1
|
Oshizaka T, Kodera S, Kawakubo R, Takeuchi I, Mori K, Sugibayashi K. Enhanced Drug Skin Permeation by Azone-Mimicking Ionic Liquids: Effects of Fatty Acids Forming Ionic Liquids. Pharmaceutics 2024; 17:41. [PMID: 39861689 PMCID: PMC11768391 DOI: 10.3390/pharmaceutics17010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/19/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Laurocapram (Azone) attracted attention 40 years ago as a compound with the highest skin-penetration-enhancing effect at that time; however, its development was shelved due to strong skin irritation. We had already prepared and tested an ante-enhancer (IL-Azone), an ionic liquid (IL) with a similar structure to Azone, consisting of ε-caprolactam and myristic acid, as an enhancer candidate that maintains the high skin-penetration-enhancing effect of Azone with low skin irritation. In the present study, fatty acids with different carbon numbers (caprylic acid: C8, capric acid: C10, lauric acid: C12, myristic acid: C14, and oleic acid: C18:1) were selected and used with ε-caprolactam to prepare various IL-Azones in the search for a more effective IL-Azone. Methods: Excised porcine skin was pretreated with each IL-Azone to assess the in vitro skin permeability of antipyrine (ANP) as a model penetrant. In addition, 1,3-butanediol was selected for the skin permeation test to confirm whether the effect of IL-Azone was due to fatty acids and if this effect differed depending on the concentration of IL-Azone applied. Results: The results obtained showed that C12 IL-Azone exerted the highest skin-penetration-enhancing effect, which was higher than Azone. On the other hand, many of the IL-Azones tested had a lower skin-penetration-enhancing effect. Conclusions: These results suggest the potential of C12 IL-Azone as a strong and useful penetration enhancer.
Collapse
Affiliation(s)
- Takeshi Oshizaka
- Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane 283-8555, Chiba, Japan; (S.K.); (R.K.); (I.T.); (K.M.)
- Graduate School of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane 283-8555, Chiba, Japan
| | - Shunsuke Kodera
- Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane 283-8555, Chiba, Japan; (S.K.); (R.K.); (I.T.); (K.M.)
| | - Rika Kawakubo
- Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane 283-8555, Chiba, Japan; (S.K.); (R.K.); (I.T.); (K.M.)
| | - Issei Takeuchi
- Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane 283-8555, Chiba, Japan; (S.K.); (R.K.); (I.T.); (K.M.)
- Graduate School of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane 283-8555, Chiba, Japan
| | - Kenji Mori
- Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane 283-8555, Chiba, Japan; (S.K.); (R.K.); (I.T.); (K.M.)
- Graduate School of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane 283-8555, Chiba, Japan
| | - Kenji Sugibayashi
- Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane 283-8555, Chiba, Japan; (S.K.); (R.K.); (I.T.); (K.M.)
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 350-0295, Saitama, Japan
| |
Collapse
|
2
|
Anwar Z, Noreen A, Usmani M, Akram Z, Ejaz MA, Sheraz MA, Ahmed S, Zahid S, Sabir S, Musharraf SG. A kinetic study for the estimation of riboflavin sensitized photooxidation of pyridoxine HCl using green UV-visible spectrometric and HPLC methods. RSC Adv 2024; 14:39174-39192. [PMID: 39664253 PMCID: PMC11632597 DOI: 10.1039/d4ra05836d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/10/2024] [Indexed: 12/13/2024] Open
Abstract
Riboflavin (RF) sensitized photooxidation of pyridoxine HCl (PD) in the pH range of 2.0-12.0 has been carried out under UV and visible irradiation in aerobic and anaerobic conditions. PD follows first-order kinetics in the absence and presence of RF for its photodegradation. The first-order rate constants (k obs) for the photodegradation of PD in the presence of RF (0.05-0.50 × 10-4 M) in aerobic and anaerobic conditions range from 0.046-0.755 and 0.0089-0.755 × 10-2 min-1, respectively. RF acts as a promoter for the photodegradation of PD and the second-order rate constants (k 2) are in the range of 0.026-1.285 and 0.004-0.128 × 10-2 M-1 min-1 in aerobic and anaerobic conditions, respectively. The k 2-pH profile for the photodegradation shows a slanted curve, indicating that with an increase in pH, the rate of photodegradation of PD also increases. Green UV-visible spectrometric and high-performance liquid chromatographic (HPLC) methods have been developed for the simultaneous determination of PD and RF in pure and degraded solutions. These two developed methods are statistically compared and it is found that there is no significant difference between them. We have conducted in silico studies to assess the formation of ground state complexes, molecular interactions, and the binding affinities of RF and PD.
