1
|
Ye Z, Sun L, Xiang Q, Hao Y, Liu H, He Q, Yang X, Liao W. Advancements of Biomacromolecular Hydrogel Applications in Food Nutrition and Health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23689-23708. [PMID: 39410660 DOI: 10.1021/acs.jafc.4c05903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Hydrogels exhibit remarkable degradability, biocompatibility and functionality, which position them as highly promising materials for applications within the food and pharmaceutical industries. Although many relevant studies on hydrogels have been reported in the chemical industry, materials, and other fields, there have been few reviews on their potential applications in food nutrition and human health. This study aims to address this gap by reviewing the functional properties of hydrogels and assessing their value in terms of food nutrition and human health. The use of hydrogels in preserving bioactive ingredients, food packaging and food distribution is delved into specifically in this review. Hydrogels can serve as cutting-edge materials for food packaging and delivery, ensuring the preservation of nutritional activity within food products, facilitating targeted delivery of bioactive compounds and regulating the digestion and absorption processes in the human body, thereby promoting human health. Moreover, hydrogels find applications in in vitro cell and tissue culture, human tissue repair, as well as chronic disease prevention and treatment. These broad applications have attracted great attention in the fields of human food nutrition and health. Ultimately, this paper serves as a valuable reference for further utilization and exploration of hydrogels in these respective fields.
Collapse
Affiliation(s)
- Zichong Ye
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Linye Sun
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Qianru Xiang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Yuting Hao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Hongji Liu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Qi He
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, P. R. China
| | - Xingfen Yang
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, P. R. China
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| |
Collapse
|
2
|
Uddin MN, Hossain MT, Mahmud N, Alam S, Jobaer M, Mahedi SI, Ali A. Research and applications of nanoclays: A review. SPE POLYMERS 2024; 5:507-535. [DOI: 10.1002/pls2.10146] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
AbstractNanoclays, a specific type of nanomaterial, have emerged as versatile and dynamic materials, with tremendous potential for advanced functional applications. Despite publishing a large number of research articles, there are relatively few review articles on this topic. This comprehensive review delves into the most widely used nanoclays and explores the diverse range of applications in different fields, such as aerospace, automobile, construction, biomedical, food packaging, and polymer composites. With their ability to enhance the performance of materials and products, nanoclays have become a highly desired material in various industries. The challenges associated with nanoclays like complex properties, difficulty in developing new synthesis methods, and challenges in investigating long‐term durability and stability have been summarized. The future research directions with the exciting possibilities to develop future innovative materials have been highlighted at the end of the article.Highlights
This review provides an extensive examination of the most widely used nanoclays, detailing their properties, types, and limitations.
A summary of publication trends over the last 15 years, based on Scopus data up to 2024, indicates growing interest and research output in nanoclays.
Applications of nanoclays span across aerospace, automobile, construction, biomedical, food packaging, and polymer composites, showcasing their versatility.
Key challenges discussed include complex properties, difficulties in new synthesis methods, and issues in long‐term durability and stability.
Future research directions highlight the potential for developing innovative materials using nanoclays.
Collapse
Affiliation(s)
- Md. Nur Uddin
- Department of Textile Engineering Dhaka University of Engineering and Technology Gazipur Bangladesh
| | - Md. Tanvir Hossain
- Department of Textile Engineering Bangladesh University of Business and Technology (BUBT) Dhaka Bangladesh
| | - Nadim Mahmud
- Department of Textile Engineering Dhaka University of Engineering and Technology Gazipur Bangladesh
| | - Sadikul Alam
- Department of Textile Engineering Dhaka University of Engineering and Technology Gazipur Bangladesh
| | - Md Jobaer
- Department of Electrical and Electronics Engineering Northern University Bangladesh Dhaka Bangladesh
| | - Sajjatul Islam Mahedi
- Bachelor of Medicine and Bachelor of Surgery Eastern Medical College Cumilla Bangladesh
| | - Ayub Ali
- Department of Textile Engineering Dhaka University of Engineering and Technology Gazipur Bangladesh
| |
Collapse
|
3
|
Feng F, Zhang Y, Zhang X, Mu B, Qu W, Wang P. Natural Nano-Minerals (NNMs): Conception, Classification and Their Biomedical Composites. ACS OMEGA 2024; 9:17760-17783. [PMID: 38680370 PMCID: PMC11044256 DOI: 10.1021/acsomega.4c00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 05/01/2024]
Abstract
Natural nano-minerals (NNMs) are minerals that are derived from nature with a size of less than 100 nm in at least one dimension in size. NNMs have a number of excellent properties due to their unique nanostructure and have been applied in various fields in recent years. They are rising stars in various disciplines, such as materials, biomedicine, and chemistry, taking advantage of their huge surface area, multiple active sites, excellent adsorption capacity, large quantity, low cost, and nontoxicity, etc. To provide a more comprehensive overview of NNMs and the biomedical applications of NNMs-based nanocomposites, this review classifies NNMs into three types by dimension, lists the structure and properties of typical NNMs, and illustrates their biomedical applications. Furthermore, a novel concept of natural nanomineral medical materials (NNMMs) is proposed, focusing on the medical value of NNMs. In addition, this review attempts to address the current challenges and delineate future directions for the advancement of NNMs. With the deepening of biomedical applications, it is believed that NNMMMs will inevitably play an important role in the field of human health and contribute to its promotion.
