1
|
Baptista S, Pereira JR, Guerreiro BM, Baptista F, Silva JC, Freitas F. Cosmetic emulsion based on the fucose-rich polysaccharide FucoPol: Bioactive properties and sensorial evaluation. Colloids Surf B Biointerfaces 2023; 225:113252. [PMID: 36931042 DOI: 10.1016/j.colsurfb.2023.113252] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/15/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023]
Abstract
In this study, the physicochemical characteristics, bioactive properties, and sensorial evaluation of a O/W cosmetic formulation containing FucoPol, a fucose-containing bacterial polysaccharide, were assessed. The stability of the FucoPol-based cream, named F-cream, was demonstrated over a period of 2 months at different temperatures (4, 20 and 30 °C), during which it maintained the organoleptic characteristics and pH (5.88-6.19), with minimal variations on the apparent viscosity. Furthermore, no breaking mechanisms occurred upon centrifuging the samples (accelerated stability test) kept at 4 °C and at 30 °C for 60 days. The F-cream presented a shear-thinning and solid-liquid behavior consistent with its envisaged use for topical applications, proving to be a suitable candidate for an anti-aging application due to its antioxidant capacity and effective photoprotection, maintaining cellular preservation. Moreover, the formulation was proven non-cytotoxic for HaCaT cells at concentrations between 0.78 and 12.5 mg/mL, promoting HFFF2 cell migration (46-70 % of wound closure) at a concentration of 2.5 mg/mL, and HaCaT cell migration at a concentration of 10 mg/mL (95-98 % of wound closure). Upon application over the skin, the F-cream provided a hydration and softness with desired spreadability with no residues after application. These findings show that FucoPol has good potential to be used as a functional and/or active ingredient in cosmetic formulations, forming an emulsified cream with appealing sensorial properties that can act as a moisturizer with photoprotection, antioxidant, and regeneration properties.
Collapse
Affiliation(s)
- Sílvia Baptista
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; 73100, Lda. Edifício Arcis, Rua Ivone Silva, 6, 4º piso, 1050-124 Lisboa, Portugal
| | - João R Pereira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; CENIMAT/I3N, Department of Physics, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Bruno M Guerreiro
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; CENIMAT/I3N, Department of Physics, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Filipa Baptista
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Jorge C Silva
- CENIMAT/I3N, Department of Physics, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Filomena Freitas
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal.
| |
Collapse
|
2
|
Topical hydrophilic gel with itraconazole-loaded polymeric nanomicelles improves wound healing in the treatment of feline sporotrichosis. Int J Pharm 2023; 634:122619. [PMID: 36682505 DOI: 10.1016/j.ijpharm.2023.122619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/22/2022] [Accepted: 01/13/2023] [Indexed: 01/21/2023]
Abstract
Sporotrichosis is a superficial fungal disease that can affect animals and humans. The high number of infected cats has been associated with zoonotic transmission and contributed to sporotrichosis being considered by the World Health Organization as one of the main neglected tropical fungal diseases for 2021-2030. Oral administration of itraconazole (ITZ) is the first choice for treatment, but it is expensive, time-consuming, and often related to serious adverse effects. As a strategy to optimize the treatment, we proposed the development of a hydrophilic gel with nanomicelles loaded with ITZ (HGN-ITZ). The HGN-ITZ was developed using an I-optimal design and characterized for particle size, Zeta potential, drug content, microscopic aspects, viscosity, spreadability, in vitro drug release, in vitro antifungal activity, and clinical evaluation in cats. The HGN-ITZ showed a high content of ITZ (97.3 ± 2.1 mg/g); and characteristics suitable for topical application (viscosity, spreadability, globules size, Zeta potential, controlled drug release). In a pilot clinical study, cats with disseminated sporotrichosis were treated with oral ITZ or HGN-ITZ + oral ITZ. A mortality rate of 21.3% was observed for the oral ITZ group compared to 5.3% for the HGN-ITZ + oral ITZ group. In a cat with a single lesion, topical treatment alone (HGN-ITZ) provided complete healing of the lesion in 45 days. No signs of topical irritation were observed during the treatments, suggesting that HGN-ITZ can be a promising strategy in the treatment of sporotrichosis.
Collapse
|
3
|
Wu H, Niu C, Aisa HA. Research Progress of Small Molecules as Anti-vitiligo Agents. Curr Med Chem 2023; 31:CMC-EPUB-129498. [PMID: 36786141 DOI: 10.2174/0929867330666230214103054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/10/2022] [Accepted: 11/24/2022] [Indexed: 02/15/2023]
Abstract
Vitiligo is a disease characterized by skin discoloration, and no safe and effective drugs have been developed until now. New drug research and development are imminent. This article reviews the research on small-molecule drugs for vitiligo from 1990 to 2021 at home and abroad. They are classified according to their structures and mechanisms of action, including natural products and derivatives, anti-oxidative stress drugs, immunosuppressants, prostaglandins, etc. The research on their anti-vitiligo activity, structural modification, new dosage forms, clinical trials, and the development trend in new anti-vitiligo drugs are reviewed, which provides important references for the development of new drugs.