Collapse
Affiliation(s)
- Zubair Anwar
- Department of Pharmaceutical Chemistry, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University Gadap Road, Super Highway Karachi-75340 Pakistan
| | - Aisha Noreen
- Department of Pharmaceutical Chemistry, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University Gadap Road, Super Highway Karachi-75340 Pakistan
| | - Muneeba Usmani
- Department of Pharmaceutics, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University Gadap Road, Super Highway Karachi-75340 Pakistan
| | - Zuneera Akram
- Department of Pharmacology, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University Gadap Road, Super Highway Karachi-75340 Pakistan
| | - Muhammad Ahsan Ejaz
- Department of Pharmaceutical Chemistry, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University Gadap Road, Super Highway Karachi-75340 Pakistan
| | - Muhammad Ali Sheraz
- Department of Pharmaceutics, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University Gadap Road, Super Highway Karachi-75340 Pakistan
| | - Sofia Ahmed
- Department of Pharmaceutics, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University Gadap Road, Super Highway Karachi-75340 Pakistan
| | - Saima Zahid
- Department of Pharmaceutical Chemistry, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University Gadap Road, Super Highway Karachi-75340 Pakistan
| | - Saba Sabir
- Department of Pharmaceutical Chemistry, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University Gadap Road, Super Highway Karachi-75340 Pakistan
| | - Syed Ghulam Musharraf
- Third World Centre for Science and Technology, H. E. J. Research Institute of Chemistry, University of Karachi Karachi-75270 Pakistan
| |
Collapse
|
3
|
Afzal N, Nguyen N, Min M, Egli C, Afzal S, Chaudhuri RK, Burney WA, Sivamani RK. Prospective randomized double-blind comparative study of topical acetyl zingerone with tetrahexyldecyl ascorbate versus tetrahexyldecyl ascorbate alone on facial photoaging. J Cosmet Dermatol 2024; 23:2467-2477. [PMID: 38525606 DOI: 10.1111/jocd.16292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/23/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND Tetrahexydecyl ascorbate (THDA) is a lipophilic precursor to ascorbic acid that may be stabilized by acetyl zingerone (AZ). Studies have shown that the topical application of THDA may have photoprotective effects. Similarly, AZ has been shown to mitigate oxidative and inflammatory stress, thereby improving the appearance of photoaging. AIMS To examine the effects of THDA and AZ (THDA-AZ) on skin photoaging compared to THDA alone. PATIENTS/METHODS In this double-blind, randomized controlled trial, healthy individuals aged 30 to 65 were included and 44 participants were randomized to receive either THDA-AZ (THDA 5% + AZ 1%) or THDA only (THDA 5%) for 8 weeks. Facial photographs were taken at 0, 4, and 8 weeks to analyze wrinkle severity, pigment intensity, and redness intensity. A skin colorimeter was used to assess infraorbital pigmentation and erythema. Self-perception of skin and tolerability were assessed through questionnaires. RESULTS Average wrinkle severity was significantly decreased in the THDA-AZ group at Weeks 4 and 8 by 0.75% (p = 0.023) and 3.72% (p = 0.048), respectively, compared to the THDA group where wrinkle severity at Weeks 4 and 8 was increased by 7.88% and 4.48%, respectively. Facial pigment intensity was significantly decreased in the THDA-AZ group by 4.10% (p = 0.0002) at Week 8 compared to a 0.69% decrease in the THDA group. Facial redness intensity was decreased in the THDA-AZ group at Weeks 4 and 8 by 3.73% (p = 0.0162) and 14.25% (p = 0.045), respectively, compared to the THDA group where at Weeks 4 and 8 erythema increased by 27.5% and 8.34%, respectively. There were no significant differences in either group for infraorbital pigmentation or erythema. CONCLUSIONS Daily use of combined THDA and AZ may improve facial wrinkle severity, pigment intensity, and erythema to a greater extent than THDA. While THDA alone increases facial wrinkle severity and erythema, the addition of AZ reduces both.