Collapse
Affiliation(s)
- Feng Feng
- Engineering
Research Center of Ministry of Education for Geological Carbon Storage
and Low Carbon Utilization of Resources, Beijing Key Laboratory of
Materials Utilization of Nonmetallic Minerals and Solid Wastes, National
Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing100083, China
| | - Yihe Zhang
- Engineering
Research Center of Ministry of Education for Geological Carbon Storage
and Low Carbon Utilization of Resources, Beijing Key Laboratory of
Materials Utilization of Nonmetallic Minerals and Solid Wastes, National
Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing100083, China
| | - Xiao Zhang
- Engineering
Research Center of Ministry of Education for Geological Carbon Storage
and Low Carbon Utilization of Resources, Beijing Key Laboratory of
Materials Utilization of Nonmetallic Minerals and Solid Wastes, National
Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing100083, China
| | - Bin Mu
- Key
Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
| | - Wenjie Qu
- Engineering
Research Center of Ministry of Education for Geological Carbon Storage
and Low Carbon Utilization of Resources, Beijing Key Laboratory of
Materials Utilization of Nonmetallic Minerals and Solid Wastes, National
Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing100083, China
| | - Peixia Wang
- National
Anti-Drug Laboratory Beijing Regional Center, Beijing, 100164, China
- Beijing
Narcotics Control Technology Center, Beijing, 100164, China
| |
Collapse
|
4
|
Huang X, Hu B, Zhang X, Fan P, Chen Z, Wang S. Recent advances in the application of clay-containing hydrogels for hemostasis and wound healing. Expert Opin Drug Deliv 2024; 21:457-477. [PMID: 38467560 DOI: 10.1080/17425247.2024.2329641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
INTRODUCTION Immediate control of bleeding and anti-infection play important roles in wound management. Multiple organ dysfunction syndrome and death may occur if persistent bleeding, hemodynamic instability, and hypoxemia are not addressed. The combination of clay and hydrogel provides a new outlet for wound hemostasis. In this review, the current research progress of hydrogel/clay composite hemostatic agents was reviewed. AREAS COVERED This paper summarizes the characteristics of several kinds of clay including kaolinite, montmorillonite, laponite, sepiolite, and palygorskite. The advantages and disadvantages of its application in hemostasis were also summarized. Future directions for the application of hydrogel/clay composite hemostatic agents are presented. EXPERT OPINION Clay can activate the endogenous hemostatic pathway by increasing blood cell concentration and promoting plasma absorption to accelerate the hemostasis. Clay is antimicrobial due to the slow release of metal ions and has a rich surface charge with a high affinity for proteins and cells to promote tissue repair. Hydrogels have some properties such as good biocompatibility, strong adhesion, high stretchability, and good self-healing. Despite promising advances, hydrogel/clay composite hemostasis remains a limitation. Therefore, more evidence is needed to further elucidate the risk factors and therapeutic effects of hydrogel/clay in hemostasis and wound healing.
Collapse
Affiliation(s)
- Xiaojuan Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Bin Hu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Xinyuan Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Peng Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Zheng Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| |
Collapse
|
5
|
M. E. Elkhalifa A, Ali SI, Nabi SU, Bashir I, Taifa S, Rakhshan R, Shah IH, Mir MA, Malik M, Ramzan Z, Nazar M, Bashir N, Ahad S, Khursheed I, Elamin E, Bazie EA, Alzerwi NA, Rayzah M, Idrees B, Rayzah F, Baksh Y, Alsultan A, Alzahrani AM. Modulation of immune cum inflammatory pathway by earthworm granulation tissue extract in wound healing of diabetic rabbit model. Heliyon 2024; 10:e24909. [PMID: 38333811 PMCID: PMC10850419 DOI: 10.1016/j.heliyon.2024.e24909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/03/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
Regeneration is a rare occurrence in the animal kingdom, but the earthworm stands out as a remarkable example of this phenomenon. Recent research has highlighted the promising wound healing properties of extracts derived from earthworms. Therefore, we propose that earthworm granulation tissue extract (EGTE) may facilitate wound healing by regulating immune responses in a rabbit diabetic wound model. Electron microscopy reveals that 70 % EGTE possesses noteworthy porosity with spherical to irregularly oval configuration. Gas chromatography-mass spectrometry (GC-MS) Characterization of EGTE revealed higher levels of ergosta-5,7,22-trien-3-ol, (3. beta.,22E). In-Vitro studies revealed significant anti-oxidant, anti-inflammatory and anti-bacterial properties in dose dependent manner. Likewise, cytotoxicity assessments reveal that 70 % EGTE exhibits minimal harm to cells while displaying substantial antioxidant and anti-inflammatory activities. For In-Vivo studies excision wounds were created on the dorsal regions of the experimental animals and were divided as Group I (50 % EGTE), Group II (70 % EGTE), Group III (vehicle) and Group IV (distilled water). Over a 21-day observation period 70 % EGTE facilitated the early healing of wounds in the experimental animals, evident through prompt wound closure, granulation tissue formation, increased DNA content, enhanced tensile strength of the wound area and enhanced the expression/synthesis of wound healing markers/proteins. From these results it can be postulated that EGTE accelerates wound healing by immune modulation, dampening of inflammatory pathway and enhanced expression of growth markers. Henceforth making it promising candidate for therapeutic use in diabetic wound healing.
