intracellular amastigotes, leading to ~90 % inhibition at the highest concentration tested. A 4-fold reduction in the IC50 value was found for MTC-Ag compared to blank Ag nanoparticles. Cytotoxicity assay showed 83 % viability of macrophages for MTC-Ag and 30 % for Ag nanoparticles at a concentration of 80 μg/mL, demonstrating the improved biocompatibility of the polymeric nanoparticles. Drug release and retention studies corroborate the great potential of MTC-Ag-loaded emulgel for the treatment of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Muhammad Shakeel
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Maria Hassan Kiani
- Department of Pharmacy, Iqra University, H-9 Campus, Islamabad 44000, Pakistan
| | - Hafiz Shoaib Sarwar
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Sohail Akhtar
- Department of Entomology, University College of Agriculture & Environmental Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Aisha Rauf
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ibrahim M Ibrahim
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Narges Ajalli
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, 1417935840, Iran
| | - Gul Shahnaz
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, 538-98615 Zabol, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
12
|
Formulation and Characterization of Doxycycline-Loaded Polymeric Nanoparticles for Testing Antitumor/Antiangiogenic Action in Experimental Colon Cancer in Mice. NANOMATERIALS 2022; 12:nano12050857. [PMID: 35269343 PMCID: PMC8912660 DOI: 10.3390/nano12050857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 02/04/2023]
Abstract
Nanotherapeutics can enhance the characteristics of drugs, such as rapid systemic clearance and systemic toxicities. Polymeric nanoparticles (PRNPs) depend on dispersion of a drug in an amorphous state in a polymer matrix. PRNPs are capable of delivering drugs and improving their safety. The primary goal of this study is to formulate doxycycline-loaded PRNPs by applying the nanoprecipitation method. Eudragit S100 (ES100) (for DOX-PRNP1) and hydroxypropyl methyl cellulose phthalate HP55 (for DOX-PRNP2) were tested as the drug carrying polymers and the DOX-PRNP2 showed better characteristics and drug release % and was hence selected to be tested in the biological study. Six different experimental groups were formed from sixty male albino mice. 1,2,-Dimethylhydrazine was used for 16 weeks to induce experimental colon cancer. We compared the oral administration of DOX-PRNP2 in doses of 5 and 10 mg/kg with the free drug. Results indicated that DOX-PRNP2 had greater antitumor activity, as evidenced by an improved histopathological picture for colon specimens as well as a decrease in the tumor scores. In addition, when compared to free DOX, the DOX-PRNP2 reduced the angiogenic indicators VEGD and CD31 to a greater extent. Collectively, the findings demonstrated that formulating DOX in PRNPs was useful in enhancing antitumor activity and can be used in other models of cancers to verify their efficacy and compatibility with our study.