Collapse
Affiliation(s)
- Nasima Afzal
- Integrative Skin Science and Research, Sacramento, California, USA
| | - Nhi Nguyen
- Integrative Skin Science and Research, Sacramento, California, USA
| | - Mildred Min
- Integrative Skin Science and Research, Sacramento, California, USA
- College of Medicine, California Northstate University, Elk Grove, California, USA
| | - Caitlin Egli
- Integrative Skin Science and Research, Sacramento, California, USA
- College of Medicine, University of St. George's, University Centre, Grenada
| | - Shabnam Afzal
- Integrative Skin Science and Research, Sacramento, California, USA
- School of Medicine, University of California, Davis, Sacramento, California, USA
| | | | - Waqas A Burney
- Integrative Skin Science and Research, Sacramento, California, USA
| | - Raja K Sivamani
- Integrative Skin Science and Research, Sacramento, California, USA
- College of Medicine, California Northstate University, Elk Grove, California, USA
- Pacific Skin Institute, Sacramento, California, USA
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| |
Collapse
|
4
|
Oshizaka T, Yamamoto A, Tanaka H, Takeuchi I, Mori K, Sugibayashi K. Design of Ionic Liquid Formulations with Azone-Mimic Structures for Enhanced Drug Skin Permeation. J Pharm Sci 2024; 113:1299-1305. [PMID: 38103688 DOI: 10.1016/j.xphs.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Although laurocapram (Azone) significantly enhances the skin permeation of drugs, its development was hindered by its skin irritation. We then developed an Azone-mimic ionic liquid (IL-Azone), composed of less irritating cationic ε-caprolactam and anionic myristic acid. IL-Azone dissociates to the original cation and anion in the presence of water in the formulation. We tried to select a formulation suitable for IL-Azone in the present study. Each formulation contained 5 % of either Azone or IL-Azone along with the model drug antipyrine, and skin permeation experiments of the drug were conducted. The results revealed that IL-Azone did not enhance skin permeation when combined with most formulations tested. However, a notable and rapid enhancement in skin permeation was observed when combined with white petrolatum. This effect could be attributed to the minimal water content in white petrolatum, which prevented IL-Azone degradation. Furthermore, its permeation-enhancing effects from IL-Azone in white petrolatum were more pronounced and rapid than Azone. The rapid onset observed with IL-Azone can be attributed to its degradation into its original components at the interface between the stratum corneum and the living epidermis, which results in a shorter lag time before achieving a steady-state concentration in the SC compared to Azone.
Collapse
Affiliation(s)
- Takeshi Oshizaka
- Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane, Chiba 283-8555, Japan.
| | - Aki Yamamoto
- Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane, Chiba 283-8555, Japan
| | - Hikaru Tanaka
- Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane, Chiba 283-8555, Japan
| | - Issei Takeuchi
- Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane, Chiba 283-8555, Japan
| | - Kenji Mori
- Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane, Chiba 283-8555, Japan
| | - Kenji Sugibayashi
- Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane, Chiba 283-8555, Japan; Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan.
| |
Collapse
|
5
|
Noreen A, Anwar Z, Ahsan Ejaz M, Usmani M, Khan T, Ali Sheraz M, Ahmed S, Mirza T, Khurshid A, Ahmad I. Riboflavin (vitamin B 2) sensitized photooxidation of ascorbic acid (vitamin C): A kinetic study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123813. [PMID: 38198998 DOI: 10.1016/j.saa.2023.123813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/01/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024]
Abstract
Ascorbic acid (AH2) photoxidation sensitized by riboflavin (RF) has been studied between pH 2.0 and 12.0 in ambient air and anaerobic environment using UV and visible irradiation sources. The kinetics of AH2 degradation in aqueous medium along with RF is found to be first-order for its photodegradation. AH2 photolysis rate constants in aerobic and anaerobic conditions with RF (1.0-5.0 × 10-5 M) are 0.14-3.89 × 10-2 and 0.026-0.740 × 10-2 min-1, respectively. The rate constants (k2) of second-order kinetics for AH2 and RF photochemical interaction in aerobic and anaerobic conditions are in the range of 0.24-3.70 to 0.05-0.70 × 10-3 M-1 min-1, respectively, which manifests that increasing the RF concentration also increases the rate of photodegradation (photooxidation) of AH2. The k2 versus pH graph is bell-shaped which indicates that increasing the pH increases photolytic degradation rate of AH2 with RF. Increasing the pH results in the increased ionization of AH2 (ascorbyl anion, AH-) and redox potential which leads to the higher rates of photodegradation of AH2. Two-component spectrophotometric (243 and 266 nm, AH2 and RF, respectively) and high-performance liquid chromatography (HPLC) methods have been used to determine the concentration of AH2 and RF in pure and degraded solutions. The results obtained from these two methods are compared using a student t-test which showed no noteworthy difference between them.