Collapse
Affiliation(s)
- Ahmed M. E. Elkhalifa
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, 11673, Saudi Arabia
- Department of Haematology, Faculty of Medical Laboratory Sciences, University of El Imam El Mahdi, Kosti, 1158, Sudan
| | - Sofi Imtiyaz Ali
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Showkat Ul Nabi
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Imran Bashir
- Department of Sheep Husbandry, Srinagar, Jammu & Kashmir, 190006, India
| | - Syed Taifa
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Rabia Rakhshan
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu & Kashmir, 190006, India
| | - Iqra Hussain Shah
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Muzafar Ahmad Mir
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Masood Malik
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Zahid Ramzan
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Mehak Nazar
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Nusrat Bashir
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Shubeena Ahad
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Ibraq Khursheed
- Department of Zoology, Central University of Kashmir, 191201, Nunar, Ganderbal, Jammu & Kashmir, India
| | - Elham Elamin
- Department of Haematology, Faculty of Medical Laboratory Sciences, University of El Imam El Mahdi, Kosti, 1158, Sudan
| | - Elsharif A. Bazie
- Pediatric Department, Faculty of Medicine, University of El Imam El Mahdi, Kosti, 1158, Sudan
| | - Nasser A.N. Alzerwi
- Department of Surgery, College of Medicine, Majmaah University, P. O. Box 66, Al-Majmaah, 11952, Riyadh, Kingdom of Saudi Arabia
| | - Musaed Rayzah
- Department of Surgery, College of Medicine, Majmaah University, P. O. Box 66, Al-Majmaah, 11952, Riyadh, Kingdom of Saudi Arabia
| | - Bandar Idrees
- Department of Surgery, Prince Sultan Military Medical City in Riyadh, Makkah Al Mukarramah Rd, As Sulimaniyah, Saudi Arabia
| | - Fares Rayzah
- Department of Surgery, Aseer Central Hospital, Abha, Saudi Arabia
| | - Yaser Baksh
- Department of Surgery, Al-Iman General Hospital, Riyadh, Saudi Arabia
| | - Afnan Alsultan
- Department of Surgery, King Saud Medical City, Riyadh, Saudi Arabia
| | - Ahmed M. Alzahrani
- Department of Surgery, College of Medicine, Majmaah University, P. O. Box 66, Al-Majmaah, 11952, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
6
|
Ruggeri M, Miele D, Contardi M, Vigani B, Boselli C, Icaro Cornaglia A, Rossi S, Suarato G, Athanassiou A, Sandri G. Mycelium-based biomaterials as smart devices for skin wound healing. Front Bioeng Biotechnol 2023; 11:1225722. [PMID: 37650039 PMCID: PMC10465301 DOI: 10.3389/fbioe.2023.1225722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023] Open
Abstract
Introduction: Recently, mycelia of Ganoderma lucidum and Pleurotus ostreatus, edible fungi, have been characterized in vitro as self-growing biomaterials for tissue engineering since they are constituted of interconnected fibrous networks resembling the dermal collagen structure. Aim: This work aims to investigate the biopharmaceutical properties of G. lucidum and P. ostreatus mycelia to prove their safety and effectiveness in tissue engineering as dermal substitutes. Methods: The mycelial materials were characterized using a multidisciplinary approach, including physicochemical properties (morphology, thermal behavior, surface charge, and isoelectric point). Moreover, preclinical properties such as gene expression and in vitro wound healing assay have been evaluated using fibroblasts. Finally, these naturally-grown substrates were applied in vivo using a murine burn/excisional wound model. Conclusions: Both G. lucidum and P. ostreatus mycelia are biocompatible and able to safely and effectively enhance tissue repair in vivo in our preclinical model.
Collapse
Affiliation(s)
- Marco Ruggeri
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Dalila Miele
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Marco Contardi
- Smart Materials, Istituto Italiano di Tecnologia, Genova, Italy
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Cinzia Boselli
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Antonia Icaro Cornaglia
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Giulia Suarato
- Smart Materials, Istituto Italiano di Tecnologia, Genova, Italy
| | | | | |
Collapse
|
7
|
Seaberg J, Clegg JR, Bhattacharya R, Mukherjee P. Self-Therapeutic Nanomaterials: Applications in Biology and Medicine. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2023; 62:190-224. [PMID: 36938366 PMCID: PMC10022599 DOI: 10.1016/j.mattod.2022.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Over past decades, nanotechnology has contributed to the biomedical field in areas including detection, diagnosis, and drug delivery via opto-electronic properties or enhancement of biological effects. Though generally considered inert delivery vehicles, a plethora of past and present evidence demonstrates that nanomaterials also exude unique intrinsic biological activity based on composition, shape, and surface functionalization. These intrinsic biological activities, termed self-therapeutic properties, take several forms, including mediation of cell-cell interactions, modulation of interactions between biomolecules, catalytic amplification of biochemical reactions, and alteration of biological signal transduction events. Moreover, study of biomolecule-nanomaterial interactions offers a promising avenue for uncovering the molecular mechanisms of biology and the evolution of disease. In this review, we observe the historical development, synthesis, and characterization of self-therapeutic nanomaterials. Next, we discuss nanomaterial interactions with biological systems, starting with administration and concluding with elimination. Finally, we apply this materials perspective to advances in intrinsic nanotherapies across the biomedical field, from cancer therapy to treatment of microbial infections and tissue regeneration. We conclude with a description of self-therapeutic nanomaterials in clinical trials and share our perspective on the direction of the field in upcoming years.
