1
|
El-Hammadi MM, Martín-Navarro L, Berrocoso E, Álvarez-Fuentes J, Crespo-Facorro B, Suárez-Pereira I, Vázquez-Bourgon J, Martín-Banderas L. Enhanced Metabolic Syndrome Management Through Cannabidiol-Loaded PLGA Nanoparticles: Development and In Vitro Evaluation. J Biomed Mater Res A 2025; 113:e37916. [PMID: 40277882 DOI: 10.1002/jbm.a.37916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/07/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025]
Abstract
Cannabidiol (CBD) holds promise for managing metabolic diseases, yet enhancing its oral bioavailability and efficacy remains challenging. To address this, we developed polymeric nanoparticles (NPs), using poly(lactic-co-glycolic acid) (PLGA), encapsulating CBD using nanoprecipitation, aiming to create an effective CBD-nanoformulation for metabolic disorder treatment. These NPs (135-265 nm) demonstrated high encapsulation efficiency (EE% ≈ 100%) and sustained release kinetics. Their therapeutic potential was evaluated in an in vitro metabolic syndrome model employing sodium palmitate-induced HepG2 cells. Key assessment parameters included cell viability (MTT assay), glucose uptake, lipid accumulation (Oil Red O staining), triglycerides, cholesterol, HDL-c levels, and gene expression of metabolic regulators. Results showed an IC50 of 9.85 μg/mL for free CBD and 11.26 μg/mL for CBD-loaded NPs. CBD-loaded NPs significantly enhanced glucose uptake, reduced lipid content, lowered triglycerides and total cholesterol, and increased HDL-c levels compared to free CBD. Gene analysis indicated reduced gluconeogenesis via downregulation of PPARγ, FOXO-1, PEPCK, and G6Pase and enhanced fatty acid oxidation through CPT-1 upregulation. These findings suggest that CBD-loaded NPs may serve as a novel therapeutic strategy for the management of metabolic disorders, warranting further in vivo studies.
Collapse
Affiliation(s)
- Mazen M El-Hammadi
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, Sevilla, Spain
| | - Lucía Martín-Navarro
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, Sevilla, Spain
| | - Esther Berrocoso
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Madrid, Spain
- Neuropsychopharmacology & Psychobiology Research Group, Department of Psychology, University of Cadiz, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain
| | - Josefa Álvarez-Fuentes
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, Sevilla, Spain
- Instituto de Biomedicina de Sevilla (IBIS)-Campus Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Benedicto Crespo-Facorro
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Madrid, Spain
- Instituto de Biomedicina de Sevilla (IBIS)-Campus Hospital Universitario Virgen del Rocío, Sevilla, Spain
- Department of Psychiatry, School of Medicine, University Hospital Virgen del Rocio, Sevilla, Spain
| | - Irene Suárez-Pereira
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Madrid, Spain
- Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain
- Neuropsychopharmacology & Psychobiology Research Group, Department of Neuroscience, University of Cadiz, Cádiz, Spain
| | - Javier Vázquez-Bourgon
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Madrid, Spain
- Department of Psychiatry, University Hospital Marqués de Valdecilla. Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain
- Departamento de Medicina y Psiquiatría, Universidad de Cantabria, Santander, Spain
| | - Lucía Martín-Banderas
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, Sevilla, Spain
- Instituto de Biomedicina de Sevilla (IBIS)-Campus Hospital Universitario Virgen del Rocío, Sevilla, Spain
| |
Collapse
|
2
|
Saripilli R, Sharma DK. Nanotechnology-based drug delivery system for the diagnosis and treatment of ovarian cancer. Discov Oncol 2025; 16:422. [PMID: 40155504 PMCID: PMC11953507 DOI: 10.1007/s12672-025-02062-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/05/2025] [Indexed: 04/01/2025] Open
Abstract
Current research in nanotechnology is improving or developing novel applications that could improve disease diagnosis or treatment. This study highlights several nanoscale drug delivery technologies, such as nano micelles, nanocapsules, nanoparticles, liposomes, branching dendrimers, and nanostructured lipid formulations for the targeted therapy of ovarian cancer (OC), to overcome the limitations of traditional delivery. Because traditional drug delivery to malignant cells has intrinsic flaws, new nanotechnological-based treatments have been developed to address these conditions. Ovarian cancer is the most common gynecological cancer and has a higher death rate because of its late diagnosis and recurrence. This review emphasizes the discipline of medical nanotechnology, which has made great strides in recent years to solve current issues and enhance the detection and treatment of many diseases, including cancer. This system has the potential to provide real-time monitoring and diagnostics for ovarian cancer treatment, as well as simultaneous delivery of therapeutic agents.
Collapse
Affiliation(s)
- Rajeswari Saripilli
- School of Pharmacy, Centurion University of Technology and Management, Gajapati, Odisha, India
| | - Dinesh Kumar Sharma
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India.
| |
Collapse
|
3
|
Koyama S, Etkins J, Jun J, Miller M, So GC, Gisch DL, Eadon MT. Utilization of Cannabidiol in Post-Organ-Transplant Care. Int J Mol Sci 2025; 26:699. [PMID: 39859413 PMCID: PMC11765766 DOI: 10.3390/ijms26020699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Cannabidiol (CBD) is one of the major phytochemical constituents of cannabis, Cannabis sativa, widely recognized for its therapeutic potential. While cannabis has been utilized for medicinal purposes since ancient times, its psychoactive and addictive properties led to its prohibition in 1937, with only the medical use being reauthorized in 1998. Unlike tetrahydrocannabinol (THC), CBD lacks psychoactive and addictive properties, yet the name that suggests its association with cannabis has significantly contributed to its public visibility. CBD exhibits diverse pharmacological properties, most notably anti-inflammatory effects. Additionally, it interacts with key drug-metabolizing enzyme families, including cytochrome P450 (CYP) and uridine 5'-diphospho-glucuronosyltransferase (UGT), which mediate phase I and phase II metabolism, respectively. By binding to these enzymes, CBD can inhibit the metabolism of co-administered drugs, which can potentially enhance their toxicity or therapeutic effects. Mild to moderate adverse events associated with CBD use have been reported. Advances in chemical formulation techniques have recently enabled strategies to minimize these effects. This review provides an overview of CBD, covering its historical background, recent clinical trials, adverse event profiles, and interactions with molecular targets such as receptors, channels, and enzymes. We particularly emphasize the mechanisms underlying its anti-inflammatory effects and interaction with drugs relevant to organ transplantation. Finally, we explore recent progress in the chemical formulation of CBD in order to enhance its bioavailability, which will enable decreasing the dose to use and increase its safety and efficacy.
Collapse
Affiliation(s)
- Sachiko Koyama
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.E.); (J.J.); (D.L.G.); (M.T.E.)
| | - Jumar Etkins
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.E.); (J.J.); (D.L.G.); (M.T.E.)
| | - Joshua Jun
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.E.); (J.J.); (D.L.G.); (M.T.E.)
| | - Matthew Miller
- College of Human Ecology, Cornell University, Ithaca, NY 14850, USA;
| | - Gerald C. So
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.E.); (J.J.); (D.L.G.); (M.T.E.)
| | - Debora L. Gisch
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.E.); (J.J.); (D.L.G.); (M.T.E.)
| | - Michael T. Eadon
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.E.); (J.J.); (D.L.G.); (M.T.E.)
| |
Collapse
|
4
|
van Staden D, Gerber M, Lemmer HJR. The Application of Nano Drug Delivery Systems in Female Upper Genital Tract Disorders. Pharmaceutics 2024; 16:1475. [PMID: 39598598 PMCID: PMC11597179 DOI: 10.3390/pharmaceutics16111475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
The prevalence of female reproductive system disorders is increasing, especially among women of reproductive age, significantly impacting their quality of life and overall health. Managing these diseases effectively is challenging due to the complex nature of the female reproductive system, characterized by dynamic physiological environments and intricate anatomical structures. Innovative drug delivery approaches are necessary to facilitate the precise regulation and manipulation of biological tissues. Nanotechnology is increasingly considered to manage reproductive system disorders, for example, nanomaterial imaging allows for early detection and enhances diagnostic precision to determine disease severity and progression. Additionally, nano drug delivery systems are gaining attention for their ability to target the reproductive system successfully, thereby increasing therapeutic efficacy and decreasing side effects. This comprehensive review outlines the anatomy of the female upper genital tract by highlighting the complex mucosal barriers and their impact on systemic and local drug delivery. Advances in nano drug delivery are described for their sustainable therapeutic action and increased biocompatibility to highlight the potential of nano drug delivery strategies in managing female upper genital tract disorders.
Collapse
Affiliation(s)
| | | | - Hendrik J. R. Lemmer
- Centre of Excellence for Pharmaceutical Sciences (PharmacenTM), North-West University, Potchefstroom 2531, South Africa; (D.v.S.); (M.G.)
| |
Collapse
|
5
|
Nkune NW, Abrahamse H. Combinatorial approach of cannabidiol and active-targeted-mediated photodynamic therapy in malignant melanoma treatment. JOURNAL OF BIOPHOTONICS 2024; 17:e202400191. [PMID: 39074910 DOI: 10.1002/jbio.202400191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/09/2024] [Indexed: 07/31/2024]
Abstract
Malignant melanoma (MM) continues to claim millions of lives around the world due to its limited therapeutic alternatives. Photodynamic therapy (PDT) has gained popularity in cancer treatment due it increased potency and low off-target toxicity. Studies have pointed out that the heterogeneity of MM tumours reduces the efficacy of current therapeutic approaches, including PDT, leading to high chances of recurrences post-treatment. Accumulating evidence suggests that cannabidiol (CBD), a non-psychoactive derivative of cannabis, can synergise with various anticancer agents to increase their efficacy. However, CBD demonstrates low bioavailability, which is attributed to factors relating to poor water compatibility, poor absorption and rapid metabolism. Nanotechnology offers tools that address these issues and enhance the biological efficiency and targeted specificity of anticancer agents. Herein, we highlighted the standard therapeutic modalities of MM and their pitfalls, as well as pointed out the need for further investigation into PDT combination therapy with CBD.
Collapse
Affiliation(s)
- Nkune Williams Nkune
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|
6
|
Zapata K, Vélez AD, Correa JA, Carrasco-Marín F, Rojano BA, Franco CA, Cortés FB. Bioactive Properties and In Vitro Digestive Release of Cannabidiol (CBD) from Tailored Composites Based on Carbon Materials. Pharmaceutics 2024; 16:1132. [PMID: 39339170 PMCID: PMC11435132 DOI: 10.3390/pharmaceutics16091132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
The use of carriers to improve cannabidiol (CBD) bioavailability during digestion is at the forefront of research. The main objective of this research was to evaluate CBD bioactivity and develop CBD composites based on tailored carbon support to improve availability under digestive conditions. The antioxidant capacity of CBD was evaluated using spectrophotometric methods, and anti-proliferative assays were carried out using human colon carcinoma cells (SW480). Twenty-four composites of CBD + carbon supports were developed, and CBD desorption tests were carried out under simulated digestive conditions. The antioxidant capacity of CBD was comparable to and superior to Butylhydrox-ytoluene (BHT), a commercial antioxidant. CBD reflected an IC-50 of 10,000 mg/L against SW480 cancer cells. CBD in biological systems can increase the shelf life of lipid and protein foods by 7 and 470 days, respectively. Finally, acid carbons showed major CBD adsorption related to electrostatic interactions, but basic carbons showed better delivery properties related to electrostatic repulsion. A tailored composite was achieved with a CBD load of 27 mg/g with the capacity to deliver 1.1 mg, 21.8 mg, and 4 mg to the mouth, stomach, and duodenum during 18 h, respectively. This is a pioneering study since the carriers were intelligently developed to improve CBD release.