Collapse
|
13
|
Habib R, Azad AK, Akhlaq M, Al-Joufi FA, Shahnaz G, Mohamed HRH, Naeem M, Almalki ASA, Asghar J, Jalil A, Abdel-Daim MM. Thiolated Chitosan Microneedle Patch of Levosulpiride from Fabrication, Characterization to Bioavailability Enhancement Approach. Polymers (Basel) 2022; 14:415. [PMID: 35160403 PMCID: PMC8839939 DOI: 10.3390/polym14030415] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
In this study, a first attempt has been made to deliver levosulpiride transdermally through a thiolated chitosan microneedle patch (TC-MNP). Levosulpiride is slowly and weakly absorbed from the gastrointestinal tract with an oral bioavailability of less than 25% and short half-life of about 6 h. In order to enhance its bioavailability, levosulpiride-loaded thiolated chitosan microneedle patches (LS-TC-MNPs) were fabricated. Firstly, thiolated chitosan was synthesized and characterized by nuclear magnetic resonance (1HNMR) spectroscopy, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, differential scanning calorimetry (DSC), and X-ray diffraction (XRD). Thiolated chitosan has been used in different drug delivery systems; herein, thiolated chitosan has been used for the transdermal delivery of LS. LS-TC-MNPs were fabricated from different concentrations of thiolated chitosan solution. Furthermore, the levosulpiride-loaded thiolated chitosan microneedle patch (LS-TC-MNP) was characterized by FTIR spectroscopic analysis, scanning electron microscopy (SEM) study, penetration ability, tensile strength, moisture content, patch thickness, and elongation test. LS-TC-MNP fabricated with 3% thiolated chitosan solution was found to have the best tensile strength, moisture content, patch thickness, elongation, drug-loading efficiency, and drug content. Thiolated chitosan is biodegradable, nontoxic and has good absorption and swelling in the skin. LS-TC-MNP-3 consists of 100 needles in 10 rows each with 10 needles. The length of each microneedle was 575 μm; they were pyramidal in shape, with sharp pointed ends and a base diameter of 200 µm. The microneedle patch (LS-TC-MNP-3) resulted in-vitro drug release of 65% up to 48 h, ex vivo permeation of 63.6%, with good skin biocompatibility and enhanced in-vivo pharmacokinetics (AUC = 986 µg/mL·h, Cmax = 24.5 µg/mL) as compared to oral LS dispersion (AUC = 3.2 µg/mL·h, Cmax = 0.5 µg/mL). Based on the above results, LS-TC-MNP-3 seems to be a promising strategy for enhancing the bioavailability of levosulpiride.
Collapse
Affiliation(s)
- Rukhshanda Habib
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (R.H.); (M.A.); (J.A.)
- Department of Pharmacology, University of Oxford, Mansfield Rd., Oxford OX1 3QT, UK
- Department of Pharmacy, Quaid-I-Azam University, Islamabad 45320, Pakistan;
- Department of Biotechnology, Quaid-I-Azam University, Islamabad 45320, Pakistan;
| | - Abul Kalam Azad
- Pharmaceutical Technology Unit, Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia
| | - Muhammad Akhlaq
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (R.H.); (M.A.); (J.A.)
| | - Fakhria A. Al-Joufi
- Department of Pharmacology, College of Pharmacy, Jouf University, Skaka 72341, Saudi Arabia;
| | - Gul Shahnaz
- Department of Pharmacy, Quaid-I-Azam University, Islamabad 45320, Pakistan;
| | - Hanan R. H. Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Muhammad Naeem
- Department of Biotechnology, Quaid-I-Azam University, Islamabad 45320, Pakistan;
| | - Abdulraheem S. A. Almalki
- Department of Chemistry, Faculty of Science, Taif University, P.O. Box 11099, Taif 21974, Saudi Arabia;
| | - Junaid Asghar
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (R.H.); (M.A.); (J.A.)
| | - Aamir Jalil
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
14
|
Abstract
Polysaccharide biomaterials have gained significant importance in the manufacture of nanoparticles used in colon-targeted drug delivery systems. These systems are a form of non-invasive oral therapy used in the treatment of various diseases. To achieve successful colonic delivery, the chemical, enzymatic and mucoadhesive barriers within the gastrointestinal (GI) tract must be analyzed. This will allow for the nanomaterials to cross these barriers and reach the colon. This review provides information on the development of nanoparticles made from various polysaccharides, which can overcome multiple barriers along the GI tract and affect encapsulation efficiency, drug protection, and release mechanisms upon arrival in the colon. Also, there is information disclosed about the size of the nanoparticles that are usually involved in the mechanisms of diffusion through the barriers in the GI tract, which may influence early drug degradation and release in the digestive tract.