Collapse
Affiliation(s)
- Aisha Noreen
- Department of Pharmaceutical Chemistry, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Gadap Road, Super Highway, Karachi 75340, Pakistan
| | - Zubair Anwar
- Department of Pharmaceutical Chemistry, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Gadap Road, Super Highway, Karachi 75340, Pakistan.
| | - Muhammad Ahsan Ejaz
- Department of Pharmaceutical Chemistry, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Gadap Road, Super Highway, Karachi 75340, Pakistan
| | - Muneeba Usmani
- Department of Pharmaceutics, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Gadap Road, Super Highway, Karachi 75340, Pakistan
| | - Tooba Khan
- Department of Pharmaceutical Chemistry, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Gadap Road, Super Highway, Karachi 75340, Pakistan; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Sindh, Allama I.I., Kazi Campus, Jamshoro 76080, Sindh, Pakistan
| | - Muhammad Ali Sheraz
- Department of Pharmaceutics, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Gadap Road, Super Highway, Karachi 75340, Pakistan
| | - Sofia Ahmed
- Department of Pharmaceutics, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Gadap Road, Super Highway, Karachi 75340, Pakistan
| | - Tania Mirza
- Department of Pharmaceutical Chemistry, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Gadap Road, Super Highway, Karachi 75340, Pakistan
| | - Adeela Khurshid
- Department of Pharmaceutics, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Gadap Road, Super Highway, Karachi 75340, Pakistan
| | - Iqbal Ahmad
- Department of Pharmaceutical Chemistry, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Gadap Road, Super Highway, Karachi 75340, Pakistan
| |
Collapse
|
6
|
Oshizaka T, Takeuchi I, Mukae K, Mori K, Sugibayashi K. Enhanced Physical Stability of L-Ascorbic Acid in an Ionic Liquid. Chem Pharm Bull (Tokyo) 2024; 72:209-212. [PMID: 38281765 DOI: 10.1248/cpb.c23-00861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Ionic liquid (IL) technology was used to enhance the stability of L-ascorbic acid (AA). Pyridoxine was selected as the counter cation for anionic AA in IL. After AA was dissolved in water at 40 °C, its ratio decreased to 3.2% after 7 d. In contrast, the IL formulation showed negligible degradation, with almost no loss of AA even after 28 d. These results suggest that the use of IL enhances the stability of AA.