Collapse
Affiliation(s)
- Karol Zapata
- Bionatural Cosmeticos SAS, Medellín 050030, Colombia;
- Fenómenos de Superficie—Michael Polanyi, Facultad de Minas, Universidad Nacional de Colombia—Sede Medellín, Medellín 050036, Colombia; (C.A.F.); (F.B.C.)
| | - Angie D. Vélez
- Química de los Productos Naturales y los Alimentos, Facultad de Ciencias, Universidad Nacional de Colombia—Sede Medellín, Medellín 050034, Colombia; (A.D.V.); (B.A.R.)
| | | | - Francisco Carrasco-Marín
- Polyfunctional Carbon-Based Materials, UGR-Carbon, Department of Inorganic Chemistry, Faculty of Sciences, University of Granada, Avda. de Fuente Nueva, s/n, ES18071 Granada, Spain;
| | - Benjamín A. Rojano
- Química de los Productos Naturales y los Alimentos, Facultad de Ciencias, Universidad Nacional de Colombia—Sede Medellín, Medellín 050034, Colombia; (A.D.V.); (B.A.R.)
| | - Camilo A. Franco
- Fenómenos de Superficie—Michael Polanyi, Facultad de Minas, Universidad Nacional de Colombia—Sede Medellín, Medellín 050036, Colombia; (C.A.F.); (F.B.C.)
| | - Farid B. Cortés
- Fenómenos de Superficie—Michael Polanyi, Facultad de Minas, Universidad Nacional de Colombia—Sede Medellín, Medellín 050036, Colombia; (C.A.F.); (F.B.C.)
| |
Collapse
|
7
|
Carkaci-Salli N, Raup-Konsavage WM, Karelia D, Sun D, Jiang C, Lu J, Vrana KE. Cannabinoids as Potential Cancer Therapeutics: The Concentration Conundrum. Cannabis Cannabinoid Res 2024; 9:e1159-e1169. [PMID: 36944160 DOI: 10.1089/can.2022.0344] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Background: Studies have reported that cannabinoids, in particular Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD), significantly reduce cancer cell viability in vitro. Unfortunately, treatment conditions vary significantly across reports. In particular, a majority of reports utilize conditions with reduced serum concentrations (0-3%) that may compromise the growth of the cells themselves, as well as the observed results. Objectives: This study was designed to test the hypothesis that, based on their known protein binding characteristics, cannabinoids would be less effective in the presence of fetal bovine serum (FBS). Moreover, we wished to determine if the treatments served to be cytotoxic or cytostatic under these conditions. Methods: Six cancer cell lines, representing two independent lines of three different types of cancer (glioblastoma, melanoma, and colorectal cancer [CRC]), were treated with 10 μM pure Δ9-THC, CBD, KM-233, and HU-331 for 48 h (in the presence or absence of FBS). Cell viability was measured with the MTT assay. Dose-response curves were then generated comparing the potencies of the four cannabinoids under the same conditions. Results: We found that serum-free medium alone produces cell cycle arrest for CRC cells and slows cell growth for the other cancer types. The antineoplastic effects of three of the four cannabinoids (Δ9-THC, CBD, and KM-233) increase when serum is omitted from the media. In addition, dose-response curves for these drugs demonstrated lower IC50 values for serum-free media compared with the media with 10% serum in all cell lines. The fourth compound, HU-331, was equally effective under both conditions. A further confound we observed is that omission of serum produces dramatic binding of Δ9-THC and CBD to plastic. Conclusions: Treatment of cancer cells in the absence of FBS appears to enhance the potency of cannabinoids. However, omission of FBS itself compromises cell growth and represents a less physiological condition. Given the knowledge that cannabinoids are 90-95% protein bound and have well-known affinities for plastic, it may be ill-advised to treat cells under conditions where the cells are not growing optimally and where known concentrations cannot be assumed (i.e., FBS-free conditions).
Collapse
Affiliation(s)
- Nurgul Carkaci-Salli
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | | | - Deepkamal Karelia
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Dongxiao Sun
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Cheng Jiang
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Junxuan Lu
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Kent E Vrana
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
8
|
Freire NF, Cordani M, Aparicio-Blanco J, Fraguas Sanchez AI, Dutra L, Pinto MC, Zarrabi A, Pinto JC, Velasco G, Fialho R. Preparation and characterization of PBS (Polybutylene Succinate) nanoparticles containing cannabidiol (CBD) for anticancer application. J Drug Deliv Sci Technol 2024; 97:105833. [DOI: 10.1016/j.jddst.2024.105833] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
9
|
Feng S, Pan Y, Lu P, Li N, Zhu W, Hao Z. From bench to bedside: the application of cannabidiol in glioma. J Transl Med 2024; 22:648. [PMID: 38987805 PMCID: PMC11238413 DOI: 10.1186/s12967-024-05477-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024] Open
Abstract
Glioma is the most common malignant tumor in central nervous system, with significant health burdens to patients. Due to the intrinsic characteristics of glioma and the lack of breakthroughs in treatment modalities, the prognosis for most patients remains poor. This results in a heavy psychological and financial load worldwide. In recent years, cannabidiol (CBD) has garnered widespread attention and research due to its anti-tumoral, anti-inflammatory, and neuroprotective properties. This review comprehensively summarizes the preclinical and clinical research on the use of CBD in glioma therapy, as well as the current status of nanomedicine formulations of CBD, and discusses the potential and challenges of CBD in glioma therapy in the future.
Collapse
Affiliation(s)
- Shiying Feng
- Department of Oncology, Baotou City Central Hospital, Baotou, 014040, China
- Central Clinical Medical School, Baotou Medical College, Baotou, 014040, China
| | - Yuanming Pan
- Cancer Research Center, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Pu Lu
- Department of Oncology, Baotou City Central Hospital, Baotou, 014040, China
| | - Na Li
- Department of Gynecology, Baotou City Central Hospital, Baotou, 014040, China.
| | - Wei Zhu
- Department of Oncology, Baotou City Central Hospital, Baotou, 014040, China.
| | - Zhiqiang Hao
- Department of Oncology, Baotou City Central Hospital, Baotou, 014040, China
| |
Collapse
|
10
|
Villate A, Barreto GP, Nicolás MS, Aizpurua-Olaizola O, Olivares M, Usobiaga A. Development, Characterization and In Vitro Gastrointestinal Release of PLGA Nanoparticles Loaded with Full-Spectrum Cannabis Extracts. AAPS PharmSciTech 2024; 25:120. [PMID: 38816596 DOI: 10.1208/s12249-024-02836-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/08/2024] [Indexed: 06/01/2024] Open
Abstract
Cannabinoids, such as ∆9-tetrahydrocannabinol (THC) and cannabidiol (CBD), are effective bioactive compounds that improve the quality of life of patients with certain chronic conditions. The copolymer poly(lactic-co-glycolic acid) (PLGA) has been used to encapsulate such compounds separately, providing pharmaceutical grade edible products with unique features. In this work, a variety of PLGA based nanoformulations that maintain the natural cannabinoid profile found in the plant (known as full-spectrum) are proposed and evaluated. Three different cannabis sources were used, representing the three most relevant cannabis chemotypes. PLGA nanocapsules loaded with different amounts of cannabinoids were prepared by nanoemulsion, and were then functionalized with three of the most common coating polymers: pectin, alginate and chitosan. In order to evaluate the suitability of the proposed formulations, all the synthesized nanocapsules were characterized, and their cannabinoid content, size, zeta-potential, morphology and in vitro bioaccessibility was determined. Regardless of the employed cannabis source, its load and the functionalization, high cannabinoid content PLGA nanocapsules with suitable particle size and zeta-potential were obtained. Study of nanocapsules' morphology and in vitro release assays in gastro-intestinal media suggested that high cannabis source load may compromise the structure of nanocapsules and their release properties, and hence, the use of lower content of cannabis source is recommended.
Collapse
Affiliation(s)
- Aitor Villate
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque, Spain.
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque, Spain.
| | - Gastón Pablo Barreto
- Facultad de Ingeniería, Universidad Nacional del Centro de la Provincia de Buenos Aires, Av del Valle 5737, CP7400, Olavarría, Buenos Aires, Argentina
- Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires, CIFICEN (UNCPBA-CICPBA -CONICET), Av. Del Valle 5737, B7400JWI, Olavarría, Buenos Aires, Argentina
| | - Markel San Nicolás
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque, Spain
- Sovereign Fields S.L, Larramendi Kalea 3, 20006, Donostia, Basque, Spain
| | | | - Maitane Olivares
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque, Spain
| | - Aresatz Usobiaga
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque, Spain
| |
Collapse
|
11
|
Sobieraj J, Strzelecka K, Sobczak M, Oledzka E. How Biodegradable Polymers Can be Effective Drug Delivery Systems for Cannabinoids? Prospectives and Challenges. Int J Nanomedicine 2024; 19:4607-4649. [PMID: 38799700 PMCID: PMC11128233 DOI: 10.2147/ijn.s458907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Cannabinoids are compounds found in and derived from the Cannabis plants that have become increasingly recognised as significant modulating factors of physiological mechanisms and inflammatory reactions of the organism, thus inevitably affecting maintenance of homeostasis. Medical Cannabis popularity has surged since its legal regulation growing around the world. Numerous promising discoveries bring more data on cannabinoids' pharmacological characteristics and therapeutic applications. Given the current surge in interest in the medical use of cannabinoids, there is an urgent need for an effective method of their administration. Surpassing low bioavailability, low water solubility, and instability became an important milestone in the advancement of cannabinoids in pharmaceutical applications. The numerous uses of cannabinoids in clinical practice remain restricted by limited administration alternatives, but there is hope when biodegradable polymers are taken into account. The primary objective of this review is to highlight the wide range of indications for which cannabinoids may be used, as well as the polymeric carriers that enhance their effectiveness. The current review described a wide range of therapeutic applications of cannabinoids, including pain management, neurological and sleep disorders, anxiety, and cancer treatment. The use of these compounds was further examined in the area of dermatology and cosmetology. Finally, with the use of biodegradable polymer-based drug delivery systems (DDSs), it was demonstrated that cannabinoids can be delivered specifically to the intended site while also improving the drug's physicochemical properties, emphasizing their utility. Nevertheless, additional clinical trials on novel cannabinoids' formulations are required, as their full spectrum therapeutical potential is yet to be unravelled.
Collapse
Affiliation(s)
- Jan Sobieraj
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, 02-097, Poland
| | - Katarzyna Strzelecka
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, 02-097, Poland
| | - Marcin Sobczak
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, 02-097, Poland
| | - Ewa Oledzka
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, 02-097, Poland
| |
Collapse
|
12
|
David C, de Souza JF, Silva AF, Grazioli G, Barboza AS, Lund RG, Fajardo AR, Moraes RR. Cannabidiol-loaded microparticles embedded in a porous hydrogel matrix for biomedical applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:14. [PMID: 38353746 PMCID: PMC10866797 DOI: 10.1007/s10856-023-06773-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/19/2023] [Indexed: 02/16/2024]
Abstract
In this study, poly (lactic-co-glycolic acid) (PLGA) microparticles loaded with cannabidiol (CBD) were synthesized (PLGA@CBD microparticles) and embedded up to 10 wt% in a chondroitin sulfate/polyvinyl alcohol hydrogel matrix. In vitro chemical, physical, and biological assays were carried out to validate the potential use of the modified hydrogels as biomaterials. The microparticles had spherical morphology and a narrow range of size distribution. CBD encapsulation efficiency was around 52%, loading was approximately 50%. Microparticle addition to the hydrogels caused minor changes in their morphology, FTIR and thermal analyses confirmed these changes. Swelling degree and total porosity were reduced in the presence of microparticles, but similar hydrophilic and degradation in phosphate buffer solution behaviors were observed by all hydrogels. Rupture force and maximum strain at rupture were higher in the modified hydrogels, whereas modulus of elasticity was similar across all materials. Viability of primary human dental pulp cells up to 21 days was generally not influenced by the addition of PLGA@CBD microparticles. The control hydrogel showed no antimicrobial activity against Staphylococcus aureus, whereas hydrogels with 5% and 10% PLGA@CBD microparticles showed inhibition zones. In conclusion, the PLGA@CBD microparticles were fabricated and successfully embedded in a hydrogel matrix. Despite the hydrophobic nature of CBD, the physicochemical and morphological properties were generally similar for the hydrogels with and without the CBD-loaded microparticles. The data reported in this study suggested that this original biomaterial loaded with CBD oil has characteristics that could enable it to be used as a scaffold for tissue/cellular regeneration.
Collapse
Affiliation(s)
- Carla David
- Biopathological Research Group, Faculty of Dentistry (GIBFO), University of the Andes, Mérida, Venezuela.