Collapse
Affiliation(s)
- Joshua Seaberg
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
- M.D./Ph.D. Program, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - John R. Clegg
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
8
|
Pavlicevic M, Abdelraheem W, Zuverza-Mena N, O’Keefe T, Mukhtar S, Ridge G, Ranciato J, Haynes C, Elmer W, Pignatello J, Pagano L, Caldara M, Marmiroli M, Maestri E, Marmiroli N, White JC. Engineered Nanoparticles, Natural Nanoclay and Biochar, as Carriers of Plant-Growth Promoting Bacteria. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4474. [PMID: 36558327 PMCID: PMC9783841 DOI: 10.3390/nano12244474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
The potential of biochar and nanoparticles to serve as effective delivery agents for beneficial bacteria to crops was investigated. Application of nanoparticles and biochar as carriers for beneficial bacteria improved not only the amount of nitrogen-fixing and phosphorus-solubilizing bacteria in soil, but also improved chlorophyll content (1.2-1.3 times), cell viability (1.1-1.5 times), and antioxidative properties (1.1-1.4 times) compared to control plants. Treatments also improved content of phosphorus (P) (1.1-1.6 times) and nitrogen (N) (1.1-1.4 times higher) in both tomato and watermelon plants. However, the effect of biochars and nanoparticles were species-specific. For example, chitosan-coated mesoporous silica nanoparticles with adsorbed bacteria increased the phosphorus content in tomato by 1.2 times compared to a 1.1-fold increase when nanoclay with adsorbed bacteria was applied. In watermelon, the situation was reversed: 1.1-fold increase in the case of chitosan-coated mesoporous silica nanoparticles and 1.2 times in case of nanoclay with adsorbed bacteria. Our findings demonstrate that use of nanoparticles and biochar as carriers for beneficial bacteria significantly improved plant growth and health. These findings are useful for design and synthesis of novel and sustainable biofertilizer formulations.
Collapse
Affiliation(s)
- Milica Pavlicevic
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Wael Abdelraheem
- Connecticut Agricultural Experimental Station, New Haven, CT 06511, USA
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | | | - Tana O’Keefe
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Salma Mukhtar
- Connecticut Agricultural Experimental Station, New Haven, CT 06511, USA
| | - Gale Ridge
- Connecticut Agricultural Experimental Station, New Haven, CT 06511, USA
| | - John Ranciato
- Connecticut Agricultural Experimental Station, New Haven, CT 06511, USA
| | - Christy Haynes
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wade Elmer
- Connecticut Agricultural Experimental Station, New Haven, CT 06511, USA
| | - Joseph Pignatello
- Connecticut Agricultural Experimental Station, New Haven, CT 06511, USA
| | - Luca Pagano
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Marina Caldara
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Marta Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Elena Maestri
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
- Interdepartmental Center SITEIA.PARMA, University of Parma, 43124 Parma, Italy
| | - Nelson Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
- Interdepartmental Center SITEIA.PARMA, University of Parma, 43124 Parma, Italy
- National Interuniversity Consortium for Environmental Sciences (CINSA), 43124 Parma, Italy
| | - Jason C. White
- Connecticut Agricultural Experimental Station, New Haven, CT 06511, USA
| |
Collapse
|
9
|
Zhao X, Huang YF, Tian X, Luo J, Wang H, Wang J, Chen Y, Jia P. Polysaccharide-Based Adhesive Antibacterial and Self-Healing Hydrogel for Sealing Hemostasis. Biomacromolecules 2022; 23:5106-5115. [PMID: 36395528 DOI: 10.1021/acs.biomac.2c00943] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Adhesive hydrogels have been considered as one of the most ideal materials for wound dressing. However, most existing adhesive hydrogels still have disadvantages such as low mechanical properties, poor biological activity (antibacterial and hemostatic ability), and low biocompatibility, which largely limit their application. Thus, it is highly desired to prepare a hydrogel-based wound dressing with good self-healing, ideal adhesive properties, rapid hemostasis, and excellent wound infection prevention activity. In this study, a simple method was presented to prepare a PAM-Lignin-CS-Laponite-SA hydrogel for wound dressing. The obtained hydrogel displayed excellent self-healing ability and repeatable adhesive performance, benefiting from the introduction of hydrogen bonding and electrostatic interactions inside the hydrogel network. In addition, the PAM-Lignin-CS-Laponite-SA hydrogel also exhibited low cell cytotoxicity, good antibacterial activity, and outstanding hemostatic properties. In conclusion, the PAM-Lignin-CS-Laponite-SA hydrogel demonstrated good tissue adhesion, excellent self-healing ability, effective bleeding control, and good antibacterial activity to prevent wound infection, which provides a new idea for developing a multifunctional hydrogel-based tissue adhesive hemostatic dressing.
Collapse
Affiliation(s)
- Xiaoli Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi710127, China
| | - Ya-Feng Huang
- Xi'an Modern Chemistry Research Institute, Xi'an, Shaanxi710065, China
| | - Xuan Tian
- Xi'an Modern Chemistry Research Institute, Xi'an, Shaanxi710065, China
| | - Jinni Luo
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi710127, China
| | - Huanxia Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi710127, China
| | - Jinfei Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi710127, China
| | - Yuan Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi710127, China
| | - Pengxiang Jia
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi710127, China
| |
Collapse
|
10
|
Tian X, Zhang Y, Li H, Jiao Y, Wang Q, Zhang Y, Ma N, Wang W. Property of mud and its application in cosmetic and medical fields: a review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:4235-4251. [PMID: 35254605 DOI: 10.1007/s10653-022-01228-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Mud is a semi-colloidal substance formed by the mixture of inorganic, organic and water under the influence of various physical and chemical factors through geological and biological processes. The chemical composition of mud is complex, rich in Ca2+, Zn2+, Mg2+, Na+ and other mineral elements, also contains organic matter such as humic acid, fulvic acid and acetic acid. In cosmetic field, mud can improve the activity of glutathione enzyme and superoxide dismutase in skin, which helps the skin anti-aging. Besides, it also can improve the skin microbial community, due to its distinctively physical properties, mineral ions, microorganisms, etc. In medical field, mud can treat osteoarthritis, especially knee osteoarthritis which has been studied extensively, and it can also increase the chemotaxis of macrophages. On the one hand, the use of clay (a kind of refined mud) can protect the gastrointestinal tract and treat some gastrointestinal diseases. On the other hand, clay is often used as carriers or composites in drug delivery, especially in skin drug delivery, showing very positive results. The purpose of this review is to present an overview of current knowledge about the application of mud in cosmetic and medical fields and to provide ideas for further research in mud.