Collapse
|
15
|
Arshia, Fayyaz S, Shaikh M, Khan KM, Choudhary MI. Anti-glycemic potential of benzophenone thio/semicarbazone derivatives: synthesis, enzyme inhibition and ligand docking studies. J Biomol Struct Dyn 2021; 40:7339-7350. [PMID: 33769204 DOI: 10.1080/07391102.2021.1897045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Inhibition of dipeptidyl peptidase-IV (DPP-IV) has been identified as a promising approach for the treatment of type 2 diabetes mellitus (T2DM). Therefore, development of DPP-IV inhibitors with new chemical scaffold is of utmost importance to medicinal chemistry. In the present study, we identified benzophenone thio- and semicarbazone scaffolds as novel DPP-IV inhibitors. For that purpose, benzophenone thio- and semicarbazone were synthesized through a 2-step reaction. These newly synthetic derivatives were characterized by different spectroscopic techniques, including HREI-MS and NMR. whereas stereochemistry of the iminic bond was predicted by NOESY experiments. Thio- and semicarbazones derivatives were evaluated for their DPP-IV inhibitory potential and found to exhibit a good to moderate enzyme inhibitory activity. Most active and non-cytotoxic derivatives were further evaluated for their DPP-IV inhibitory potential in in cellulo model. The binding sites as well as affinity of active compounds for DPP- IV enzyme were predicted by in silico studies, and compared to a standard drug, sitagliptin. Pharmacophore studies of thio- and semicarbazones derivatives 1-29 suggest that substitution of aryl group, particularly a lipophilic substituents at C-4″ of benzene ring, and a hydroxyl at C-4' strongly influenced the DPP-IV inhibitory activity. Compound 9 showed the highest inhibitory activity (IC50 = 15.0 ± 0.6 µM), whereas compounds 10, 17, 12, 14 and 23 showed a moderate activity with IC50 values in the range of 28.9-39.2 µM. This study identifies thio- and semicarbazones as new classes of DPP-IV inhibitors which may translate into safe and effective therapeutics for a better management of type 2 diabetes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Arshia
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Sharmeen Fayyaz
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Muniza Shaikh
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.,Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - M Iqbal Choudhary
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.,Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.,Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
16
|
Qushawy M. Effect of the Surfactant and Liquid Lipid Type in the Physico-chemical Characteristics of Beeswax-based Nanostructured Lipid Carrier (NLC) of Metformin. Pharm Nanotechnol 2021; 9:200-209. [PMID: 33618652 DOI: 10.2174/2211738509666210222143716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND Metformin (MF) is an antidiabetic drug that belongs to class III of the biopharmaceutical classification system (BCS) characterized by high solubility and low permeability. OBJECTIVE The study aimed to prepare metformin as nanostructured lipid carriers (MF-NLCs) to control the drug release and enhance its permeability through the biological membrane. METHODS 22 full factorial design was used to make the design of MF-NLCs formulations. MFNLCs were prepared by hot-melt homogenization-ultra sonication technique using beeswax as solid lipid in the presence of liquid lipid (either capryol 90 or oleic acid) and surfactant (either poloxamer 188 or tween 80). RESULTS The entrapment efficiency (EE%) of MF-NLCs was ranged from 85.2±2.5 to 96.5±1.8%. The particle size was in the nanoscale (134.6±4.1 to 264.1±4.6 nm). The value of zeta potential has a negative value ranged from -25.6±1.1 to -39.4±0.9 mV. The PDI value was in the range of 0.253±0.01 to 0.496±0.02. The cumulative drug release was calculated for MF-NLCs and it was found that Q12h ranged from 90.5±1.7% for MF-NLC1 to 99.3±2.8 for MF-NLC4. Infra-red (IR) spectroscopy and differential scanning calorimetry (DSC) studies revealed the compatibility of the drug with other ingredients. MF-NLC4 was found to be the optimized formulation with the best responses. CONCLUSION 22 full factorial design succeed to obtain an optimized formulation which controls the drug release and increases the drug penetration.