- Graduate Program in Dentistry, Universidade Federal de Pelotas, Pelotas, Brazil.
| | - Jaqueline F de Souza
- Laboratory of Technology and Development of Composites and Polymeric Materials-LaCoPol, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Adriana F Silva
- Graduate Program in Dentistry, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Guillermo Grazioli
- Department of Dental Materials, Universidad de la República, Montevideo, Uruguay
| | - Andressa S Barboza
- Graduate Program in Dentistry, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Rafael G Lund
- Graduate Program in Dentistry, Universidade Federal de Pelotas, Pelotas, Brazil
| | - André R Fajardo
- Laboratory of Technology and Development of Composites and Polymeric Materials-LaCoPol, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Rafael R Moraes
- Graduate Program in Dentistry, Universidade Federal de Pelotas, Pelotas, Brazil
| |
Collapse
|
13
|
Shalev N, Kendall M, Kumar N, Tiwari S, Anil SM, Hauschner H, Swamy SG, Doron-Faingenboim A, Belausov E, Kendall BE, Koltai H. Integrated transcriptome and cell phenotype analysis suggest involvement of PARP1 cleavage, Hippo/Wnt, TGF-β and MAPK signaling pathways in ovarian cancer cells response to cannabis and PARP1 inhibitor treatment. Front Genet 2024; 15:1333964. [PMID: 38322025 PMCID: PMC10844430 DOI: 10.3389/fgene.2024.1333964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/09/2024] [Indexed: 02/08/2024] Open
Abstract
Introduction: Cannabis sativa is utilized mainly for palliative care worldwide. Ovarian cancer (OC) is a lethal gynecologic cancer. A particular cannabis extract fraction ('F7') and the Poly(ADP-Ribose) Polymerase 1 (PARP1) inhibitor niraparib act synergistically to promote OC cell apoptosis. Here we identified genetic pathways that are altered by the synergistic treatment in OC cell lines Caov3 and OVCAR3. Materials and methods: Gene expression profiles were determined by RNA sequencing and quantitative PCR. Microscopy was used to determine actin arrangement, a scratch assay to determine cell migration and flow cytometry to determine apoptosis, cell cycle and aldehyde dehydrogenase (ALDH) activity. Western blotting was used to determine protein levels. Results: Gene expression results suggested variations in gene expression between the two cell lines examined. Multiple genetic pathways, including Hippo/Wnt, TGF-β/Activin and MAPK were enriched with genes differentially expressed by niraparib and/or F7 treatments in both cell lines. Niraparib + F7 treatment led to cell cycle arrest and endoplasmic reticulum (ER) stress, inhibited cell migration, reduced the % of ALDH positive cells in the population and enhanced PARP1 cleavage. Conclusion: The synergistic effect of the niraparib + F7 may result from the treatment affecting multiple genetic pathways involving cell death and reducing mesenchymal characteristics.
Collapse
Affiliation(s)
- Nurit Shalev
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- Volcani Center, Agriculture Research Organization, Institute of Plant Science, Rishon LeZion, Israel
| | | | - Navin Kumar
- Volcani Center, Agriculture Research Organization, Institute of Plant Science, Rishon LeZion, Israel
| | - Sudeep Tiwari
- Volcani Center, Agriculture Research Organization, Institute of Plant Science, Rishon LeZion, Israel
| | - Seegehalli M. Anil
- Volcani Center, Agriculture Research Organization, Institute of Plant Science, Rishon LeZion, Israel
| | - Hagit Hauschner
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Savvemala G. Swamy
- Volcani Center, Agriculture Research Organization, Institute of Plant Science, Rishon LeZion, Israel
| | - Adi Doron-Faingenboim
- Volcani Center, Agriculture Research Organization, Institute of Plant Science, Rishon LeZion, Israel
| | - Eduard Belausov
- Volcani Center, Agriculture Research Organization, Institute of Plant Science, Rishon LeZion, Israel
| | | | - Hinanit Koltai
- Volcani Center, Agriculture Research Organization, Institute of Plant Science, Rishon LeZion, Israel
| |
Collapse
|
14
|
Mesas C, Chico MA, Doello K, Lara P, Moreno J, Melguizo C, Perazzoli G, Prados J. Experimental Tumor Induction and Evaluation of Its Treatment in the Chicken Embryo Chorioallantoic Membrane Model: A Systematic Review. Int J Mol Sci 2024; 25:837. [PMID: 38255911 PMCID: PMC10815318 DOI: 10.3390/ijms25020837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/24/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The chorioallantoic membrane (CAM) model, generated during avian development, can be used in cancer research as an alternative in vivo model to perform tumorigenesis in ovo due to advantages such as simplicity, low cost, rapid growth, and being naturally immunodeficient. The aim of this systematic review has been to compile and analyze all studies that use the CAM assay as a tumor induction model. For that, a systematic search was carried out in four different databases: PubMed, Scopus, Cochrane, and WOS. After eliminating duplicates and following the established inclusion and exclusion criteria, a total of 74 articles were included. Of these, 62% use the in ovo technique, 13% use the ex ovo technique, 9% study the formation of metastasis, and 16% induce tumors from patient biopsies. Regarding the methodology followed, the main species used is chicken (95%), although some studies use quail eggs (4%), and one article uses ostrich eggs. Therefore, the CAM assay is a revolutionary technique that allows a simple and effective way to induce tumors, test the effectiveness of treatments, carry out metastasis studies, perform biopsy grafts of patients, and carry out personalized medicine. However, unification of the methodology used is necessary.
Collapse
Affiliation(s)
- Cristina Mesas
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (C.M.); (P.L.); (J.M.); (J.P.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (M.A.C.); (K.D.)
| | - Maria Angeles Chico
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (M.A.C.); (K.D.)
- Department of Anatomy and Embryology, University of Granada, 18071 Granada, Spain
| | - Kevin Doello
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (M.A.C.); (K.D.)
- Service of Medical Oncology, Hospital Virgen de las Nieves, 18014 Granada, Spain
| | - Patricia Lara
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (C.M.); (P.L.); (J.M.); (J.P.)
| | - Javier Moreno
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (C.M.); (P.L.); (J.M.); (J.P.)
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (C.M.); (P.L.); (J.M.); (J.P.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (M.A.C.); (K.D.)
- Department of Anatomy and Embryology, University of Granada, 18071 Granada, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (C.M.); (P.L.); (J.M.); (J.P.)
- Department of Anatomy and Embryology, University of Granada, 18071 Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (C.M.); (P.L.); (J.M.); (J.P.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (M.A.C.); (K.D.)
- Department of Anatomy and Embryology, University of Granada, 18071 Granada, Spain
| |
Collapse
|
15
|
Singh V, Vihal S, Rana R, Rathore C. Nanocarriers for Cannabinoid Delivery: Enhancing Therapeutic Potential. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2024; 18:247-261. [PMID: 39356097 DOI: 10.2174/0126673878300347240718100814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 10/03/2024]
Abstract
Medical cannabis has potential therapeutic benefits in managing pain, anxiety, depression, and neurological and movement disorders. Phytocannabinoids derived from the cannabis plant are responsible for their pharmacological and therapeutic properties. However, the complexity of cannabis components, especially cannabinoids, poses a challenge to effective medicinal administration. Even with the increasing acceptance of cannabis-based medicines, achieving consistent bioavailability and targeted distribution remains difficult. Conventional administration methods are plagued by solubility and absorption problems requiring innovative solutions. After conducting a thorough review of research papers and patents, it has become evident that nanotechnology holds great promise as a solution. The comprehensive review of 36 research papers has yielded valuable insights, with 7 papers reporting enhanced bioavailability, while others have focused on improvements in release, solubility, and stability. Additionally, 19 patents have been analyzed, of which 7 specifically claim enhanced bioavailability, while the remaining patents describe various formulation methods. These patents outline effective techniques for encapsulating cannabis using nanocarriers, effectively addressing solubility and controlled release. Studies on the delivery of cannabis using nanocarriers focus on improving bioavailability, prolonging release, and targeting specific areas. This synthesis highlights the potential of nanotechnology to enhance cannabis therapies and pave the way for innovative interventions and precision medicine.
Collapse
Affiliation(s)
- Varun Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Samar Vihal
- School of Pharmaceutical Sciences, Shoolini University, Solan, India
| | - Rupali Rana
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Charul Rathore
- University Institute of Pharma Sciences, Chandigarh University, Ajitgarh, Punjab, 160036, India
| |
Collapse
|
16
|
Saman S, Srivastava N, Yasir M, Chauhan I. A Comprehensive Review on Current Treatments and Challenges Involved in the Treatment of Ovarian Cancer. Curr Cancer Drug Targets 2024; 24:142-166. [PMID: 37642226 DOI: 10.2174/1568009623666230811093139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/13/2023] [Accepted: 03/31/2023] [Indexed: 08/31/2023]
Abstract
Ovarian cancer (OC) is the second most common gynaecological malignancy. It typically affects females over the age of 50, and since 75% of cases are only discovered at stage III or IV, this is a sign of a poor diagnosis. Despite intraperitoneal chemotherapy's chemosensitivity, most patients relapse and face death. Early detection is difficult, but treatment is also difficult due to the route of administration, resistance to therapy with recurrence, and the need for precise cancer targeting to minimize cytotoxicity and adverse effects. On the other hand, undergoing debulking surgery becomes challenging, and therapy with many chemotherapeutic medications has manifested resistance, a condition known as multidrug resistance (MDR). Although there are other therapeutic options for ovarian cancer, this article solely focuses on co-delivery techniques, which work via diverse pathways to overcome cancer cell resistance. Different pathways contribute to MDR development in ovarian cancer; however, usually, pump and non-pump mechanisms are involved. Striking cancerous cells from several angles is important to defeat MDR. Nanocarriers are known to bypass the drug efflux pump found on cellular membranes to hit the pump mechanism. Nanocarriers aid in the treatment of ovarian cancer by enhancing the delivery of chemotherapeutic drugs to the tumour sites through passive or active targeting, thereby reducing unfavorable side effects on the healthy tissues. Additionally, the enhanced permeability and retention (EPR) mechanism boosts the bioavailability of the tumour site. To address the shortcomings of conventional delivery, the current review attempts to explain the current conventional treatment with special reference to passively and actively targeted drug delivery systems (DDSs) towards specific receptors developed to treat ovarian cancer. In conclusion, tailored nanocarriers would optimize medication delivery into the intracellular compartment before optimizing intra-tumour distribution. Other novel treatment possibilities for ovarian cancer include tumour vaccines, gene therapy, targeting epigenetic alteration, and biologically targeted compounds. These characteristics might enhance the therapeutic efficacy.
Collapse
Affiliation(s)
- Saika Saman
- Department of Pharmaceutics, Faculty of Pharmacy, Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India
| | - Nimisha Srivastava
- Department of Pharmaceutics, Faculty of Pharmacy, Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India
| | - Mohd Yasir
- Department of Pharmacy (Pharmaceutics), College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Iti Chauhan
- Department of Pharmacy, I.T.S College of Pharmacy, Muradnagar, Ghaziabad, India
| |
Collapse
|
17
|
Keyvani V, Mollazadeh S, Riahi E, Mahmoudian RA, Tabari M, Lagzian E, Ghorbani E, Akbarzade H, Gholami AS, Gataa IS, Hassanian SM, Ferns GA, Khazaei M, Avan A, Anvari K. The Application of Nanotechnological Therapeutic Platforms against Gynecological Cancers. Curr Pharm Des 2024; 30:975-987. [PMID: 38500284 DOI: 10.2174/0113816128291955240306112558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/20/2024] [Indexed: 03/20/2024]
Abstract
Gynecological cancers (GCs), ovarian, cervical, and endometrial/uterine cancers, are often associated with poor outcomes. Despite the development of several therapeutic modalities against GCs, the effectiveness of the current therapeutic approaches is limited due to their side effects, low therapeutic index, short halflife, and resistance to therapy. To overcome these limitations, nano delivery-based approaches have been introduced with the potential of targeted delivery, reduced toxicity, controlled release, and improved bioavailability of various cargos. This review summarizes the application of different nanoplatforms, such as lipid-based, metal- based, and polymeric nanoparticles, to improve the chemo/radio treatments of GC. In the following work, the use of nanoformulated agents to fight GCs has been mentioned in various clinical trials. Although nanosystems have their own challenges, the knowledge highlighted in this article could provide deep insight into translations of NPs approaches to overcome GCs.
