1
|
Torabi Fard N, Ahmad Panahi H, Moniri E, Reza Soltani E, Mahdavijalal M. Stimuli-Responsive Dendrimers as Nanoscale Vectors in Drug and Gene Delivery Systems: A Review Study. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2024; 32:4959-4985. [DOI: 10.1007/s10924-024-03280-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 01/06/2025]
|
2
|
Young IC, Thorson AL, Cottrell ML, Sykes C, Schauer AP, Sellers RS, Janusziewicz R, Vincent KL, Benhabbour SR. Next-Generation Contraceptive Intravaginal Ring: Comparison of Etonogestrel and Ethinyl Estradiol In Vitro and In Vivo Release from 3D-Printed Intravaginal Ring and NuvaRing. Pharmaceutics 2024; 16:1030. [PMID: 39204375 PMCID: PMC11359822 DOI: 10.3390/pharmaceutics16081030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Intravaginal rings (IVRs) represent a well-established, woman-controlled and sustained vaginal drug delivery system suitable for a wide range of applications. Here, we sought to investigate the differences in etonogestrel (ENG) and ethinyl estradiol (EE) release from a 3D-printed IVR utilizing continuous liquid interface production (CLIP™) (referred to as CLIPLOW for low drug loading and CLIPHIGH IVRs for high drug loading) and NuvaRing, a commercially available injection molded IVR. We conducted in vitro release studies in simulated vaginal fluid to compare the release of ENG and EE from CLIPLOW IVRs and NuvaRing. CLIPLOW IVRs had a similar hormone dose to NuvaRing and exhibited slightly slower ENG release and greater EE release in vitro compared to NuvaRing. When administered to female sheep, NuvaRing demonstrated greater ENG/EE levels in plasma, vaginal tissue and vaginal fluids compared to CLIPLOW IVR despite similar drug loadings. Leveraging observed hormones levels in sheep from NuvaRing as an effective contraceptive benchmark, we developed a long-acting CLIPHIGH IVR with increased ENG and EE doses that demonstrated systemic and local hormone levels greater than the NuvaRing for 90 days in sheep. No signs of toxicity were noted regarding general health, colposcopy, or histological analysis in sheep after CLIPHIGH IVR administration. Our results provided (1) a comparison of ENG and EE release between a 3D-printed IVR and NuvaRing in vitro and in vivo, (2) a preclinical pharmacokinetic benchmark for vaginally delivered ENG and EE and (3) the generation of a 90-day CLIP IVR that will be utilized in future work to support the development of a long-acting ENG/EE IVR combined with an antiretroviral for the prevention of HIV and unplanned pregnancy.
Collapse
Affiliation(s)
- Isabella C. Young
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Allison L. Thorson
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (A.L.T.); (R.J.)
| | - Mackenzie L. Cottrell
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.L.C.); (C.S.); (A.P.S.)
| | - Craig Sykes
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.L.C.); (C.S.); (A.P.S.)
| | - Amanda P. Schauer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.L.C.); (C.S.); (A.P.S.)
| | - Rani S. Sellers
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Rima Janusziewicz
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (A.L.T.); (R.J.)
| | - Kathleen L. Vincent
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Soumya Rahima Benhabbour
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (A.L.T.); (R.J.)