Collapse
Affiliation(s)
- Takeshi Oshizaka
- Faculty of Pharmaceutical Sciences, Josai International University
| | - Issei Takeuchi
- Faculty of Pharmaceutical Sciences, Josai International University
| | - Katsuya Mukae
- Department of Industrial Chemistry, Kyushu Sangyo University
| | - Kenji Mori
- Faculty of Pharmaceutical Sciences, Josai International University
| | - Kenji Sugibayashi
- Faculty of Pharmaceutical Sciences, Josai International University
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| |
Collapse
|
7
|
Oshizaka T, Hayakawa M, Uesaka M, Yoshizawa K, Kamei T, Takeuchi I, Mori K, Itakura S, Todo H, Sugibayashi K. Design of an Ante-enhancer with an Azone-Mimic Structure using Ionic Liquid. Pharm Res 2023; 40:1577-1586. [PMID: 37081304 DOI: 10.1007/s11095-023-03515-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/05/2023] [Indexed: 04/22/2023]
Abstract
PURPOSE Laurocapram (Azone) was broadly examined as a representative enhancer of skin penetration in the 1980s. However, it was not approved for treatment because it caused skin irritation following its penetration into the epidermis through the stratum corneum. In the present study, a so-called ante-enhancer with an Azone-mimic structure was designed based on an ante-drug with negligible systemic toxic effects following its permeation through the skin. METHODS The ante-enhancer was designed using ionic liquid technology: an ionic liquid-type ante-enhancer (IL-Azone) with an Azone-mimic structure was prepared from ε-caprolactam and myristic acid as cationic and anionic substances, respectively. The enhancing effects of IL-Azone on the permeation by the following model drugs through pig skin were examined: isosorbide 5-mononitrate (ISMN), antipyrine (ANP), and fluorescein isothiocyanate dextran (FD-4). Skin irritation by IL-Azone was assessed using the Draize method. RESULTS The primary irritation index (P.I.I.) of IL-Azone by the Draize method was markedly lower than that of Azone (6.9). Although the ability of IL-Azone to enhance skin penetration was not as high as Azone, IL-Azone moderately increased skin permeation by the model compounds tested (ISMN: 4.7 fold, ANP: 4.5 fold, FD-4: 4.0 fold). CONCLUSIONS These results suggest the usefulness of designing a skin penetration enhancer using ionic liquid technology. Further trials on the ionic liquid design with an Azone-mimic structure using other cations and anions may lead to the development of better ante-enhancers.
Collapse
Affiliation(s)
- Takeshi Oshizaka
- Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane, Chiba, 283-8555, Japan.
| | - Mao Hayakawa
- Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane, Chiba, 283-8555, Japan
| | - Mayu Uesaka
- Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane, Chiba, 283-8555, Japan
| | - Kota Yoshizawa
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Tomoyo Kamei
- Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane, Chiba, 283-8555, Japan
| | - Issei Takeuchi
- Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane, Chiba, 283-8555, Japan
| | - Kenji Mori
- Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane, Chiba, 283-8555, Japan
| | - Shoko Itakura
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Hiroaki Todo
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Kenji Sugibayashi
- Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane, Chiba, 283-8555, Japan.
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan.
| |
Collapse
|
8
|
Khan N, Singh AK, Saneja A. Preparation, Characterization, and Antioxidant Activity of L-Ascorbic Acid/HP- β-Cyclodextrin Inclusion Complex-Incorporated Electrospun Nanofibers. Foods 2023; 12:foods12071363. [PMID: 37048184 PMCID: PMC10093489 DOI: 10.3390/foods12071363] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
L-Ascorbic acid (LAA) is a key vitamin, implicated in a variety of physiological processes in humans. Due to its free radical scavenging activity, it is extensively employed as an excipient in pharmaceutical products and food supplements. However, its application is greatly impeded by poor thermal and aqueous stability. Herein, to improve the stability and inhibit oxidative degradation, we prepared LAA-cyclodextrin inclusion complex-incorporated nanofibers (NFs). The continuous variation method (Job plot) demonstrated that LAA forms inclusions with hydroxypropyl-β-cyclodextrin (HP-β-CD) at a 2:1 molar stoichiometric ratio. The NFs were prepared via the single step electrospinning technique, without using any polymer matrix. The solid-state characterizations of LAA/HP-β-CD-NF via powder x-ray diffractometry (PXRD), Fourier-transform infrared (FT-IR) analysis, differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), and nuclear magnetic resonance (1H NMR and 2D-NOESY) spectroscopy, reveal the effective encapsulation of the LAA (guest molecule) inside the HP-β-CD (host) cavity. The SEM micrograph reveals an average fiber diameter of ~339 nm. The outcomes of the thermal investigations demonstrated that encapsulation of LAA within HP-β-CD cavities provides improved thermal stability of LAA (by increasing the thermal degradation temperature). The radical scavenging assay demonstrated the enhanced antioxidant potential of LAA/HP-β-CD-NF, as compared to native LAA. Overall, the study shows that cyclodextrin inclusion complex-incorporated NFs, are an effective approach for improving the limitations associated with LAA, and provide promising avenues in its therapeutic and food applications.