Collapse
Affiliation(s)
- Vahideh Keyvani
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Espanta Riahi
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Mashhad, Iran
- Department of Biology, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| | - Reihaneh Alsadat Mahmoudian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoomeh Tabari
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elmira Lagzian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Ghorbani
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Akbarzade
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir-Sadra Gholami
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane 4059, Australia
| | - Kazem Anvari
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Ps SS, Guha A, Deepika B, Udayakumar S, Nag M, Lahiri D, Girigoswami A, Girigoswami K. Nanocargos designed with synthetic and natural polymers for ovarian cancer management. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3407-3415. [PMID: 37421430 DOI: 10.1007/s00210-023-02608-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023]
Abstract
Ovarian cancer cells usually spread in the peritoneal region, and if chemotherapeutic drugs can be given in these regions with proximity, then the anticancer property of the chemotherapeutic drugs can enhance. However, chemotherapeutic drug administrations are hindered by local toxicity. In the drug delivery system, microparticles or nanoparticles are administered in a controlled manner. Microparticles stay in a close vicinity while nanoparticles are smaller and can move evenly in the peritoneum. Intravenous administration of the drug evenly distributes the medicine in the target places and if the composition of the drug has nanoparticles it will have more specificity and will have easy access to the cancer cells and tumors. Among the different types of nanoparticles, polymeric nanoparticles were proven as most efficient in drug delivery. Polymeric nanoparticles are seen to be combined with many other molecules like metals, non-metals, lipids, and proteins, which helps in the increase of cellular uptake. The efficiency of different types of polymeric nanoparticles used in delivering the load for management of ovarian cancer will be discussed in this mini-review.
Collapse
Affiliation(s)
- Sharon Sofini Ps
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Rajiv Gandhi Salai, Kelambakkam, Tamil Nadu, 603103, India
| | - Arina Guha
- Dept. of Biotechnology, University of Engineering & Management, Kolkata, 700160, West Bengal, India
| | - Balasubramanian Deepika
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Rajiv Gandhi Salai, Kelambakkam, Tamil Nadu, 603103, India
| | - Saranya Udayakumar
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Rajiv Gandhi Salai, Kelambakkam, Tamil Nadu, 603103, India
| | - Moupriya Nag
- Dept. of Biotechnology, University of Engineering & Management, Kolkata, 700160, West Bengal, India
| | - Dibyajit Lahiri
- Dept. of Biotechnology, University of Engineering & Management, Kolkata, 700160, West Bengal, India
| | - Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Rajiv Gandhi Salai, Kelambakkam, Tamil Nadu, 603103, India
| | - Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Rajiv Gandhi Salai, Kelambakkam, Tamil Nadu, 603103, India.
| |
Collapse
|
19
|
Hossain KR, Alghalayini A, Valenzuela SM. Current Challenges and Opportunities for Improved Cannabidiol Solubility. Int J Mol Sci 2023; 24:14514. [PMID: 37833962 PMCID: PMC10572536 DOI: 10.3390/ijms241914514] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Cannabidiol (CBD), derived from the cannabis plant, has gained significant attention due to its potential therapeutic benefits. However, one of the challenges associated with CBD administration is its low bioavailability, which refers to the fraction of an administered dose that reaches systemic circulation. This limitation necessitates the exploration of various approaches to enhance the bioavailability of CBD, thus helping to maximize its therapeutic potential. A variety of approaches are now emerging, including nanoemulsion-based systems, lipid-based formulations, prodrugs, nanocarriers, and alternative routes of administration, which hold promise for improving the bioavailability of CBD and pave the way for novel formulations that maximize the therapeutic potential of CBD in various medical conditions. This opinion piece presents the current understanding surrounding CBD bioavailability and considers strategies aimed at improving both its absorption and its bioavailability.
Collapse
Affiliation(s)
- Khondker Rufaka Hossain
- School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia; (K.R.H.); (A.A.)
| | - Amani Alghalayini
- School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia; (K.R.H.); (A.A.)
- ARC Research Hub for Integrated Device for End-User Analysis at Low-Levels (IDEAL), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Stella M. Valenzuela
- School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia; (K.R.H.); (A.A.)
- ARC Research Hub for Integrated Device for End-User Analysis at Low-Levels (IDEAL), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
20
|
Kuźmińska J, Sobczak A, Majchrzak-Celińska A, Żółnowska I, Gostyńska A, Jadach B, Krajka-Kuźniak V, Jelińska A, Stawny M. Etoricoxib-Cannabidiol Combo: Potential Role in Glioblastoma Treatment and Development of PLGA-Based Nanoparticles. Pharmaceutics 2023; 15:2104. [PMID: 37631318 PMCID: PMC10459258 DOI: 10.3390/pharmaceutics15082104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most frequently occurring primary malignant central nervous system tumor, with a poor prognosis and median survival below two years. Administration of a combination of non-steroidal anti-inflammatory drugs and natural compounds that exhibit a curative or prophylactic effect in cancer is a new approach to GBM treatment. This study aimed to investigate the synergistic antitumor activity of etoricoxib (ETO) and cannabidiol (CBD) in a GBM cell line model, and to develop poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles (NPs) for these two substances. METHODS The activity of ETO+CBD was determined using the MTT test, cell-cycle distribution assay, and apoptosis analysis using two GBM cell lines, namely, T98G and U-138 MG. The PLGA-based NPs were developed using the emulsification and solvent evaporation method. Their physicochemical properties, such as shape, size, entrapment efficiency (EE%), in vitro drug release, and quality attributes, were determined using scanning electron microscopy, diffraction light scattering, high-performance liquid chromatography, infrared spectroscopy, and differential scanning calorimetry. RESULTS The combination of ETO and CBD reduced the viability of cells in a dose-dependent manner and induced apoptosis in both tested GBM cell lines. The developed method allowed for the preparation of ETO+CBD-NPs with a spherical shape, mean particle size (MPS) below 400 nm, zeta potential (ZP) values from -11 to -17.4 mV, polydispersity index (PDI) values in the range from 0.029 to 0.256, and sufficient EE% of both drugs (78.43% for CBD, 10.94% for ETO). CONCLUSIONS The combination of ETO and CBD is a promising adjuvant therapeutic in the treatment of GBM, and the prepared ETO+CBD-NPs exhibit a high potential for further pharmaceutical formulation development.
Collapse
Affiliation(s)
- Joanna Kuźmińska
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznań, Poland
| | - Agnieszka Sobczak
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland
| | - Aleksandra Majchrzak-Celińska
- Chair and Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Święcickiego 4, 60-781 Poznań, Poland
| | - Izabela Żółnowska
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland
| | - Aleksandra Gostyńska
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland
| | - Barbara Jadach
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland
| | - Violetta Krajka-Kuźniak
- Chair and Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Święcickiego 4, 60-781 Poznań, Poland
| | - Anna Jelińska
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland
| | - Maciej Stawny
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland
| |
Collapse
|
21
|
Freire N, Barbosa RDM, García-Villén F, Viseras C, Perioli L, Fialho R, Albuquerque E. Environmentally Friendly Strategies for Formulating Vegetable Oil-Based Nanoparticles for Anticancer Medicine. Pharmaceutics 2023; 15:1908. [PMID: 37514094 PMCID: PMC10386571 DOI: 10.3390/pharmaceutics15071908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
The development of green synthesized polymeric nanoparticles with anticancer studies has been an emerging field in academia and the pharmaceutical and chemical industries. Vegetable oils are potential substitutes for petroleum derivatives, as they present a clean and environmentally friendly alternative and are available in abundance at relatively low prices. Biomass-derived chemicals can be converted into monomers with a unique structure, generating materials with new properties for the synthesis of sustainable monomers and polymers. The production of bio-based polymeric nanoparticles is a promising application of green chemistry for biomedical uses. There is an increasing demand for biocompatible and biodegradable materials for specific applications in the biomedical area, such as cancer therapy. This is encouraging scientists to work on research toward designing polymers with enhanced properties and clean processes, containing oncology active pharmaceutical ingredients (APIs). The nanoencapsulation of these APIs in bio-based polymeric nanoparticles can control the release of the substances, increase bioavailability, reduce problems of volatility and degradation, reduce side effects, and increase treatment efficiency. This review discusses the use of green chemistry for bio-based nanoparticle production and its application in anticancer medicine. The use of castor oil for the production of renewable monomers and polymers is proposed as an ideal candidate for such applications, as well as more suitable methods for the production of bio-based nanoparticles and some oncology APIs available for anticancer application.
Collapse
Affiliation(s)
- Nathália Freire
- Graduate Program in Industrial Engineering, Polytechnic School, Federal University of Bahia, Salvador 40210-630, Brazil
| | - Raquel de Melo Barbosa
- Laboratory of Drug Development, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil
| | - Fátima García-Villén
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
| | - César Viseras
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
- Andalusian Institute of Earth Sciences, CSIC-University of Granada, Av. de las Palmeras 4, Armilla, 18100 Granada, Spain
| | - Luana Perioli
- Department of Pharmaceutic Science, University of Perugia, 06123 Perugia, Italy
| | - Rosana Fialho
- Graduate Program in Industrial Engineering, Polytechnic School, Federal University of Bahia, Salvador 40210-630, Brazil
| | - Elaine Albuquerque
- Graduate Program in Industrial Engineering, Polytechnic School, Federal University of Bahia, Salvador 40210-630, Brazil
| |
Collapse
|
22
|
Chen F, Han J, Guo Z, Mu C, Yu C, Ji Z, Sun L, Wang Y, Wang J. Antibacterial 3D-Printed Silver Nanoparticle/Poly Lactic-Co-Glycolic Acid (PLGA) Scaffolds for Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16113895. [PMID: 37297029 DOI: 10.3390/ma16113895] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/21/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Infectious bone defects present a major challenge in the clinical setting currently. In order to address this issue, it is imperative to explore the development of bone tissue engineering scaffolds that are equipped with both antibacterial and bone regenerative capabilities. In this study, we fabricated antibacterial scaffolds using a silver nanoparticle/poly lactic-co-glycolic acid (AgNP/PLGA) material via a direct ink writing (DIW) 3D printing technique. The scaffolds' microstructure, mechanical properties, and biological attributes were rigorously assessed to determine their fitness for repairing bone defects. The surface pores of the AgNPs/PLGA scaffolds were uniform, and the AgNPs were evenly distributed within the scaffolds, as confirmed via scanning electron microscopy (SEM). Tensile testing confirmed that the addition of AgNPs enhanced the mechanical strength of the scaffolds. The release curves of the silver ions confirmed that the AgNPs/PLGA scaffolds released them continuously after an initial burst. The growth of hydroxyapatite (HAP) was characterized via SEM and X-ray diffraction (XRD). The results showed that HAP was deposited on the scaffolds, and also confirmed that the scaffolds had mixed with the AgNPs. All scaffolds containing AgNPs exhibited antibacterial properties against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). A cytotoxicity assay using mouse embryo osteoblast precursor cells (MC3T3-E1) showed that the scaffolds had excellent biocompatibility and could be used for repairing bone tissue. The study shows that the AgNPs/PLGA scaffolds have exceptional mechanical properties and biocompatibility, effectively inhibiting the growth of S. aureus and E. coli. These results demonstrate the potential application of 3D-printed AgNPs/PLGA scaffolds in bone tissue engineering.