| |
Collapse
|
3
|
Elmoghayer ME, Saleh NM, Abu Hashim II. Enhanced oral delivery of hesperidin-loaded sulfobutylether-β-cyclodextrin/chitosan nanoparticles for augmenting its hypoglycemic activity: in vitro-in vivo assessment study. Drug Deliv Transl Res 2024; 14:895-917. [PMID: 37843733 DOI: 10.1007/s13346-023-01440-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2023] [Indexed: 10/17/2023]
Abstract
Hesperidin (Hsd), a bioactive phytomedicine, experienced an antidiabetic activity versus both Type 1 and Type 2 Diabetes mellitus. However, its intrinsic poor solubility and bioavailability is a key challenging obstacle reflecting its oral delivery. From such perspective, the purpose of the current study was to prepare and evaluate Hsd-loaded sulfobutylether-β-cyclodextrin/chitosan nanoparticles (Hsd/CD/CS NPs) for improving the hypoglycemic activity of the orally administered Hsd. Hsd was first complexed with sulfobutylether-β-cyclodextrin (SBE-β-CD) and the complex (CX) was found to be formed with percent complexation efficiency and percent process efficiency of 50.53 ± 1.46 and 84.52 ± 3.16%, respectively. Also, solid state characterization of the complex ensured the inclusion of Hsd inside the cavity of SBE-β-CD. Then, Hsd/CD/CS NPs were prepared using the ionic gelation technique. The prepared NPs were fully characterized to select the most promising one (F1) with a homogenous particle size of 455.7 ± 9.04 nm, a positive zeta potential of + 32.28 ± 1.12 mV, and an entrapment efficiency of 77.46 ± 0.39%. The optimal formula (F1) was subjected to further investigation of in vitro release, ex vivo intestinal permeation, stability, cytotoxicity, and in vivo hypoglycemic activity. The results of the release and permeation studies of F1 manifested a modulated pattern between Hsd and CX. The preferential stability of F1 was observed at 4 ± 1 °C. Also, the biocompatibility of F1 with oral epithelial cell line (OEC) was retained up to a concentration of 100 µg/mL. After oral administration of F1, a noteworthy synergistic hypoglycemic effect was recorded with decreased blood glucose level until the end of the experiment. In conclusion, Hsd/CD/CS NPs could be regarded as a hopeful oral delivery system of Hsd with enhanced antidiabetic activity.
Collapse
Affiliation(s)
- Mona Ebrahim Elmoghayer
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Noha Mohamed Saleh
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | | |
Collapse
|
4
|
Microcapsules based on alginate and guar gum for co-delivery of hydrophobic antitumor bioactives. Carbohydr Polym 2022; 301:120310. [DOI: 10.1016/j.carbpol.2022.120310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/14/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
|
5
|
Fouladian P, Jin Q, Arafat M, Song Y, Guo X, Blencowe A, Garg S. Drug-Loaded, Polyurethane Coated Nitinol Stents for the Controlled Release of Docetaxel for the Treatment of Oesophageal Cancer. Pharmaceuticals (Basel) 2021; 14:ph14040311. [PMID: 33915787 PMCID: PMC8067330 DOI: 10.3390/ph14040311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/18/2022] Open
Abstract
For several decades, self-expanding metal stents (SEMSs) have shown significant clinical success in the palliation of obstructive metastatic oesophageal cancer. However, these conventional oesophageal stents can suffer from stent blockage caused by malignant tumour cell growth. To overcome this challenge, there is growing interest in drug-releasing stents that, in addition to palliation, provide a sustained and localized release of anticancer drugs to minimise tumour growth. Therefore, in this study we prepared and evaluated an oesophageal stent-based drug delivery platform to provide the sustained release of docetaxel (DTX) for the treatment of oesophageal cancer-related obstructions. The DTX-loaded oesophageal stents were fabricated via dip-coating of bare nitinol stents with DTX-polyurethane (PU) solutions to provide PU coated stents with DTX loadings of 1.92 and 2.79% w/w. Mechanical testing of the DTX-PU coated stents revealed that an increase in the drug loading resulted in a reduction in the ultimate tensile strength, toughness and Young’s modulus. In vitro release studies showed a sustained release of DTX, with ~80–90% released over a period of 33 days. While the DTX-loaded stents exhibited good stability to gamma radiation sterilisation, UV sterilisation or accelerated storage at elevated temperatures (40 °C) resulted in significant DTX degradation. Cell proliferation, apoptosis and Western blotting assays revealed that the DTX released from the stents had comparable anticancer activity to pure DTX against oesophageal cancer cells (KYSE-30). This research demonstrates that the dip-coating technique can be considered as a promising approach for the fabrication of drug-eluting stents (DESs) for oesophageal cancer treatment.