Collapse
Affiliation(s)
- Nabab Khan
- Formulation Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amit Kumar Singh
- Formulation Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ankit Saneja
- Formulation Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
9
|
Oshizaka T, Inaba R, Isono M, Takei C, Takeuchi I, Mori K, Sugibayashi K. Effects of Physicochemical Properties of Constituent Ions of Ionic Liquid on Its Permeation through a Silicone Membrane. Chem Pharm Bull (Tokyo) 2022; 70:716-719. [PMID: 36184454 DOI: 10.1248/cpb.c22-00248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ionic liquids (ILs), defined as liquid salts composed of anions and cations, have the advantage of allowing constituent ions to be stably absorbed through biological membranes, such as skin. However, limited information is currently available on the effects of the physicochemical properties of constituent ions on the membrane permeation of ILs. Therefore, we herein investigated the effects of the polarity of constituent cations on the membrane permeation of each constituent ion from IL. Various ILs were prepared by selecting lidocaine (LID) as a cation and a series of p-alkylbenzoic acids with different n-octanol/water partition coefficients (Ko/w) as anions. These ILs were applied to a skin model, a silicone membrane, and membrane permeability was investigated. The membrane permeabilities of p-alkylbenzoic acids from their single aqueous suspensions were also measured for comparison. The membrane permeability of p-alkylbenzoic acid from the aqueous suspension increased at higher Ko/w. However, the membrane permeability of ILs was similar regardless of the Ko/w of the constituent p-alkylbenzoic acid. Furthermore, the membrane permeability of the counterion LID remained unchanged regardless of the constituent p-alkylbenzoic acid. These results suggest that even when the Ko/w of IL constituents markedly differs, the resulting IL does not affect membrane permeability.
Collapse
Affiliation(s)
- Takeshi Oshizaka
- Faculty of Pharmaceutical Sciences, Josai International University
| | - Rena Inaba
- Faculty of Pharmaceutical Sciences, Josai International University
| | - Mana Isono
- Faculty of Pharmaceutical Sciences, Josai International University
| | - Chihiro Takei
- Faculty of Pharmaceutical Sciences, Josai International University
| | - Issei Takeuchi
- Faculty of Pharmaceutical Sciences, Josai International University
| | - Kenji Mori
- Faculty of Pharmaceutical Sciences, Josai International University
| | - Kenji Sugibayashi
- Faculty of Pharmaceutical Sciences, Josai International University.,Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| |
Collapse
|
10
|
Rapaić M, Panić J, Teofilović B, Grujić-Letić N, Gadžurić S, Vraneš M. Synthesis and evolution of physicochemical properties of new pharmaceutically active ionic liquids - tetracainium salicylate and tetracainium ibuprofenate. RSC Adv 2022; 12:26800-26807. [PMID: 36320838 PMCID: PMC9491082 DOI: 10.1039/d2ra04711j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022] Open
Abstract
Tetracainium salicylate and tetracainium ibuprofenate were synthesized as active pharmaceutical ingredient ionic liquids (API-ILs). These ILs represent a combination of a drug for local anaesthesia (tetracaine) and nonsteroidal anti-inflammatory drugs (salicylic acid and ibuprofen). After IL synthesis, spectroscopic investigations were performed using infrared and nuclear magnetic resonance spectroscopy to confirm their structures. Differential scanning calorimetry and thermogravimetric analysis determined the obtained thermal behaviour of the ionic liquids. Experimental density, viscosity, and electrical conductivity measurements were performed in a wide temperature range to understand the interactions occurring in the obtained pharmaceutically active ionic liquids. All experimental values were well-fitted by the empirical equations. According to the theoretical calculations, weaker interactions of tetracaine with ibuprofenate than with salicylate are found, ascribed to the decreasing molecular symmetry, weakened hydrogen bonding, and increasing steric hindrance of ibuprofenate's alkyl chain.