Collapse
Affiliation(s)
- Fajun Chen
- Department of Anatomy, School of Basic Medicine, Anhui Medical University, No.81, Meishan Road, Shushan District, Hefei 230032, China
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei 230031, China
| | - Jian Han
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei 230031, China
- Graduate School of University of Science and Technology of China, Hefei 230026, China
| | - Zeyong Guo
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei 230031, China
- Graduate School of University of Science and Technology of China, Hefei 230026, China
| | - Chongjing Mu
- The Affiliated Suzhou Hospital of Nanjing Medical University, 16 Baita West Road, Suzhou 215000, China
| | - Chuandi Yu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei 230031, China
- Graduate School of University of Science and Technology of China, Hefei 230026, China
| | - Zhibo Ji
- Department of Stomatology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Lei Sun
- Department of Stomatology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
- Department of Oral Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Yujuan Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei 230031, China
| | - Junfeng Wang
- Department of Anatomy, School of Basic Medicine, Anhui Medical University, No.81, Meishan Road, Shushan District, Hefei 230032, China
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei 230031, China
| |
Collapse
|
23
|
Ebrahimi N, Far NP, Fakhr SS, Faghihkhorasani F, Miraghel SA, Chaleshtori SR, Rezaei-Tazangi F, Beiranvand S, Baziyar P, Manavi MS, Zarrabi A, Nabavi N, Ren J, Aref AR. The endocannabinoid system, a new gatekeeper in the pharmacology of human hepatocellular carcinoma. ENVIRONMENTAL RESEARCH 2023; 228:115914. [PMID: 37062475 DOI: 10.1016/j.envres.2023.115914] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/01/2023] [Accepted: 04/13/2023] [Indexed: 05/06/2023]
Abstract
Despite numerous prevention methodologies and treatment options, hepatocellular carcinoma (HCC) still remains as the third leading life-threatening cancer. It is thus pertinent to develop new treatment modality to fight this devastating carcinoma. Ample recent studies have shown the anti-inflammatory and antitumor roles of the endocannabinoid system in various forms of cancers. Preclinical studies have also confirmed that cannabinoid therapy can be an optimal regimen for cancer treatments. The endocannabinoid system is involved in many cancer-related processes, including induction of endoplasmic reticulum (ER) stress-dependent apoptosis, autophagy, PITRK and ERK signaling pathways, cell invasion, epithelial-mesenchymal transition (EMT), and cancer stem cell (CSC) phenotypes. Moreover, changes in signaling transduction of the endocannabinoid system can be a potential diagnostic and prognostic biomarker for HCC. Due to its pivotal role in lipid metabolism, the endocannabinoid system affects metabolic reprogramming as well as lipid content of exosomes. In addition, due to the importance of non-coding RNAs (ncRNAs), several studies have examined the relationship between microRNAs and the endocannabinoid system in HCC. However, HCC is a pathological condition with high heterogeneity, and therefore using the endocannabinoid system for treatment has faced many controversies. While some studies favored a role of the endocannabinoid system in carcinogenesis and tumor induction, others exhibited the anticancer potential of endocannabinoids in HCC. In this review, specific studies delineating the relationship between endocannabinoids and HCC are examined. Based on collected findings, detailed studies of the molecular mechanism of endocannabinoids as well as preclinical studies for investigating therapeutic or carcinogenic impacts in HCC cancer are strongly suggested.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Iran
| | - Nazanin Pazhouhesh Far
- Department of Microbiology,Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Siavash Seifollahy Fakhr
- Division of Biotechnology, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Campus, Hamar, Norway
| | | | - Seyed Ali Miraghel
- Nocivelli Institute for Molecular Medicine, Department of Molecular and Translational Medicine, University of Brescia, Italy
| | | | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Sheida Beiranvand
- Department of Biotechnology, School of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Payam Baziyar
- Department of Molecular and Cell Biology, Faculty of Basic Science, Uinversity of Mazandaran, Babolsar, Iran
| | | | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai, 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, WA, 98195, USA
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA; Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA.
| |
Collapse
|
24
|
Lazzarotto Rebelatto ER, Rauber GS, Caon T. An update of nano-based drug delivery systems for cannabinoids: Biopharmaceutical aspects & therapeutic applications. Int J Pharm 2023; 635:122727. [PMID: 36803924 DOI: 10.1016/j.ijpharm.2023.122727] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023]
Abstract
Nanotechnology has been widely used to improve stability, efficacy, release control and biopharmaceutical aspects of natural and synthetic cannabinoids. In this review, the main types of cannabinoid-based nanoparticles (NPs) reported so far are addressed, taking into account the advantages and disadvantages of each system. Formulation, preclinical and clinical studies performed with colloidal carriers were individually analyzed. Lipid-based nanocarriers have been recognized for their high biocompatibility and ability to improve both solubility and bioavailability. Δ9-tetrahydrocannabinol-loaded lipid systems designed to treat glaucoma, for example, showed superior in vivo efficacy in comparison to market formulations. The analyzed studies have shown that product performance can be modulated by varying particle size and composition. In the case of self-nano-emulsifying drug delivery systems, the reduced particle size shortens the time to reach high plasma concentrations while the incorporation of metabolism inhibitors extends the plasma circulation time. The use of long alkyl chain lipids in NP formulations, in turn, is strategized to achieve intestinal lymphatic absorption. Polymer NPs have been prioritized when a sustained or site-specific cannabinoid release is desirable (e.g., CNS-affecting diseases/cancer). The functionalization of the surface of polymer NPs makes their action even more selective whereas surface charge modulation is highlighted to provide mucoadhesion. The present study identified promising systems for targeted applications, making the process of optimizing new formulations more effective and faster. Although NPs have shown a promising role in the treatment of several difficult-to-treat diseases, more translational studies should be performed to confirm the benefits reported here.
Collapse
Affiliation(s)
| | - Gabriela Schneider Rauber
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Thiago Caon
- Postgraduate Program in Pharmacy (PGFAR), Federal University of Santa Catarina Trindade, Florianopolis 88040-900, Brazil.
| |
Collapse
|
25
|
Assadpour E, Rezaei A, Das SS, Krishna Rao BV, Singh SK, Kharazmi MS, Jha NK, Jha SK, Prieto MA, Jafari SM. Cannabidiol-Loaded Nanocarriers and Their Therapeutic Applications. Pharmaceuticals (Basel) 2023; 16:ph16040487. [PMID: 37111244 PMCID: PMC10141492 DOI: 10.3390/ph16040487] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/26/2023] [Accepted: 02/07/2023] [Indexed: 03/29/2023] Open
Abstract
Cannabidiol (CBD), one of the most promising constituents isolated from Cannabis sativa, exhibits diverse pharmacological actions. However, the applications of CBD are restricted mainly due to its poor oral bioavailability. Therefore, researchers are focusing on the development of novel strategies for the effective delivery of CBD with improved oral bioavailability. In this context, researchers have designed nanocarriers to overcome limitations associated with CBD. The CBD-loaded nanocarriers assist in improving the therapeutic efficacy, targetability, and controlled biodistribution of CBD with negligible toxicity for treating various disease conditions. In this review, we have summarized and discussed various molecular targets, targeting mechanisms and types of nanocarrier-based delivery systems associated with CBD for the effective management of various disease conditions. This strategic information will help researchers in the establishment of novel nanotechnology interventions for targeting CBD.
Collapse
Affiliation(s)
- Elham Assadpour
- Food Industry Research Co., Gorgan 49138-15739, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49138-15739, Iran
| | - Atefe Rezaei
- Department of Food Science and Technology, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Sabya Sachi Das
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
- School of Pharmaceutical and Population Health Informatics, DIT University, Dehradun 248009, India
| | - Balaga Venkata Krishna Rao
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Sandeep Kumar Singh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | | | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida 201310, India
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida 201310, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain
| | - Seid Mahdi Jafari
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49189-43464, Iran
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
- Correspondence:
| |
Collapse
|
26
|
Villate A, San Nicolas M, Olivares M, Aizpurua-Olaizola O, Usobiaga A. Chitosan-Coated Alginate Microcapsules of a Full-Spectrum Cannabis Extract: Characterization, Long-Term Stability and In Vitro Bioaccessibility. Pharmaceutics 2023; 15:859. [PMID: 36986720 PMCID: PMC10058102 DOI: 10.3390/pharmaceutics15030859] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Cannabinoids present in Cannabis sativa are increasingly used in medicine due to their therapeutic potential. Moreover, the synergistic interaction between different cannabinoids and other plant constituents has led to the development of full-spectrum formulations for therapeutic treatments. In this work, the microencapsulation of a full-spectrum extract via vibration microencapsulation nozzle technique using chitosan-coated alginate is proposed to obtain an edible pharmaceutical-grade product. The suitability of microcapsules was assessed by their physicochemical characterization, long-term stability in three different storage conditions and in vitro gastrointestinal release. The synthetized microcapsules contained mainly ∆9-tetrahydrocannabinol (THC)-type and cannabinol (CBN)-type cannabinoids and had a mean size of 460 ± 260 µm and a mean sphericity of 0.5 ± 0.3. The stability assays revealed that capsules should be stored only at 4 °C in darkness to maintain their cannabinoid profile. In addition, based on the in vitro experiments, a fast intestinal release of cannabinoids ensures a medium-high bioaccessibility (57-77%) of therapeutically relevant compounds. The full characterization of microcapsules indicates that they could be used for the design of further full-spectrum cannabis oral formulations.
Collapse
Affiliation(s)
- Aitor Villate
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620 Plentzia, Basque Country, Spain
| | - Markel San Nicolas
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620 Plentzia, Basque Country, Spain
- Sovereign Fields S.L., Larramendi Kalea 3, 20006 Donostia, Basque Country, Spain
| | - Maitane Olivares
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620 Plentzia, Basque Country, Spain
| | | | - Aresatz Usobiaga
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620 Plentzia, Basque Country, Spain
| |
Collapse
|
27
|
The Fundamental Role of Lipids in Polymeric Nanoparticles: Dermal Delivery and Anti-Inflammatory Activity of Cannabidiol. Molecules 2023; 28:molecules28041774. [PMID: 36838759 PMCID: PMC9962451 DOI: 10.3390/molecules28041774] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
This report presents a nanoparticulate platform for cannabidiol (CBD) for topical treatment of inflammatory conditions. We have previously shown that stabilizing lipids improve the encapsulation of CBD in ethyl cellulose nanoparticles. In this study, we examined CBD release, skin permeation, and the capability of lipid-stabilized nanoparticles (LSNs) to suppress the release of IL-6 and IL-8. The nanoparticles were stabilized with cetyl alcohol (CA), stearic acid (SA), lauric acid (LA), and an SA/LA eutectic combination (SALA). LSN size and concentration were measured and characterized by differential scanning calorimetry (DSC), in vitro release of loaded CBD, and skin permeability. IL-6 and IL-8 secretions from TNF-α-induced HaCaT cells were monitored following different LSN treatments. CBD released from the LSNs in dispersion at increasing concentrations of polysorbate 80 showed non-linear solubilization, which was explained by recurrent precipitation. A significant high release of CBD in a cell culture medium was shown from SALA-stabilized nanoparticles. Skin permeation was >30% lower from SA-stabilized nanoparticles compared to the other LSNs. Investigation of the CBD-loaded LSNs' effect on the release of IL-6 and IL-8 from TNF-α-induced HaCaT cells showed that nanoparticles stabilized with CA, LA, or SALA were similarly effective in suppressing cytokine release. The applicability of the CBD-loaded LSNs to treat topical inflammatory conditions has been supported by their dermal permeation and release inhibition of pro-inflammatory cytokines.
Collapse
|
28
|
Reddy TS, Zomer R, Mantri N. Nanoformulations as a strategy to overcome the delivery limitations of cannabinoids. Phytother Res 2023; 37:1526-1538. [PMID: 36748949 DOI: 10.1002/ptr.7742] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 02/08/2023]
Abstract
Medical cannabis has received significant interest in recent years due to its promising benefits in the management of pain, anxiety, depression and neurological and movement disorders. Specifically, the major phytocannabinoids derived from the cannabis plant such as (-) trans-Δ9 -tetrahydrocannabinol (THC) and cannabidiol (CBD), have been shown to be responsible for the pharmacological and therapeutic properties. Recently, these phytocannabinoids have also attracted special attention in cancer treatment due to their well-known palliative benefits in chemotherapy-induced nausea, vomiting, pain and loss of appetite along with their anticancer activities. Despite the enormous pharmacological benefits, the low aqueous solubility, high instability (susceptibility to extensive first pass metabolism) and poor systemic bioavailability restrict their utilization at clinical perspective. Therefore, drug delivery strategies based on nanotechnology are emerging to improve pharmacokinetic profile and bioavailability of cannabinoids as well as enhance their targeted delivery. Here, we critically review the nano-formulation systems engineered for overcoming the delivery limitations of native phytocannabinoids including polymeric and lipid-based nanoparticles (lipid nano capsules (LNCs), nanostructured lipid carriers (NLCs), nanoemulsions (NE) and self-emulsifying drug delivery systems (SEDDS)), ethosomes and cyclodextrins as well as their therapeutic applications.
Collapse
Affiliation(s)
- T Srinivasa Reddy
- The Pangenomics Group, Biosciences and Food Technology, School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Roby Zomer
- MGC Pharmaceuticals Limited, West Perth, Western Australia, Australia
| | - Nitin Mantri
- The Pangenomics Group, Biosciences and Food Technology, School of Science, RMIT University, Melbourne, Victoria, Australia.,The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
29
|
Bellmann T, Thamm J, Beekmann U, Kralisch D, Fischer D. In situ Formation of Polymer Microparticles in Bacterial Nanocellulose Using Alternative and Sustainable Solvents to Incorporate Lipophilic Drugs. Pharmaceutics 2023; 15:pharmaceutics15020559. [PMID: 36839881 PMCID: PMC9958971 DOI: 10.3390/pharmaceutics15020559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Bacterial nanocellulose has been widely investigated in drug delivery, but the incorporation of lipophilic drugs and controlling release kinetics still remain a challenge. The inclusion of polymer particles to encapsulate drugs could address both problems but is reported sparely. In the present study, a formulation approach based on in situ precipitation of poly(lactic-co-glycolic acid) within bacterial nanocellulose was developed using and comparing the conventional solvent N-methyl-2-pyrrolidone and the alternative solvents poly(ethylene glycol), CyreneTM and ethyl lactate. Using the best-performing solvents N-methyl-2-pyrrolidone and ethyl lactate, their fast diffusion during phase inversion led to the formation of homogenously distributed polymer microparticles with average diameters between 2.0 and 6.6 µm within the cellulose matrix. Despite polymer inclusion, the water absorption value of the material still remained at ~50% of the original value and the material was able to release 32 g/100 cm2 of the bound water. Mechanical characteristics were not impaired compared to the native material. The process was suitable for encapsulating the highly lipophilic drugs cannabidiol and 3-O-acetyl-11-keto-β-boswellic acid and enabled their sustained release with zero order kinetics over up to 10 days. Conclusively, controlled drug release for highly lipophilic compounds within bacterial nanocellulose could be achieved using sustainable solvents for preparation.