Collapse
Affiliation(s)
- Paris Fouladian
- Pharmaceutical Innovation and Development (PIDG) Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (P.F.); (M.A.); (Y.S.)
| | - Qiuyang Jin
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China;
| | - Mohammad Arafat
- Pharmaceutical Innovation and Development (PIDG) Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (P.F.); (M.A.); (Y.S.)
| | - Yunmei Song
- Pharmaceutical Innovation and Development (PIDG) Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (P.F.); (M.A.); (Y.S.)
| | - Xiuli Guo
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China;
- Correspondence: (X.G.); (A.B.); (S.G.)
| | - Anton Blencowe
- Applied Chemistry and Translational Biomaterials (ACTB) Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
- Correspondence: (X.G.); (A.B.); (S.G.)
| | - Sanjay Garg
- Pharmaceutical Innovation and Development (PIDG) Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (P.F.); (M.A.); (Y.S.)
- Correspondence: (X.G.); (A.B.); (S.G.)
| |
Collapse
|
6
|
Luiz MT, Viegas JSR, Abriata JP, Tofani LB, Vaidergorn MDM, Emery FDS, Chorilli M, Marchetti JM. Docetaxel-loaded folate-modified TPGS-transfersomes for glioblastoma multiforme treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112033. [PMID: 33947535 DOI: 10.1016/j.msec.2021.112033] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/03/2021] [Accepted: 02/27/2021] [Indexed: 02/07/2023]
Abstract
Glioblastoma multiforme (GBM) is a first primary Central Nervous System tumor with high incidence and lethality. Its treatment is hampered by the difficulty to overcome the blood-brain barrier (BBB) and by the non-specificity of chemotherapeutics to tumor cells. This study was based on the development characterization and in vitro efficacy of folate-modified TPGS transfersomes containing docetaxel (TF-DTX-FA) to improve GBM treatment. TF-DTX-FA and unmodified transfersomes (TF-DTX) were prepared through thin-film hydration followed by extrusion technique and characterized by physicochemical and in vitro studies. All formulations showed low particles sizes (below 200 nm), polydispersity index below 0.2, negative zeta potential (between -16.75 to -12.45 mV) and high encapsulation efficiency (78.72 ± 1.29% and 75.62 ± 0.05% for TF-DTX and TF-DTX-FA, respectively). Furthermore, cytotoxicity assay of TF-DTX-FA showed the high capacity of the nanocarriers to reduce the viability of U-87 MG in both 2D and 3D culture models, when compared with DTX commercial formulation and TF-DTX. In vitro cellular uptake assay indicated the selectivity of transfersomes to tumoral cells when compared to normal cells, and the higher ability of TF-DTX-FA to be internalized into 2D U-87 MG in comparison with TF-DTX (72.10 and 62.90%, respectively, after 24 h). Moreover, TF-DTX-FA showed higher permeability into 3D U-87 MG spheroid than TF-DTX, suggesting the potential FA modulation to target treatment of GBM.
Collapse
Affiliation(s)
- Marcela Tavares Luiz
- School of Pharmaceutical Science of Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto, São Paulo, Brazil
| | - Juliana Santos Rosa Viegas
- School of Pharmaceutical Science of Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto, São Paulo, Brazil
| | - Juliana Palma Abriata
- School of Pharmaceutical Science of Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto, São Paulo, Brazil
| | - Larissa Bueno Tofani
- School of Pharmaceutical Science of Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto, São Paulo, Brazil
| | - Miguel de Menezes Vaidergorn
- School of Pharmaceutical Science of Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto, São Paulo, Brazil
| | - Flavio da Silva Emery
- School of Pharmaceutical Science of Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto, São Paulo, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, Sao Paulo, Brazil
| | - Juliana Maldonado Marchetti
- School of Pharmaceutical Science of Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto, São Paulo, Brazil.