Collapse
Affiliation(s)
- Maksim Rapaić
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad Trg Dositeja Obradovića 3 Novi Sad 21000 Serbia
| | - Jovana Panić
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad Trg Dositeja Obradovića 3 Novi Sad 21000 Serbia
| | | | - Nevena Grujić-Letić
- Faculty of Medicine, University of Novi Sad Hajduk Veljkova 3 Novi Sad 21000 Serbia
| | - Slobodan Gadžurić
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad Trg Dositeja Obradovića 3 Novi Sad 21000 Serbia
| | - Milan Vraneš
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad Trg Dositeja Obradovića 3 Novi Sad 21000 Serbia
| |
Collapse
|
11
|
Richu, Bandral A, Singh H, Kumar A. Effect of [Bmim][Br] and [Emim][HSO4] on the solution properties of pyridoxine HCl at various temperatures: A physicochemical, thermodynamic and spectroscopic approach. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Tetrahexyldecyl Ascorbate (THDC) Degrades Rapidly under Oxidative Stress but Can Be Stabilized by Acetyl Zingerone to Enhance Collagen Production and Antioxidant Effects. Int J Mol Sci 2021; 22:ijms22168756. [PMID: 34445461 PMCID: PMC8395926 DOI: 10.3390/ijms22168756] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 11/18/2022] Open
Abstract
Tetrahexyldecyl Ascorbate (THDC) is an L-ascorbic acid precursor with improved stability and ability to penetrate the epidermis. The stability and transdermal penetration of THDC, however, may be compromised by the oxidant-rich environment of human skin. In this study, we show that THDC is a poor antioxidant that degrades rapidly when exposed to singlet oxygen. This degradation, however, was prevented by combination with acetyl zingerone (AZ) as a stabilizing antioxidant. As a standalone ingredient, THDC led to unexpected activation of type I interferon signaling, but this pro-inflammatory effect was blunted in the presence of AZ. Moreover, the combination of THDC and AZ increased expression of genes associated with phospholipid homeostasis and keratinocyte differentiation, along with repression of MMP1 and MMP7 expression, inhibition of MMP enzyme activity, and increased production of collagen proteins by dermal fibroblasts. Lastly, whereas THDC alone reduced viability of keratinocytes exposed to oxidative stress, this effect was completely abrogated by the addition of AZ to THDC. These results show that AZ is an effective antioxidant stabilizer of THDC and that combination of these products may improve ascorbic acid delivery. This provides a step towards reaching the full potential of ascorbate as an active ingredient in topical preparations.
Collapse
|
13
|
Mori K, Usuzaka E, Oshizaka T, Takei C, Todo H, Sugibayashi K. Use of Silicone Membrane Permeation to Assess Thermodynamic Activities of Ionic Liquids and Their Component Cation and Anion. Chem Pharm Bull (Tokyo) 2021; 69:481-487. [PMID: 33952857 DOI: 10.1248/cpb.c21-00033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ionic liquid (IL) was prepared by mixing lidocaine and ibuprofen as a cation and anion, respectively, at various ratios. We determined the permeation of both compounds from the IL through a silicone membrane selected as a model biological membrane, and mathematically analyzed the permeation data from the viewpoint of the thermodynamic activities of lidocaine, ibuprofen, and the IL. As a result, IL and ibuprofen diffusely permeated through the membrane in the case of applying IL preparations with a molar fraction of ibuprofen of 0.5 or higher. The IL was thought to separate into lidocaine and ibuprofen in the receiver. On the other hand, when applying IL preparations with a molar fraction of lidocaine of 0.5 or higher, IL and lidocaine permeated. The permeation rate of IL itself was maximized when the applied IL was prepared using equimolar amounts of lidocaine and ibuprofen, and it decreased when the fraction of lidocaine or ibuprofen increased by more than 0.5. Their membrane permeation rates increased with an increase in their activity, and no more increase was found when the drugs were saturated in the IL. These membrane permeation profiles reflected well the mathematically calculated ones according to the concept of activity.
Collapse
Affiliation(s)
- Kenji Mori
- Faculty of Pharmaceutical Sciences, Josai International University
| | - Eri Usuzaka
- Faculty of Pharmaceutical Sciences, Josai International University
| | - Takeshi Oshizaka
- Faculty of Pharmaceutical Sciences, Josai International University
| | - Chihiro Takei
- Faculty of Pharmaceutical Sciences, Josai International University
| | - Hiroaki Todo
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| | - Kenji Sugibayashi
- Faculty of Pharmaceutical Sciences, Josai International University.,Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| |
Collapse
|