Collapse
Affiliation(s)
- Tom Bellmann
- Division of Pharmaceutical Technology and Biopharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 4, 91058 Erlangen, Germany
| | - Jana Thamm
- Pharmaceutical Technology and Biopharmacy, Friedrich-Schiller-University Jena, Lessingstraße 8, 07743 Jena, Germany
| | - Uwe Beekmann
- Pharmaceutical Technology and Biopharmacy, Friedrich-Schiller-University Jena, Lessingstraße 8, 07743 Jena, Germany
- JeNaCell GmbH—An Evonik Company, Göschwitzer Straße 22, 07745 Jena, Germany
| | - Dana Kralisch
- Pharmaceutical Technology and Biopharmacy, Friedrich-Schiller-University Jena, Lessingstraße 8, 07743 Jena, Germany
- JeNaCell GmbH—An Evonik Company, Göschwitzer Straße 22, 07745 Jena, Germany
- Evonik Industries AG, Rellinghauser Straße 1-11, 45128 Essen, Germany
| | - Dagmar Fischer
- Division of Pharmaceutical Technology and Biopharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 4, 91058 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-85-29552
| |
Collapse
|
30
|
Li J, Li K, Du Y, Tang X, Liu C, Cao S, Zhao B, Huang H, Zhao H, Kong W, Xu T, Shao C, Shao J, Zhang G, Lan H, Xi Y. Dual-Nozzle 3D Printed Nano-Hydroxyapatite Scaffold Loaded with Vancomycin Sustained-Release Microspheres for Enhancing Bone Regeneration. Int J Nanomedicine 2023; 18:307-322. [PMID: 36700146 PMCID: PMC9868285 DOI: 10.2147/ijn.s394366] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/24/2022] [Indexed: 01/19/2023] Open
Abstract
Background Successful treatment of infectious bone defect remains a major challenge in the orthopaedic field. At present, the conventional treatment for infectious bone defects is surgical debridement and long-term systemic antibiotic use. It is necessary to develop a new strategy to achieve effective bone regeneration and local anti-infection for infectious bone defects. Methods Firstly, vancomycin / poly (lactic acid-glycolic acid) sustained release microspheres (VAN/PLGA-MS) were prepared. Then, through the dual-nozzle 3D printing technology, VAN/PLGA-MS was uniformly loaded into the pores of nano-hydroxyapatite (n-HA) and polylactic acid (PLA) scaffolds printed in a certain proportion, and a composite scaffold (VAN/MS-PLA/n-HA) was designed, which can not only promote bone repair but also resist local infection. Finally, the performance of the composite scaffold was evaluated by in vivo and in vitro biological evaluation. Results The in vitro release test of microspheres showed that the release of VAN/PLGA-MS was relatively stable from the second day, and the average daily release concentration was about 15.75 μg/mL, which was higher than the minimum concentration specified in the guidelines. The bacteriostatic test in vitro showed that VAN/PLGA-MS had obvious inhibitory effect on Staphylococcus aureus ATCC-29213. Biological evaluation of VAN/MS-PLA/n-HA scaffolds in vitro showed that it can promote the proliferation of adipose stem cells. In vivo biological evaluation showed that VAN/MS-PLA/n-HA scaffold could significantly promote bone regeneration. Conclusion Our research shows that VAN/MS-PLA/n-HA scaffolds have satisfying biomechanical properties, effectively inhibit the growth of Staphylococcus aureus, with good biocompatibility, and effectiveness on repairing bone defects. The VAN/MS-PLA/n-HA scaffold provide the clinic with an application prospect in bone tissue engineering.
Collapse
Affiliation(s)
- Jianyi Li
- Department of Orthopaedic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Keke Li
- Yantai Campus of Binzhou Medical University, Yantai, People’s Republic of China
| | - Yukun Du
- Department of Orthopaedic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Xiaojie Tang
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, People’s Republic of China
| | - Chenjing Liu
- Department of Orthopaedic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Shannan Cao
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, People’s Republic of China
| | - Baomeng Zhao
- Yantai Campus of Binzhou Medical University, Yantai, People’s Republic of China
| | - Hai Huang
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, People’s Republic of China
| | - Hongri Zhao
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, People’s Republic of China
| | - Weiqing Kong
- Department of Orthopaedic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Tongshuai Xu
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, People’s Republic of China
| | - Cheng Shao
- Department of Orthopaedic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Jiale Shao
- Department of Orthopaedic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Guodong Zhang
- Tengzhou Central People’s Hospital, Tengzhou, People’s Republic of China
| | - Hongbo Lan
- Shandong Engineering Research Center for Additive Manufacturing Qingdao University of Technology, Qingdao, People’s Republic of China,Hongbo Lan, Shandong Engineering Research Center for Additive Manufacturing Qingdao University of Technology, Qingdao, 266520, People’s Republic of China, Email
| | - Yongming Xi
- Department of Orthopaedic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China,Correspondence: Yongming Xi, Department of Orthopaedic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266071, People’s Republic of China, Email
| |
Collapse
|
31
|
Exploring the Potential of Cannabinoid Nanodelivery Systems for CNS Disorders. Pharmaceutics 2023; 15:pharmaceutics15010204. [PMID: 36678832 PMCID: PMC9863859 DOI: 10.3390/pharmaceutics15010204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Cannabinoids have a major therapeutic value in a variety of disorders. The concepts of cannabinoids are difficult to develop, but they can be used and are advantageous for a number of diseases that are not sufficiently managed by existing treatments. Nanoconjugation and encapsulation techniques have been shown to be effective in improving the delivery and the therapeutic effectiveness of drugs that are poorly soluble in water. Because the bioavailability of cannabinoids is low, the challenge is to explore different administration methods to improve their effectiveness. Because cannabinoids cross the blood-brain-barrier (BBB), they modify the negative effects of inflammatory processes on the BBB and may be a key factor in the improvement of BBB function after ischemic disease or other conditions. This review discusses various types of cannabinoid administration, as well as nanotechnologies used to improve the bioavailability of these compounds in CNS diseases.
Collapse
|
32
|
Rodríguez-Martínez J, Sánchez-Martín MJ, López-Patarroyo O, Valiente M. Novel cannabinoid release system: Encapsulation of a cannabidiol precursor into γ-cyclodextrin metal-organic frameworks. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Shalev N, Kendall M, Anil SM, Tiwari S, Peeri H, Kumar N, Belausov E, Vinayaka AC, Koltai H. Phytocannabinoid Compositions from Cannabis Act Synergistically with PARP1 Inhibitor against Ovarian Cancer Cells In Vitro and Affect the Wnt Signaling Pathway. Molecules 2022; 27:7523. [PMID: 36364346 PMCID: PMC9653955 DOI: 10.3390/molecules27217523] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 10/16/2023] Open
Abstract
Ovarian cancer (OC) is the single most lethal gynecologic malignancy. Cannabis sativa is used to treat various medical conditions, and is cytotoxic to a variety of cancer types. We sought to examine the effectiveness of different combinations of cannabis compounds against OC. Cytotoxic activity was determined by XTT assay on HTB75 and HTB161 cell lines. Apoptosis was determined by flow cytometry. Gene expression was determined by quantitative PCR and protein localization by confocal microscopy. The two most active fractions, F5 and F7, from a high Δ9-tetrahydrocannabinol (THC) cannabis strain extract, and their standard mix (SM), showed cytotoxic activity against OC cells and induced cell apoptosis. The most effective phytocannabinoid combination was THC+cannabichromene (CBC)+cannabigerol (CBG). These fractions acted in synergy with niraparib, a PARP inhibitor, and were ~50-fold more cytotoxic to OC cells than to normal keratinocytes. The F7 and/or niraparib treatments altered Wnt pathway-related gene expression, epithelial-mesenchymal transition (EMT) phenotype and β-catenin cellular localization. The niraparib+F7 treatment was also effective on an OC patient's cells. Given the fact that combinations of cannabis compounds and niraparib act in synergy and alter the Wnt signaling pathway, these phytocannabinoids should be examined as effective OC treatments in further pre-clinical studies and clinical trials.
Collapse
Affiliation(s)
- Nurit Shalev
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
- Institute of Plant Science, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | | | - Seegehalli M. Anil
- Institute of Plant Science, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Sudeep Tiwari
- Institute of Plant Science, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Hadar Peeri
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
- Institute of Plant Science, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Navin Kumar
- Institute of Plant Science, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Eduard Belausov
- Institute of Plant Science, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Ajjampura C. Vinayaka
- Institute of Plant Science, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Hinanit Koltai
- Institute of Plant Science, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| |
Collapse
|
34
|
PREPARATION AND CHARACTERIZATION OF FULL-SPECTRUM CANNABIS EXTRACT LOADED POLY(THIOETHER-ESTER) NANOPARTICLES: IN VITRO EVALUATION OF THEIR ANTITUMORAL EFFICACY. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Alonso-González M, Fernández-Carballido A, Quispe-Chauca P, Lozza I, Martín-Sabroso C, Isabel Fraguas-Sánchez A. DoE-based development of celecoxib loaded PLGA nanoparticles: In ovo assessment of its antiangiogenic effect. Eur J Pharm Biopharm 2022; 180:149-160. [DOI: 10.1016/j.ejpb.2022.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/07/2022] [Accepted: 09/25/2022] [Indexed: 11/04/2022]
|
36
|
Alonso M, Barcia E, González JF, Montejo C, García-García L, Villa-Hermosilla MC, Negro S, Fraguas-Sánchez AI, Fernández-Carballido A. Functionalization of Morin-Loaded PLGA Nanoparticles with Phenylalanine Dipeptide Targeting the Brain. Pharmaceutics 2022; 14:pharmaceutics14112348. [PMID: 36365169 PMCID: PMC9696360 DOI: 10.3390/pharmaceutics14112348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder, with its incidence constantly increasing. To date, there is no cure for the disease, with a need for new and effective treatments. Morin hydrate (MH) is a naturally occurring flavonoid of the Moraceae family with antioxidant and anti-inflammatory properties; however, the blood–brain barrier (BBB) prevents this flavonoid from reaching the CNS when aiming to potentially treat AD. Seeking to use the LAT-1 transporter present in the BBB, a nanoparticle (NPs) formulation loaded with MH and functionalized with phenylalanine-phenylalanine dipeptide was developed (NPphe-MH) and compared to non-functionalized NPs (NP-MH). In addition, two formulations were prepared using rhodamine B (Rh-B) as a fluorescent dye (NPphe-Rh and NP-Rh) to study their biodistribution and ability to cross the BBB. Functionalization of PLGA NPs resulted in high encapsulation efficiencies for both MH and Rh-B. Studies conducted in Wistar rats showed that the presence of phenylalanine dipeptide in the NPs modified their biodistribution profiles, making them more attractive for both liver and lungs, whereas non-functionalized NPs were predominantly distributed to the spleen. Formulation NPphe-Rh remained in the brain for at least 2 h after administration.