Collapse
Affiliation(s)
- Mona Qushawy
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| |
Collapse
|
17
|
Bhat SS, Mukherjee D, Sukharamwala P, Dehuri R, Murali A, Teja BV. Thiolated polymer nanocarrier reinforced with glycyrrhetinic acid for targeted delivery of 5-fluorouracil in hepatocellular carcinoma. Drug Deliv Transl Res 2021; 11:2252-2269. [PMID: 33432520 DOI: 10.1007/s13346-020-00894-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2020] [Indexed: 02/01/2023]
Abstract
The present work investigates the targeting efficacy of a novel thiolated polymer-based nanocomposite reinforced with glycyrrhetinic acid (GA) and loaded with 5-fluorouracil in hepatocellular carcinoma (HCC). The thiolated polymers were synthesized by EDAC-mediated conjugation reactions and lyophilization. The nanoparticles were prepared by solvent diffusion and high-pressure homogenization method. The prepared nanocomposite was characterized by Fourier transform infrared (FTIR) radiation, x-ray diffraction (XRD), dynamic light scattering (DLS), scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. Pharmacological evaluation of the formulation was carried out on a rat model of diethylnitrosamine (DEN), and carbon tetrachloride (CCl4)-induced HCC and MTT assay was carried out with HEP-G2 cell line. In silico studies were conducted to investigate the probable mechanistic pathway of the nanocomposite. FTIR and XRD analysis indicated the successful thiolation of the polymers and confirmed the formation of the nanocomposite without any incompatibilities. DLS, SEM/EDX and AFM characterization confirmed that the nanoparticles were within the nano-size range. MTT assay implied the cytotoxic nature of the nanocomposite against hepatic carcinoma cells. The in vivo study revealed that serum SGOT, SGPT, ALP, GGT and total bilirubin levels were significantly reduced, in comparison with disease control and the result was confirmed by histopathology studies. The results of the HPLC analysis of liver homogenate confirmed the liver targeting ability of the nanocomposite. In silico studies exhibited significant binding affinity of GA and thiolated Eudragit towards liver homolog receptor-1 (LRH-1) suggesting that the developed nanocomposite could be a potential material for the treatment of HCC.
Collapse
Affiliation(s)
- Sachin S Bhat
- Department of Pharmacology, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Karnataka, Bengaluru, India
| | - Dhrubojyoti Mukherjee
- Department of Pharmaceutics, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Karnataka, Bengaluru, India.
| | - Pinal Sukharamwala
- Department of Pharmaceutics, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Karnataka, Bengaluru, India
| | - Rachita Dehuri
- Department of Pharmacy Practice, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Karnataka, Bengaluru, India
| | - Anita Murali
- Department of Pharmacology, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Karnataka, Bengaluru, India
| | - Banala Venkatesh Teja
- Pharmaceutics and Pharmacokinetics Division, Central Drug Research Institute, Uttar Pradesh, 226031, Lucknow, India
| |
Collapse
|
18
|
Development and Characterization of Glimepiride Novel Solid Nanodispersion for Improving Its Oral Bioavailability. Sci Pharm 2020. [DOI: 10.3390/scipharm88040052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Glimepiride is an antidiabetic drug which is one of the third generation sulfonylureas. It belongs to class II, according to the BCS (Biopharmaceutical Classification System), which is characterized by low solubility and high permeability. The aim of this work was to formulate glimepiride as solid dispersion using water-soluble carriers to enhance its aqueous solubility and thus enhance its bioavailability. Nine formulations of glimepiride solid dispersion were prepared by a solvent evaporation technique using three different carriers (mannitol, polyethylene glycol 6000, and β-cyclodextrin) with three different drug carrier ratio (1:1, 1:3, and 1:6). Formulation variables were optimized using 32 full factorial design. The prepared formulations were evaluated for production yield, drug content, micromeritic properties, thermal analysis, in-vitro release, and in-vivo hypoglycemic effect. All prepared formulations showed high production yield ranged from 98.4 ± 2.8 to 99.8 ± 2.2% and high drug content in the range of 97.2 ± 3.2 to 99.6 ± 2.1%. The micromeritic properties revealed that all prepared glimepiride formulations showed good flowability. The differential scanning calorimetry study revealed the presence of the drug in the more soluble amorphous form. In accordance with the results of in vitro release study, it was found that the solubility of glimepiride was increased by increasing the drug carrier ratio, compared with the pure form of the drug. It was found that F9 showed a high and rapid reduction in blood glucose levels in diabetic rats, which indicated the success of a solid dispersion technique in improving the solubility and hence the bioavailability of glimepiride.