Collapse
Affiliation(s)
- Xiaojing Tian
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Yafei Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Haichao Li
- College of Chemistry and Chemical Engineering, Qinghai Nationalities University, Xining, 810007, People's Republic of China
| | - Yuzhen Jiao
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Qiuli Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Yumeng Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Ning Ma
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Wenhang Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
11
|
Mokdad R, Aouabed A, Ball V, Si Youcef FF, Nasrallah N, Heurtault B, HadjSadok A. Formulation and rheological evaluation of liposomes-loaded carbopol hydrogels based on thermal waters. Drug Dev Ind Pharm 2022; 48:635-645. [PMID: 36420770 DOI: 10.1080/03639045.2022.2152044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The aims of this study were to develop topical liposomal hydrogels based on thermal waters (TWs) acquired in the region of Biskra (Northeast Algeria) and also to investigate their rheological properties. Liposomes containing two highly mineralized thermal waters, Baraka (BTW) and Salhine (STW), were prepared by probe sonication using phosphatidylcholine (PC) and cholesterol (Chol), plain or mixed with phosphatidylglycerol (PG). Based on their lipid composition, obtained liposomes presented vesicle sizes of 60 nm, a low polydispersity index, and various negative zeta potentials. It was noted that with increasing counterions charge in TWs the zeta potential of liposomes decreased toward neutral values.Carbopol (1%, w/w) hydrogels prepared with BTW, STW, and also demineralized water (placebo hydrogel) showed a non-Newtonian behavior, pseudoplastic fluid adjusted to Carreau model. The composition of thermal waters influenced highly the rheological properties of Carbopol hydrogels. Liposomal hydrogels were prepared by dispersing liposomes in hydrogels formulated with the same encapsulated thermal water. Regardless of composition or lipid concentration of added liposomes, the viscosity and viscoelastic parameters of Carbopol hydrogels changed negligibly. Indeed, liposome composition and lipid concentration seemed to have no effect on the rheological properties of Carbopol hydrogel in the presence of an important charge of cations. Hence, hydrogels and liposomal hydrogels based on thermal waters had suitable rheological properties for topical application and delivery of minerals in the skin.
Collapse
Affiliation(s)
- Romaissaa Mokdad
- Laboratoire de l'Analyse Fonctionnelle des Procédés Chimiques, Département de génie des procédés, Faculté de Technologie, Université de Blida, Blida, Algérie.,3BIO Team, UMR 7199, Université de Strasbourg/CNRS, Faculté de Pharmacie, Illkirch Cedex, France
| | - Ali Aouabed
- Laboratoire de l'Analyse Fonctionnelle des Procédés Chimiques, Département de génie des procédés, Faculté de Technologie, Université de Blida, Blida, Algérie
| | - Vincent Ball
- Institut National de la Santé et de la Recherche Médicale, Unité mixte de Recherche 1121, Strasbourg, France
| | | | - Noureddine Nasrallah
- Laboratory of Reaction Engineering, Faculty of Mechanical Engineering and Process Engineering, USTHB, BP 32, Algiers, Algeria
| | - Béatrice Heurtault
- 3BIO Team, UMR 7199, Université de Strasbourg/CNRS, Faculté de Pharmacie, Illkirch Cedex, France
| | - Abdelkader HadjSadok
- Laboratoire de l'Analyse Fonctionnelle des Procédés Chimiques, Département de génie des procédés, Faculté de Technologie, Université de Blida, Blida, Algérie
| |
Collapse
|
12
|
Alsakhawy MA, Abdelmonsif DA, Haroun M, Sabra SA. Naringin-loaded Arabic gum/pectin hydrogel as a potential wound healing material. Int J Biol Macromol 2022; 222:701-714. [PMID: 36170930 DOI: 10.1016/j.ijbiomac.2022.09.200] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 11/26/2022]
Abstract
Wound healing is a complicated cellular process with overlapping phases. Naringin (NAR); a flavanone glycoside, possesses numerous pharmacological effects such as anti-inflammatory, antioxidant and anti-apoptotic effects. In the current study, Arabic gum (AG)/pectin hydrogel was utilized to encapsulate NAR. Drug-loaded AG/pectin hydrogel exhibited excellent EE% of about 99.88 ± 0.096 and high DL% of about 16.64 ± 0.013. The formulated drug-loaded hydrogel was characterized using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and Zetasizer analyzer, besides determination of equilibrium degree of swelling (EDS%). Afterwards, wound healing potential of NAR-loaded AG/pectin hydrogel was evaluated in an in vivo animal model. Results manifested that NAR-loaded AG/pectin hydrogel was able to accelerate wound healing in terms of enhanced angiogenesis, re-epithelialization and collagen deposition. Furthermore, it significantly (P < 0.001) down-regulated the mRNA expression of inflammatory mediators (TNF-α) and apoptosis (BAX). In addition, NAR-loaded AG/pectin hydrogel was found to possess potent antioxidant activity as it enhanced the levels of SOD and GSH, besides decreasing the levels of MPO, MDA and nitrite. These data suggest that NAR-loaded AG/pectin hydrogel could be utilized in wound healing applications.