Collapse
Affiliation(s)
- Mario Alonso
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Emilia Barcia
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
- Institute of Industrial Pharmacy, School of Pharmacy, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-913-94-17-41
| | - Juan-Francisco González
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Consuelo Montejo
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad San Pablo-CEU, 28668 Boadilla del Monte, Spain
| | - Luis García-García
- Department of Pharmacology, Pharmacognosy and Botany, School of Pharmacy, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
- Brain Mapping Lab, Pluridisciplinary Research Institute, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Mónica-Carolina Villa-Hermosilla
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Sofía Negro
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
- Institute of Industrial Pharmacy, School of Pharmacy, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Ana-Isabel Fraguas-Sánchez
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
- Institute of Industrial Pharmacy, School of Pharmacy, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Ana Fernández-Carballido
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
- Institute of Industrial Pharmacy, School of Pharmacy, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| |
Collapse
|
37
|
Promising Nanocarriers to Enhance Solubility and Bioavailability of Cannabidiol for a Plethora of Therapeutic Opportunities. Molecules 2022; 27:molecules27186070. [PMID: 36144803 PMCID: PMC9502382 DOI: 10.3390/molecules27186070] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022] Open
Abstract
In recent years, the interest in cannabidiol (CBD) has increased because of the lack of psychoactive properties. However, CBD has low solubility and bioavailability, variable pharmacokinetics profiles, poor stability, and a pronounced presystemic metabolism. CBD nanoformulations include nanosuspensions, polymeric micelles and nanoparticles, hybrid nanoparticles jelled in cross-linked chitosan, and numerous nanosized lipid formulations, including nanostructured lipid carriers, vesicles, SNEEDS, nanoemulsions, and microemulsions. Nanoformulations have resulted in high CBD solubility, encapsulation efficiency, and stability, and sustained CBD release. Some studies assessed the increased Cmax and AUC and decreased Tmax. A rational evaluation of the studies reported in this review evidences how some of them are very preliminary and should be completed before performing clinical trials. Almost all the developed nanoparticles have simple architectures, are well-known and safe nanocarriers, or are even simple nanosuspensions. In addition, the conventional routes of administration are generally investigated. As a consequence, many of these studies are almost ready for forthcoming clinical translations. Some of the developed nanosystems are very promising for a plethora of therapeutic opportunities because of the versatility in terms of the release, the crossing of physiological barriers, and the number of possible routes of administration.
Collapse
|
38
|
Anti-Cancer Activity of Cannabis sativa Phytocannabinoids: Molecular Mechanisms and Potential in the Fight against Ovarian Cancer and Stem Cells. Cancers (Basel) 2022; 14:cancers14174299. [PMID: 36077833 PMCID: PMC9454933 DOI: 10.3390/cancers14174299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecological malignancy, with about 70% of cases diagnosed only at an advanced stage. Cannabis sativa, which produces more than 150 phytocannabinoids, is used worldwide to alleviate numerous symptoms associated with various medical conditions. Recently, studies across a range of cancer types have demonstrated that the phytocannabinoids Δ9-trans-tetrahydrocannabinol (THC) and cannabidiol (CBD) have anti-cancer activity in vitro and in vivo, but also the potential to increase other drugs’ adverse effects. THC and CBD act via several different biological and signaling pathways, including receptor-dependent and receptor-independent pathways. However, very few studies have examined the effectiveness of cannabis compounds against OC. Moreover, little is known about the effectiveness of cannabis compounds against cancer stem cells (CSCs) in general and OC stem cells (OCSCs) in particular. CSCs have been implicated in tumor initiation, progression, and invasion, as well as tumor recurrence, metastasis, and drug resistance. Several hallmarks and concepts describe CSCs. OCSCs, too, are characterized by several markers and specific drug-resistance mechanisms. While there is no peer-reviewed information regarding the effect of cannabis and cannabis compounds on OCSC viability or development, cannabis compounds have been shown to affect genetic pathways and biological processes related to CSCs and OCSCs. Based on evidence from other cancer-type studies, the use of phytocannabinoid-based treatments to disrupt CSC homeostasis is suggested as a potential intervention to prevent chemotherapy resistance. The potential benefits of the combination of chemotherapy with phytocannabinoid treatment should be examined in ovarian cancer patients.
Collapse
|
39
|
Hasan N, Imran M, Sheikh A, Saad S, Chaudhary G, Jain GK, Kesharwani P, Ahmad FJ. Cannabis as a potential compound against various malignancies, legal aspects, advancement by exploiting nanotechnology and clinical trials. J Drug Target 2022; 30:709-725. [PMID: 35321629 DOI: 10.1080/1061186x.2022.2056188] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Various preclinical and clinical studies exhibited the potential of cannabis against various diseases, including cancer and related pain. Subsequently, many efforts have been made to establish and develop cannabis-related products and make them available as prescription products. Moreover, FDA has already approved some cannabis-related products, and more advancement in this aspect is still going on. However, the approved product of cannabis is in oral dosage form, which exerts various limitations to achieve maximum therapeutic effects. A considerable translation is on a hike to improve bioavailability, and ultimately, the therapeutic efficacy of cannabis by the employment of nanotechnology. Besides the well-known psychotropic effects of cannabis upon the use at high doses, literature has also shown the importance of cannabis and its constituents in minimising the lethality of cancer in the preclinical models. This review discusses the history of cannabis, its legal aspect, safety profile, the mechanism by which cannabis combats with cancer, and the advancement of clinical therapy by exploiting nanotechnology. A brief discussion related to the role of cannabinoid in various cancers has also been incorporated. Lastly, the information regarding completed and ongoing trials have also been elaborated.
Collapse
Affiliation(s)
- Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohammad Imran
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Suma Saad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Gaurav Chaudhary
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Gaurav Kumar Jain
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Farhan J Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
40
|
Sokol MB, Yabbarov NG, Mollaeva MR, Chirkina MV, Mollaev MD, Zabolotsky AI, Kuznetsov SL, Nikolskaya ED. Alpha-fetoprotein mediated targeting of polymeric nanoparticles to treat solid tumors. Nanomedicine (Lond) 2022; 17:1217-1235. [PMID: 36136593 DOI: 10.2217/nnm-2022-0097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Serious side effects caused by paclitaxel formulation, containing toxic solubilizer Cremophor® EL, and its nonspecific accumulation greatly limit clinical paclitaxel application. Aim: To design paclitaxel-loaded copolymer of lactic and glycolic acids nanoparticles decorated with alpha-fetoprotein third domain (rAFP3d-NP) to increase paclitaxel safety profile. Methods: rAFP3d-NP was obtained via carbodiimide technique. Results: The particles were characterized with high paclitaxel loading content of 5% and size of 280 nm. rAFP3d-NP revealed biphasic profile with 67% release of paclitaxel during 220 h. Increased area under the curveinf and mean residence time values after rAFP3d-NP administration confirmed prolonged blood circulation compared with paclitaxel. rAFP3d-NP demonstrated significant tumor growth inhibition at 4T1 and SKOV-3 models. Conclusion: rAFP3d-NP is a promising delivery system for paclitaxel and can be applied similarly for delivery of other hydrophobic drugs.
Collapse
Affiliation(s)
- Mariya B Sokol
- NM Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, 119334, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, Moscow, 117149, Russia
| | - Nikita G Yabbarov
- NM Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, 119334, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, Moscow, 117149, Russia
| | - Mariia R Mollaeva
- NM Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, 119334, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, Moscow, 117149, Russia
| | - Margarita V Chirkina
- NM Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, 119334, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, Moscow, 117149, Russia
| | - Murad D Mollaev
- JSC Russian Research Center for Molecular Diagnostics and Therapy, Moscow, 117149, Russia.,Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia
| | - Artur I Zabolotsky
- JSC Russian Research Center for Molecular Diagnostics and Therapy, Moscow, 117149, Russia.,Lomonosov Moscow State University, Biological Faculty, Department of Biochemistry, Moscow, 119991, Russia
| | | | - Elena D Nikolskaya
- NM Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, 119334, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, Moscow, 117149, Russia
| |
Collapse
|
41
|
Development of Stable Nano-Sized Transfersomes as a Rectal Colloid for Enhanced Delivery of Cannabidiol. Pharmaceutics 2022; 14:pharmaceutics14040703. [PMID: 35456536 PMCID: PMC9032849 DOI: 10.3390/pharmaceutics14040703] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 01/15/2023] Open
Abstract
Current cannabidiol (CBD) formulations are challenged with unpredictable release and absorption. Rational design of a rectal colloid delivery system can provide a practical alternative. In this study the inherent physiochemical properties of transferosomes were harnessed for the development of a nano-sized transfersomes to yield more stable release, absorption, and bioavailability of CBD as a rectal colloid. Transfersomes composed of soya lecithin, cholesterol, and polysorbate 80 were synthesized via thin film evaporation and characterized for size, entrapment efficiency (%), morphology, CBD release, ex vivo permeation, and physicochemical stability. The optimized formulation for rectal delivery entrapped up to 80.0 ± 0.077% of CBD with a hydrodynamic particle size of 130 nm, a PDI value of 0.285, and zeta potential of −15.97 mV. The morphological investigation via SEM and TEM revealed that the transfersomes were spherical and unilamellar vesicles coinciding with the enhanced ex vivo permeation across the excised rat colorectal membrane. Furthermore, transfersomes improved the stability of the encapsulated CBD for up to 6 months at room temperature and showed significant promise that the transfersomes promoted rectal tissue permeation with superior stability and afforded tunable release kinetics of CBD as a botanical therapeutic with inherent poor bioavailability.
Collapse
|
42
|
Olivas-Aguirre M, Torres-López L, Villatoro-Gómez K, Perez-Tapia SM, Pottosin I, Dobrovinskaya O. Cannabidiol on the Path from the Lab to the Cancer Patient: Opportunities and Challenges. Pharmaceuticals (Basel) 2022; 15:366. [PMID: 35337163 PMCID: PMC8951434 DOI: 10.3390/ph15030366] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 01/18/2023] Open
Abstract
Cannabidiol (CBD), a major non-psychotropic component of cannabis, is receiving growing attention as a potential anticancer agent. CBD suppresses the development of cancer in both in vitro (cancer cell culture) and in vivo (xenografts in immunodeficient mice) models. For critical evaluation of the advances of CBD on its path from laboratory research to practical application, in this review, we wish to call the attention of scientists and clinicians to the following issues: (a) the biological effects of CBD in cancer and healthy cells; (b) the anticancer effects of CBD in animal models and clinical case reports; (c) CBD's interaction with conventional anticancer drugs; (d) CBD's potential in palliative care for cancer patients; (e) CBD's tolerability and reported side effects; (f) CBD delivery for anticancer treatment.
Collapse
Affiliation(s)
- Miguel Olivas-Aguirre
- Laboratory of Immunobiology and Ionic Transport Regulation, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Mexico; (M.O.-A.); (L.T.-L.); (K.V.-G.)
| | - Liliana Torres-López
- Laboratory of Immunobiology and Ionic Transport Regulation, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Mexico; (M.O.-A.); (L.T.-L.); (K.V.-G.)
| | - Kathya Villatoro-Gómez
- Laboratory of Immunobiology and Ionic Transport Regulation, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Mexico; (M.O.-A.); (L.T.-L.); (K.V.-G.)
| | - Sonia Mayra Perez-Tapia
- Unidad de Desarrollo e Investigación en Bioterapeúticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City 11340, Mexico;
| | - Igor Pottosin
- Laboratory of Immunobiology and Ionic Transport Regulation, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Mexico; (M.O.-A.); (L.T.-L.); (K.V.-G.)
| | - Oxana Dobrovinskaya
- Laboratory of Immunobiology and Ionic Transport Regulation, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Mexico; (M.O.-A.); (L.T.-L.); (K.V.-G.)
| |
Collapse
|
43
|
Ekinci M, Öztürk AA, Santos-Oliveira R, İlem-Özdemir D. The use of Lamivudine-loaded PLGA nanoparticles in the diagnosis of lung cancer: Preparation, characterization, radiolabeling with 99mTc and cell binding. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
44
|
Palrasu M, Wright L, Patel M, Leech L, Branch S, Harrelson S, Khan S. Perspectives on Challenges in Cannabis Drug Delivery Systems: Where Are We? Med Cannabis Cannabinoids 2022; 5:102-119. [PMID: 36467783 PMCID: PMC9710325 DOI: 10.1159/000525629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/13/2022] [Indexed: 07/30/2023] Open
Abstract
Cannabis and its natural derivatives have emerged as promising therapeutics for multiple pathological and nonpathological medical conditions. For example, cannabinoids, the most popular and biologically active chemicals in cannabis, aid in many clinical ailments, including pain, inflammation, epilepsy, sleep disturbances or insomnia, multiple sclerosis, anorexia, schizophrenia, neurodegenerative diseases, anti-nausea, and most importantly, cancer. Despite the comprehensive benefits, certain aspects of cannabis present unique challenges in the medical cannabis landscape. Recent studies have highlighted the inherent challenges associated with cannabinoids' formulation like low solubility, rapid metabolism, poor bioavailability, and erratic pharmacokinetics - all of which contribute to the limited efficacy of cannabinoids. Several efforts are underway to address the bottlenecks and modify the formulations along with the delivery systems to achieve greater solubility/bioavailability, potency, and efficacy in treatment settings while minding the necessary standards for purity associated with the pharmaceutical industry. The current article presents a perspective on (1) a working knowledge of cannabinoids and their mechanisms of action, (2) the landscape of using medicinal cannabis for cancer-related medical conditions along with adversities, (3) current approaches, formulations, and challenges in medicinal cannabis delivery systems (oral, transdermal, pulmonary, and transmucosal), and lastly, (4) emerging approaches to improve delivery systems.