Collapse
|
19
|
Synthesis and Antitumor Activity of Doxycycline Polymeric Nanoparticles: Effect on Tumor Apoptosis in Solid Ehrlich Carcinoma. Molecules 2020; 25:molecules25143230. [PMID: 32679837 PMCID: PMC7396998 DOI: 10.3390/molecules25143230] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/07/2020] [Accepted: 07/14/2020] [Indexed: 02/01/2023] Open
Abstract
Objectives: The aim of this study was to prepare doxycycline polymeric nanoparticles (DOXY-PNPs) with hope to enhance its chemotherapeutic potential against solid Ehrlich carcinoma (SEC). Methods: Three DOXY-PNPs were formulated by nanoprecipitation method using hydroxypropyl methyl cellulose (HPMC) as a polymer. The prepared DOXY-PNPs were evaluated for the encapsulation efficiency (EE%), the drug loading capacity, particle size, zeta potential (ZP) and the in-vitro release for selection of the best formulation. PNP number 3 was selected for further biological testing based on the best pharmaceutical characters. PNP3 (5 and 10 mg/kg) was evaluated for the antitumor potential against SEC grown in female mice by measuring the tumor mass as well as the expression and immunohistochemical staining for the apoptosis markers; caspase 3 and BAX. Results: The biological study documented the greatest reduction in tumor mass in mice treated with PNP3. Importantly, treatment with 5 mg/kg of DOXY-PNPs produced a similar chemotherapeutic effect to that produced by 10 mg/kg of free DOXY. Further, a significant elevation in mRNA expression and immunostaining for caspase 3 and BAX was detected in mice group treated with DOXY-PNPs. Conclusions: The DOXY-PNPs showed greater antitumor potential against SEC grown in mice and greater values for Spearman’s correlation coefficients were detected when correlation with tumor mass or apoptosis markers was examined; this is in comparison to free DOXY. Hence, DOXY-PNPs should be tested in other tumor types to further determine the utility of the current technique in preparing chemotherapeutic agents and enhancing their properties.
Collapse
|
20
|
Federer C, Kurpiers M, Bernkop-Schnürch A. Thiolated Chitosans: A Multi-talented Class of Polymers for Various Applications. Biomacromolecules 2020; 22:24-56. [PMID: 32567846 PMCID: PMC7805012 DOI: 10.1021/acs.biomac.0c00663] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Various properties of chitosan can be customized by thiolation for very specific needs in a wide range of application areas. Since the discovery of thiolated chitosans, many studies have proven their advantageous characteristics, such as adhesion to biological surfaces, adjustable cross-linking and swelling behavior, controllable drug release, permeation as well as cellular uptake enhancement, inhibition of efflux pumps and enzymes, complexation of metal ions, antioxidative properties, and radical scavenging activity. Simultaneously, these polymers remain biodegradable without increased toxicity. Within this Review, an overview about the different possibilities to covalently attach sulfhydryl ligands to the polymeric backbone of chitosan is given, and the resulting versatile physiochemical properties are discussed in detail. Furthermore, the broad spectrum of applications for thiolated chitosans in science and industry, ranging from their most advanced use in pharmaceutical and medical science over wastewater treatment to the impregnation of textiles, is addressed.
Collapse
Affiliation(s)
- Christoph Federer
- Thiomatrix Forschungs-und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria.,Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Markus Kurpiers
- Thiomatrix Forschungs-und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria.,Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|