Collapse
Affiliation(s)
- Marwa A Alsakhawy
- Department of Biotechnology, Institute of Graduate studies and Research, Alexandria University, Alexandria 21526, Egypt
| | - Doaa A Abdelmonsif
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Medhat Haroun
- Department of Biotechnology, Institute of Graduate studies and Research, Alexandria University, Alexandria 21526, Egypt
| | - Sally A Sabra
- Department of Biotechnology, Institute of Graduate studies and Research, Alexandria University, Alexandria 21526, Egypt.
| |
Collapse
|
13
|
Tipa C, Cidade MT, Borges JP, Costa LC, Silva JC, Soares PIP. Clay-Based Nanocomposite Hydrogels for Biomedical Applications: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3308. [PMID: 36234440 PMCID: PMC9565291 DOI: 10.3390/nano12193308] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
In recent decades, new and improved materials have been developed with a significant interest in three-dimensional (3D) scaffolds that can cope with the diverse needs of the expanding biomedical field and promote the required biological response in multiple applications. Due to their biocompatibility, ability to encapsulate and deliver drugs, and capacity to mimic the extracellular matrix (ECM), typical hydrogels have been extensively investigated in the biomedical and biotechnological fields. The major limitations of hydrogels include poor mechanical integrity and limited cell interaction, restricting their broad applicability. To overcome these limitations, an emerging approach, aimed at the generation of hybrid materials with synergistic effects, is focused on incorporating nanoparticles (NPs) within polymeric gels to achieve nanocomposites with tailored functionality and improved properties. This review focuses on the unique contributions of clay nanoparticles, regarding the recent developments of clay-based nanocomposite hydrogels, with an emphasis on biomedical applications.
Collapse
Affiliation(s)
- Cezar Tipa
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Maria T. Cidade
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - João P. Borges
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Luis C. Costa
- I3N and Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jorge C. Silva
- CENIMAT|i3N, Department of Physics, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Paula I. P. Soares
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
14
|
Cao L, Xie W, Cui H, Xiong Z, Tang Y, Zhang X, Feng Y. Fibrous Clays in Dermopharmaceutical and Cosmetic Applications: Traditional and Emerging Perspectives. Int J Pharm 2022; 625:122097. [PMID: 35952800 DOI: 10.1016/j.ijpharm.2022.122097] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/19/2022] [Accepted: 08/05/2022] [Indexed: 12/15/2022]
Abstract
Functionalization of natural clay minerals for high value-added pharmaceutical and cosmetic applications receives significant research attention worldwide attributable to a rising demand and ongoing search for green, efficient, economically sustainable and ecofriendly geomaterials. Fibrous clays, i.e. palygorskite and sepiolite, are naturally-occurring hydrated magnesium aluminum silicate clay minerals with 2:1 layer-chain microstructure and one-dimensional nanofibrous morphology. Due to their unique structural, textural and compatibility features, over the past decade, fibrous clays and their organic modified derivatives are increasingly used in the dermopharmaceutical and cosmetic fields as excipients, active agents or nanocarriers to develop novel skin delivery systems or to modify drug release profile for enhanced health effects. This comprehensive review presents the up-to-date information on fibrous clays used in topically-applied products for therapeutic and cosmetic purposes with the focus on their performance-related structural characteristics and the underlying mechanisms. The recent advancement of fibrous clay-based skin delivery systems was summarized in wide range of applications including pelotherapy, wound healing, antimicrobial action, coloration and UV protection. An overview of the commonly used topically-applied dosage forms (powders, hydrogels, films, peloids and Pickering emulsion) as well as the toxicological aspects was also included, which might provide guidance to the design and development of fibrous clay-based skin delivery systems.
Collapse
Affiliation(s)
- Lihua Cao
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Wenjing Xie
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Hongyan Cui
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Ziyi Xiong
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Ying Tang
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Xi Zhang
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Yongjun Feng
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China; Gansu West Attapulgite Application Research Institute, Baiyin, Gansu 730900, China.
| |
Collapse
|
15
|
Ruggeri M, Bianchi E, Rossi S, Boselli C, Icaro Cornaglia A, Malavasi L, Carzino R, Suarato G, Sánchez-Espejo R, Athanassiou A, Viseras C, Ferrari F, Sandri G. Maltodextrin-amino acids electrospun scaffolds cross-linked with Maillard-type reaction for skin tissue engineering. BIOMATERIALS ADVANCES 2022; 133:112593. [PMID: 35527142 DOI: 10.1016/j.msec.2021.112593] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/12/2021] [Accepted: 11/30/2021] [Indexed: 10/19/2022]
Abstract
The goal of this work is the design and the development of scaffolds based on maltodextrin (MD) to recover chronic lesions. MD was mixed with arginine/lysine/polylysine and the electrospinning was successfully used to prepare scaffolds with uniform and continuous nanofibers having regular shape and smooth surface. A thermal treatment was applied to obtain insoluble scaffolds in aqueous environment, taking the advantage of amino acids-polysaccharide conjugates formed via Maillard-type reaction. The morphological analysis showed that the scaffolds had nanofibrous structures, and that the cross-linking by heating did not significantly change the nanofibers' dimensions and did not alter the system stability. Moreover, the heating process caused a reduction of free amino group and proportionally increased scaffold cross-linking degree. The scaffolds were elastic and resistant to break, and possessed negative zeta potential in physiological fluids. These were characterized by direct antioxidant properties and Fe2+ chelation capability (indirect antioxidant properties). Moreover, the scaffolds were cytocompatible towards fibroblasts and monocytes-derived macrophages, and did not show any significant pro-inflammatory activity. Finally, those proved to accelerate the recovery of the burn/excisional wounds. Considering all the features, MD-poly/amino acids scaffolds could be considered as promising medical devices for the treatment of chronic wounds.