Collapse
|
45
|
Rasouli M, Fallah N, Bekeschus S. Combining Nanotechnology and Gas Plasma as an Emerging Platform for Cancer Therapy: Mechanism and Therapeutic Implication. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2990326. [PMID: 34745414 PMCID: PMC8566074 DOI: 10.1155/2021/2990326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 02/07/2023]
Abstract
Nanomedicine and plasma medicine are innovative and multidisciplinary research fields aiming to employ nanotechnology and gas plasma to improve health-related treatments. Especially cancer treatment has been in the focus of both approaches because clinical response rates with traditional methods that remain improvable for many types of tumor entities. Here, we discuss the recent progress of nanotechnology and gas plasma independently as well as in the concomitant modality of nanoplasma as multimodal platforms with unique capabilities for addressing various therapeutic issues in oncological research. The main features, delivery vehicles, and nexus between reactivity and therapeutic outcomes of nanoparticles and the processes, efficacy, and mechanisms of gas plasma are examined. Especially that the unique feature of gas plasma technology, the local and temporally controlled deposition of a plethora of reactive oxygen, and nitrogen species released simultaneously might be a suitable additive treatment to the use of systemic nanotechnology therapy approaches. Finally, we focus on the convergence of plasma and nanotechnology to provide a suitable strategy that may lead to the required therapeutic outcomes.
Collapse
Affiliation(s)
- Milad Rasouli
- Plasma Medicine Group, Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Jalale-Al-Ahmad Ave, 1411713137 Tehran, Iran
- Department of Physics and Institute for Plasma Research, Kharazmi University, 49 Dr. Mofatteh Ave, Tehran 15614, Iran
| | - Nadia Fallah
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, 49 Dr. Mofatteh Ave, 31979-37551 Tehran, Iran
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| |
Collapse
|
46
|
Patel N, Kommineni N, Surapaneni SK, Kalvala A, Yaun X, Gebeyehu A, Arthur P, Duke LC, York SB, Bagde A, Meckes DG, Singh M. Cannabidiol loaded extracellular vesicles sensitize triple-negative breast cancer to doxorubicin in both in-vitro and in vivo models. Int J Pharm 2021; 607:120943. [PMID: 34324983 PMCID: PMC8528640 DOI: 10.1016/j.ijpharm.2021.120943] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 12/26/2022]
Abstract
Extracellular Vesicles (EVs) were isolated from human umbilical cord mesenchymal stem cells (hUCMSCs) and were further encapsulated with cannabidiol (CBD) through sonication method (CBD EVs). CBD EVs displayed an average particle size of 114.1 ± 1.02 nm, zeta potential of -30.26 ± 0.12 mV, entrapment efficiency of 92.3 ± 2.21% and stability for several months at 4 °C. CBD release from the EVs was observed as 50.74 ± 2.44% and 53.99 ± 1.4% at pH 6.8 and pH 7.4, respectively after 48 h. Our in-vitro studies demonstrated that CBD either alone or in EVs form significantly sensitized MDA-MB-231 cells to doxorubicin (DOX) (*P < 0.05). Flow cytometry and migration studies revealed that CBD EVs either alone or in combination with DOX induced G1 phase cell cycle arrest and decreased migration of MDA-MB-231 cells, respectively. CBD EVs and DOX combination significantly reduced tumor burden (***P < 0.001) in MDA-MB-231 xenograft tumor model. Western blotting and immunocytochemical analysis demonstrated that CBD EVs and DOX combination decreased the expression of proteins involved in inflammation, metastasis and increased the expression of proteins involved in apoptosis. CBD EVs and DOX combination will have profound clinical significance in not only decreasing the side effects but also increasing the therapeutic efficacy of DOX in TNBC.
Collapse
Affiliation(s)
- Nilkumar Patel
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Nagavendra Kommineni
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Sunil Kumar Surapaneni
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Anil Kalvala
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Xuegang Yaun
- Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL, USA; The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - Aragaw Gebeyehu
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Peggy Arthur
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Leanne C Duke
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL, USA
| | - Sara B York
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL, USA
| | - Arvind Bagde
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - David G Meckes
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA.
| |
Collapse
|
47
|
Zamansky M, Zehavi N, Ben-Shabat S, Sintov AC. Characterization of nanoparticles made of ethyl cellulose and stabilizing lipids: Mode of manufacturing, size modulation, and study of their effect on keratinocytes. Int J Pharm 2021; 607:121003. [PMID: 34391849 DOI: 10.1016/j.ijpharm.2021.121003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 12/25/2022]
Abstract
We have developed an ethyl cellulose-based nanoparticulate system for encapsulation of sparingly soluble active pharmaceutical ingredients. Cannabidiol (CBD) and curcumin (CUR) were selected as model active ingredients. Using the nanoprecipitation method, nanoparticles ranged between 150 nm and 250 nm were obtained with an entrapment efficiency of >80%. It has been shown that incorporation of stabilizing lipids significantly reduced aggregation, increased the yield and the active ingredient-to-polymer ratio. In this study, we have explored the influence of process parameters on the extent of new particle core formation: chemical properties of the active ingredients, polymer concentrations, non-solvent addition rate, and the volume of the organic solvent for nanoparticle size control. The relationship between the particle radius [R] and the polymer concentration [Pol] was defined by R ∝ [Pol]n when n < ⅓. The extent of polymer supersaturation was related to the value of n, when the high polymer supersaturation increased the formation rate of new particle cores while decreasing polymer layering on the existing cores and the nanoparticles size. The obtained nanoparticles have shown low toxicity in keratinocytes, however, higher loadings of CUR or CBD resulted in increased toxicity. The nanoparticles effectively internalized into keratinocytes, implying their applicability for dermal delivery.
Collapse
Affiliation(s)
- Mark Zamansky
- Department of Biomedical Engineering, Ben Gurion University of the Negev, Be'er Sheva, Israel; Laboratory for Biopharmaceutics, E.D. Bergmann Campus, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Na'ama Zehavi
- Laboratory for Biopharmaceutics, E.D. Bergmann Campus, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Shimon Ben-Shabat
- Department of Biochemistry and Pharmacology, Ben Gurion University of the Negev, Be'er Sheva, Israel.
| | - Amnon C Sintov
- Department of Biomedical Engineering, Ben Gurion University of the Negev, Be'er Sheva, Israel; Laboratory for Biopharmaceutics, E.D. Bergmann Campus, Ben-Gurion University of the Negev, Be'er Sheva, Israel.
| |
Collapse
|
48
|
Fraguas-Sánchez AI, Martín-Sabroso C, Torres-Suárez AI. The chick embryo chorioallantoic membrane model: a research approach for ex vivo and in vivo experiments. Curr Med Chem 2021; 29:1702-1717. [PMID: 34176455 DOI: 10.2174/0929867328666210625105438] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The chick chorioallantoic membrane (CAM) model has attracted a great deal of interest in pharmaceutical and biological research as an alternative or complementary in vivo assay to animal models. Traditionally, CAM assay has been widely used to perform some toxicological studies, specifically to evaluate the skin, ocular and embryo toxicity of new drugs and formulations, and perform angiogenesis studies. Due to the possibility to generate the tumors onto the CAM, this model has also become an excellent strategy to evaluate the metastatic potential of different tumours and test the efficacy of novel anticancer therapies in vivo. Moreover, in the recent years, its use has considerably grown in other research areas, including the evaluation of new anti-infective agents, the development of biodistribution studies and tissue engineering research. OBJECTIVES This manuscript provides a critical overview of the use of CAM model in pharmaceutical and biological research, especially to test the toxicity of new drugs and formulations and the biodistribution and the efficacy of novel anticancer and anti-infective therapies, analyzing its advantages and disadvantages compared to animal models. CONCLUSION The chick chorioallantoic membrane model shows great utility in several research areas, such as cancer, toxicology, biodistribution studies and anti-infective therapies. In fact, it has become an intermediate stage between in vitro experiments and animal studies, and, in the case of toxicological studies (skin and ocular toxicity), has even replaced the animal models.
Collapse
Affiliation(s)
- Ana Isabel Fraguas-Sánchez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Cristina Martín-Sabroso
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ana Isabel Torres-Suárez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
49
|
Park C, Zuo J, Somayaji V, Lee BJ, Löbenberg R. Development of a novel cannabinoid-loaded microemulsion towards an improved stability and transdermal delivery. Int J Pharm 2021; 604:120766. [PMID: 34087415 DOI: 10.1016/j.ijpharm.2021.120766] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/20/2021] [Accepted: 05/30/2021] [Indexed: 02/07/2023]
Abstract
The aim of this study was to develop a stable microemulsion (ME) for transdermal delivery of tetrahydrocannabinolic acid (THCA) and cannabidiolic acid (CBDA). The lipid-based vehicles were selected by screening cannabinoid solubility and the emulsifying ability of surfactants. Pseudo-ternary phase diagrams were constructed by formulation of cannabinoids with Capryol® 90 as oil phase, Tween® 80, Solutol® HS15, Procetyl® AWS, and Cremophor® RH40 as surfactants, ethanol as cosurfactant, and distilled water as the aqueous phase. A significant improvement in transmembrane flux (Jss), permeability coefficient (Kp), and enhancement ratio (ER) was found in one system compared to other formulations. This ME consisted of 1.0% (w/w) of cannabinoids, 5% (w/w) of Capryol® 90, 44% (w/w) Smix (2:1, Procetyl® AWS and Ethanol) and 50.0% (w/w) of distilled water. Additionally, the effects of pH on the permeation of the cannabinoids were investigated. Based on the pH value THCA and CBDA-loaded ME exhibited the highest permeation at pH 5.17 and pH 5.25. After storing the pH-adjusted P2 ME and the optimized P2 ME for 180 days at 4℃ and 25℃, the content of cannabinoids was over 95%. Consequently, the cannabinoid-loaded ME system is a promising option for solubilizing and stabilizing lipophilic drugs like cannabinoids and utilize them for transdermal delivery.
Collapse
Affiliation(s)
- Chulhun Park
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton AB T6G 2E1, Canada; College of Pharmacy and Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| | - Jieyu Zuo
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton AB T6G 2E1, Canada.
| | - Vijay Somayaji
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton AB T6G 2E1, Canada.
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon 16499, South Korea; College of Pharmacy and Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| | - Raimar Löbenberg
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton AB T6G 2E1, Canada.
| |
Collapse
|
50
|
Wang F, Multhoff G. Repurposing Cannabidiol as a Potential Drug Candidate for Anti-Tumor Therapies. Biomolecules 2021; 11:biom11040582. [PMID: 33921049 PMCID: PMC8071421 DOI: 10.3390/biom11040582] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 01/09/2023] Open
Abstract
In recent years, evidence has accumulated that cannabinoids-especially the non-psychoactive compound, cannabidiol (CBD)-possess promising medical and pharmacological activities that might qualify them as potential anti-tumor drugs. This review is based on multiple studies summarizing different mechanisms for how CBD can target tumor cells including cannabinoid receptors or other constituents of the endocannabinoid system, and their complex activation of biological systems that results in the inhibition of tumor growth. CBD also participates in anti-inflammatory activities which are related to tumor progression, as demonstrated in preclinical models. Although the numbers of clinical trials and tested tumor entities are limited, there is clear evidence that CBD has anti-tumor efficacy and is well tolerated in human cancer patients. In summary, it appears that CBD has potential as a neoadjuvant and/or adjuvant drug in therapy for cancer.
Collapse
Affiliation(s)
- Fei Wang
- Radiation-Immuno Oncology Group, TranslaTUM—Central Institute for Translational Cancer Research, Klinikum rechts der Isar, TU München, Einsteinstr. 25, 81675 Munich, Germany;
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
- Correspondence: ; Tel.: +49-89-4140-4514; Fax: +49-89-4140-4299
| | - Gabriele Multhoff
- Radiation-Immuno Oncology Group, TranslaTUM—Central Institute for Translational Cancer Research, Klinikum rechts der Isar, TU München, Einsteinstr. 25, 81675 Munich, Germany;
- Department of Radiation Oncology, Klinikum rechts der Isar, TU München, 81675 Munich, Germany
| |
Collapse
|