Collapse
Affiliation(s)
- Heng Wu
- Xinjiang Technical Institute of Physics & Chemistry State Key Laboratory Basis of Xinjiang indigenous medicinal plants resource utilization, CAS Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, University of Ürümqi China
| | - Chao Niu
- Xinjiang Technical Institute of Physics & Chemistry State Key Laboratory Basis of Xinjiang indigenous medicinal plants resource utilization, CAS Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, University of Ürümqi China
| | - Haji Akber Aisa
- Xinjiang Technical Institute of Physics & Chemistry State Key Laboratory Basis of Xinjiang indigenous medicinal plants resource utilization, CAS Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, University of Ürümqi China
| |
Collapse
|
4
|
Bharate SS. Enhancing Biopharmaceutical Attributes of Khellin by Amorphous Binary Solid Dispersions. AAPS PharmSciTech 2021; 22:260. [PMID: 34705156 DOI: 10.1208/s12249-021-02126-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/23/2021] [Indexed: 01/16/2023] Open
Abstract
Khellin, a furanochromone isolated from fruits and seeds of Ammi visnaga, is traditionally used in many eastern Mediterranean countries. The plant decoction and the crystalline substance khellin have many pharmacological activities. For instance, it acts as a bronchodilator and also relieves renal colic and urethral stones, etc. However, the low water solubility (~ 120 µg/mL) and low bioavailability limit its therapeutic application. Thus, the present research explores the development of its binary and ternary solid dispersion formulations to improve its solubility and dissolution behavior. A 24-well plate miniaturized protocol was established to identify the optimal hydrophilic polymer to prepare its solid dispersions. PEG-4000 was recognized as the favorable hydrophilic carrier in preparation of solid dispersion, SSB17. The formulation displayed ~ five-fold enhancement in the aqueous solubility of khellin. The binary solid dispersion SSB17 was manufactured at a gram scale and evaluated using 1H-NMR, 13C-NMR, FT-IR, p-XRD, SEM, DSC, in vitro dissolution, and predicted pharmacokinetics. The quantitative dissolution data of SSB17 demonstrated ~ 2-3-fold improvement in AUC at physiological pH conditions. These conclusions highlight the basis for further preclinical studies on solid dispersions of khellin with improved biopharmaceutical properties.
Collapse
|
5
|
Alves T, Arranca D, Martins A, Ribeiro H, Raposo S, Marto J. Complying with the Guideline for Quality and Equivalence for Topical Semisolid Products: The Case of Clotrimazole Cream. Pharmaceutics 2021; 13:pharmaceutics13040555. [PMID: 33920061 PMCID: PMC8071103 DOI: 10.3390/pharmaceutics13040555] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 11/16/2022] Open
Abstract
Semisolids constitute a significant proportion of topical pharmaceutical dosage forms available on the market, with creams being considered profitable systems for releasing active substances into the skin. This work aimed at the development of a generic Clotrimazole topical cream, based on the assumptions that assist the development of such formulations. First, the critical parameters to obtain a final formulation as similar as possible to the reference product were defined. Then, the percentages of cetyl palmitate and octyldodecanol were identified as critical variables and chosen for optimization in further studies. A "quality by design" approach was then used to identify the effect of process variability on the structural and functional similarity (Q3) of the generic product qualitatively (Q1) and quantitatively (Q2). A two-factor central composite orthogonal design was applied and eleven different formulations were developed and subjected to physicochemical characterization and product performance studies. The results were used to estimate the influence of the two variables in the variation of the responses, and to determine the optimum point of the tested factors, using a design space approach. Finally, an optimized formulation was obtained and analysed in parallel with the reference. The obtained results agreed with the prediction of the chemometric analysis, validating the reliability of the developed multivariate models. The in vitro release and permeation results were similar for the reference and the generic formulations, supporting the importance of interplaying microstructure properties with product performance and stability. Lastly, based on quality targets and response constraints, optimal working conditions were successfully achieved.
Collapse
Affiliation(s)
- Teresa Alves
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (T.A.); (A.M.); (H.R.); (S.R.)
| | - Daniel Arranca
- Laboratório Edol—Produtos Farmacêuticos, S.A., 2795-225 Linda-a-Velha, Portugal;
| | - Ana Martins
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (T.A.); (A.M.); (H.R.); (S.R.)
| | - Helena Ribeiro
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (T.A.); (A.M.); (H.R.); (S.R.)
| | - Sara Raposo
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (T.A.); (A.M.); (H.R.); (S.R.)
- Laboratório Edol—Produtos Farmacêuticos, S.A., 2795-225 Linda-a-Velha, Portugal;
| | - Joana Marto
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (T.A.); (A.M.); (H.R.); (S.R.)
- Correspondence: ; Tel.: +351-217-500-769
| |
Collapse
|