Collapse
Affiliation(s)
- Marco Ruggeri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Eleonora Bianchi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Cinzia Boselli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Antonia Icaro Cornaglia
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, via Forlanini 2, 27100 Pavia, Italy
| | - Lorenzo Malavasi
- Department of Chemistry, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy
| | - Riccardo Carzino
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Giulia Suarato
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Rita Sánchez-Espejo
- Andalusian Institute of Earth Sciences, CSIC-UGR, Avenida de las Palmeras 4, Armilla, Granada 18100, Spain; Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
| | | | - Cesar Viseras
- Andalusian Institute of Earth Sciences, CSIC-UGR, Avenida de las Palmeras 4, Armilla, Granada 18100, Spain; Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
| | - Franca Ferrari
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
16
|
Meneguin A, Pacheco G, Silva J, de Araujo FP, Silva-Filho EC, Bertolino LC, da Silva Barud H. Nanocellulose/palygorskite biocomposite membranes for controlled release of metronidazole. Int J Biol Macromol 2021; 188:689-695. [PMID: 34371050 DOI: 10.1016/j.ijbiomac.2021.08.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/15/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
The incorporation of drugs in nanocomposites can be considered a potential strategy for controlled drug release. In this study, a nanocomposite based on bacterial cellulose and the palygorskite clay (BC/PLG) was produced and loaded with metronidazole (MTZ). The samples were characterized using X-ray diffraction (XRD) Spectroscopy, thermal analysis (TG/DTG) and Scanning Electron Microscopy (SEM). The barrier properties were determined to water vapor permeability (WVP). Adsorption tests with PLG were performed using MTZ and drug release profile of the membranes was investigated. The results indicated that PLG increased the crystallinity of the nanocomposites, and greater thermal stability when PLG concentration was 15.0% (BC/PLG15) was observed. WVP of the samples also varied, according to the clay content. Adsorption equilibrium was achieved from 400 mg/L of the PLG and a plateau in the MTZ release rates from BC/PLG was observed after 30 min. Therefore, the results of this study show the potential of these nanocomposite membranes as a platform for controlled drug release.
Collapse
Affiliation(s)
- Andréia Meneguin
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Rodovia Araraquara-Jaú, km 1, - Campus Ville, Araraquara, São Paulo 14800-903, Brazil
| | - Guilherme Pacheco
- Research Center on Biotechnology, Uniara, Araraquara, 14801-340, São Paulo, Brazil
| | - Jhonatan Silva
- Research Center on Biotechnology, Uniara, Araraquara, 14801-340, São Paulo, Brazil
| | - Francisca Pereira de Araujo
- LIMAV, Interdisciplinary Laboratory for Advanced Materials, Federal University of Piaui, Campus Universitário Ministro Petrônio Portella, Teresina, 64049-550, Piaui, Brazil
| | - Edson Cavalcanti Silva-Filho
- LIMAV, Interdisciplinary Laboratory for Advanced Materials, Federal University of Piaui, Campus Universitário Ministro Petrônio Portella, Teresina, 64049-550, Piaui, Brazil
| | | | | |
Collapse
|
17
|
Zeng D, Shen S, Fan D. Molecular design, synthesis strategies and recent advances of hydrogels for wound dressing applications. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
García-Villén F, Viseras C. Clay-Based Pharmaceutical Formulations and Drug Delivery Systems. Pharmaceutics 2020; 12:pharmaceutics12121142. [PMID: 33255689 PMCID: PMC7759892 DOI: 10.3390/pharmaceutics12121142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 01/06/2023] Open
Affiliation(s)
- Fátima García-Villén
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain;
| | - César Viseras
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain;
- Andalusian Institute of Earth Sciences, CSIC-UGR, Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain
- Correspondence:
| |
Collapse
|
19
|
García-Villén F, Sánchez-Espejo R, Borrego-Sánchez A, Cerezo P, Cucca L, Sandri G, Viseras C. Correlation between Elemental Composition/Mobility and Skin Cell Proliferation of Fibrous Nanoclay/Spring Water Hydrogels. Pharmaceutics 2020; 12:E891. [PMID: 32962099 PMCID: PMC7559572 DOI: 10.3390/pharmaceutics12090891] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/12/2020] [Accepted: 09/17/2020] [Indexed: 11/20/2022] Open
Abstract
Inorganic hydrogels formulated with spring waters and clay minerals are used to treat musculoskeletal disorders and skin affections. Their underlying mechanism of action for skin disorders is not clear, although it is usually ascribed to the chemical composition of the formulation. The aim of this study was to assess the composition and in vitro release of elements with potential wound healing effects from hydrogels prepared with two nanoclays and natural spring water. In vitro Franz cell studies were used and the element concentration was measured by inductively coupled plasma techniques. Biocompatibility studies were used to evaluate the potential toxicity of the formulation against fibroblasts. The studied hydrogels released elements with known therapeutic interest in wound healing. The released ratios of some elements, such as Mg:Ca or Zn:Ca, played a significant role in the final therapeutic activity of the formulation. In particular, the proliferative activity of fibroblasts was ascribed to the release of Mn and the Zn:Ca ratio. Moreover, the importance of formulative studies is highlighted, since it is the optimal combination of the correct ingredients that makes a formulation effective.
Collapse
Affiliation(s)
- Fátima García-Villén
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (F.G.-V.); (P.C.)
| | - Rita Sánchez-Espejo
- Andalusian Institute of Earth Sciences, CSIC-UGR (Consejo Superior de Investigaciones Científicas-Universidad de Granada), Avenida de las Palmeras 4, Armilla, 18100 Granada, Spain; (R.S.-E.); (A.B.-S.)
| | - Ana Borrego-Sánchez
- Andalusian Institute of Earth Sciences, CSIC-UGR (Consejo Superior de Investigaciones Científicas-Universidad de Granada), Avenida de las Palmeras 4, Armilla, 18100 Granada, Spain; (R.S.-E.); (A.B.-S.)
| | - Pilar Cerezo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (F.G.-V.); (P.C.)
| | - Lucia Cucca
- Department of Chemistry, University of Pavia, viale Taramelli 12, 27100 Pavia, Italy;
| | - Giuseppina Sandri
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Pavia, viale Taramelli 12, 27100 Pavia, Italy;
| | - César Viseras
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (F.G.-V.); (P.C.)