| |
Collapse
|
7
|
Development and In Vitro Evaluation of 5-Fluorouracil-Eluting Stents for the Treatment of Colorectal Cancer and Cancer-Related Obstruction. Pharmaceutics 2020; 13:pharmaceutics13010017. [PMID: 33374233 PMCID: PMC7823773 DOI: 10.3390/pharmaceutics13010017] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023] Open
Abstract
Self-expanding metal stents (SEMSs) are currently the gold standard for the localised management of malignant gastrointestinal (GI) stenosis and/or obstructions. Despite encouraging clinical success, in-stent restenosis caused by tumour growth is a significant challenge. Incorporating chemotherapeutic drugs into GI stents is an emerging strategy to provide localised and sustained release of drugs to intestinal malignant tissues to prevent tumour growth. Therefore, the aim of this work was to develop and evaluate a local GI stent-based delivery system that provides a controlled release of 5-fluorouracil (5FU) over a course of several weeks to months, for the treatment of colorectal cancer and cancer-related stenosis/obstructions. The 5FU-loaded GI stents were fabricated via sequential dip-coating of commercial GI stents with a drug-loaded polyurethane (PU) basecoat and a drug-free poly(ethylene-co-vinyl acetate) (PEVA) topcoat. For comparison, two types of commercial stents were investigated, including bare and silicone (Si) membrane-covered stents. The physicochemical properties of the 5FU-loaded stents were evaluated using photoacoustic Fourier-transform infrared (PA-FTIR) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and thermal analysis. In vitro release studies in biological medium revealed that the 5FU-loaded stents provided a sustained release of drug over the period studied (18 d), and cell viability, cell cycle distribution and apoptosis assays showed that the released 5FU had comparable anticancer activity against human colon cancer cells (HCT-116) to pure 5FU. This study demonstrates that dip-coating is a facile and reliable approach for fabricating drug-eluting stents (DESs) that are promising candidates for the treatment of GI obstructions and/or restenosis.
Collapse
|
8
|
Fouladian P, Kohlhagen J, Arafat M, Afinjuomo F, Workman N, Abuhelwa AY, Song Y, Garg S, Blencowe A. Three-dimensional printed 5-fluorouracil eluting polyurethane stents for the treatment of oesophageal cancers. Biomater Sci 2020; 8:6625-6636. [DOI: 10.1039/d0bm01355b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
3D printing is introduced as rapid and facile approach to prepare personalized drug-eluting stents for the treatment of oesophageal cancers.
Collapse
Affiliation(s)
- Paris Fouladian
- Pharmaceutical Innovation and Development (PIDG) Group
- Clinical and Health Sciences
- University of South Australia
- Adelaide
- Australia
| | - Jarrod Kohlhagen
- Applied Chemistry and Translational Biomaterials (ACTB) group
- Clinical and Health Sciences
- University of South Australia
- Adelaide
- Australia
| | - Mohammad Arafat
- Pharmaceutical Innovation and Development (PIDG) Group
- Clinical and Health Sciences
- University of South Australia
- Adelaide
- Australia
| | - Franklin Afinjuomo
- Pharmaceutical Innovation and Development (PIDG) Group
- Clinical and Health Sciences
- University of South Australia
- Adelaide
- Australia
| | - Nathan Workman
- Applied Chemistry and Translational Biomaterials (ACTB) group
- Clinical and Health Sciences
- University of South Australia
- Adelaide
- Australia
| | - Ahmad Y. Abuhelwa
- Discipline of Clinical Pharmacology
- College of Medicine and Public Health
- Flinders University
- Bedford Park 5042
- Australia
| | - Yunmei Song
- Pharmaceutical Innovation and Development (PIDG) Group
- Clinical and Health Sciences
- University of South Australia
- Adelaide
- Australia
| | - Sanjay Garg
- Pharmaceutical Innovation and Development (PIDG) Group
- Clinical and Health Sciences
- University of South Australia
- Adelaide
- Australia
| | - Anton Blencowe
- Applied Chemistry and Translational Biomaterials (ACTB) group
- Clinical and Health Sciences
- University of South Australia
- Adelaide
- Australia
| |
Collapse
|