- Andalusian Institute of Earth Sciences, CSIC-UGR (Consejo Superior de Investigaciones Científicas-Universidad de Granada), Avenida de las Palmeras 4, Armilla, 18100 Granada, Spain; (R.S.-E.); (A.B.-S.)
| |
Collapse
|
20
|
Ruggeri M, Bianchi E, Rossi S, Vigani B, Bonferoni MC, Caramella C, Sandri G, Ferrari F. Nanotechnology-Based Medical Devices for the Treatment of Chronic Skin Lesions: From Research to the Clinic. Pharmaceutics 2020; 12:pharmaceutics12090815. [PMID: 32867241 PMCID: PMC7559814 DOI: 10.3390/pharmaceutics12090815] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/29/2022] Open
Abstract
Chronic wounds, such as pressure ulcers, diabetic ulcers, venous ulcers and arterial insufficiency ulcers, are lesions that fail to proceed through the normal healing process within a period of 12 weeks. The treatment of skin chronic wounds still represents a great challenge. Wound medical devices (MDs) range from conventional and advanced dressings, up to skin grafts, but none of these are generally recognized as a gold standard. Based on recent developments, this paper reviews nanotechnology-based medical devices intended as skin substitutes. In particular, nanofibrous scaffolds are promising platforms for wound healing, especially due to their similarity to the extracellular matrix (ECM) and their capability to promote cell adhesion and proliferation, and to restore skin integrity, when grafted into the wound site. Nanotechnology-based scaffolds are emphasized here. The discussion will be focused on the definition of critical quality attributes (chemical and physical characterization, stability, particle size, surface properties, release of nanoparticles from MDs, sterility and apyrogenicity), the preclinical evaluation (biocompatibility testing, alternative in vitro tests for irritation and sensitization, wound healing test and animal wound models), the clinical evaluation and the CE (European Conformity) marking of nanotechnology-based MDs.
Collapse
|
21
|
García-Villén F, Sánchez-Espejo R, Borrego-Sánchez A, Cerezo P, Perioli L, Viseras C. Safety of Nanoclay/Spring Water Hydrogels: Assessment and Mobility of Hazardous Elements. Pharmaceutics 2020; 12:pharmaceutics12080764. [PMID: 32806783 PMCID: PMC7464544 DOI: 10.3390/pharmaceutics12080764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022] Open
Abstract
The presence of impurities in medicinal products have to be controlled within safety limits from a pharmaceutical quality perspective. This matter is of special significance for those countries and regions where the directives, guidelines, or legislations, which prescribe the rules for the application of some products is quite selective or incomplete. Clay-based hydrogels are quite an example of this matter since they are topically administered, but, in some regions, they are not subjected to well-defined legal regulations. Since hydrogels establish an intimate contact with the skin, hazardous elements present in the ingredients could potentially be bioavailable and compromise their safety. The elemental composition and mobility of elements present in two hydrogels have been assessed. Sepiolite, palygorskite, and natural spring water were used as ingredients. The release of a particular element mainly depends on its position in the structure of the hydrogels, not only on its concentration in each ingredient. As a general trend, elements' mobility reduced with time. Among the most dangerous elements, whose presence in cosmetics is strictly forbidden by European legal regulations, As and Cd were mobile, although in very low amounts (0.1 and 0.2 μg/100 g of hydrogel, respectively). That is, assuming 100% bioavailability, the studied hydrogels would be completely safe at normal doses. Although there is no sufficient evidence to confirm that their presence is detrimental to hydrogels safety, legally speaking, their mobility could hinder the authorization of these hydrogels as medicines or cosmetics. In conclusion, the present study demonstrates that hydrogels prepared with sepiolite, palygorskite, and Alicún spring water could be topically applied without major intoxication risks.
Collapse
Affiliation(s)
- Fátima García-Villén
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (F.G.-V.); (P.C.)
| | - Rita Sánchez-Espejo
- Andalusian Institute of Earth Sciences, CSIC-UGR, Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain; (R.S.-E.); (A.B.-S.)
| | - Ana Borrego-Sánchez
- Andalusian Institute of Earth Sciences, CSIC-UGR, Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain; (R.S.-E.); (A.B.-S.)
| | - Pilar Cerezo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (F.G.-V.); (P.C.)
| | - Luana Perioli
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy;
| | - César Viseras
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (F.G.-V.); (P.C.)
- Andalusian Institute of Earth Sciences, CSIC-UGR, Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain; (R.S.-E.); (A.B.-S.)
- Correspondence:
| |
Collapse
|
22
|
MUNTEANU C, ROTARIU M, DOGARU G, IONESCU EV, CIOBANU V, ONOSE G. Mud therapy and rehabilitation - scientific relevance in the last six years (2015 – 2020)
Systematic literature review and meta-analysis based on the PRISMA paradigm. BALNEO AND PRM RESEARCH JOURNAL 2020. [DOI: 10.12680/balneo.2021.411] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Abstract
Background. Balneotherapy is a stimulation - adaptation treatment method applied in the forms of bathing, drinking, and inhalation cures performed with natural therapeutic factors, a method which is acting in three main ways: thermally, mechanically, and chemically. Mud or peloids are natural therapeutic factors formed by natural processes under the influence of biological and geological phenomena, which in a finely dissolved state and mixed with water (mud) are used in medical practice in the form of baths or local procedures.
Objective. This systematic review aims to rigorously select related articles and identify within their content, the main possible uses of therapeutic mud and physiological mechanisms, to see the main region of scientific interest for pelotherapy, and to discuss the value of mud therapy in rehabilitation medicine.
Methods. The working method is based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We searched for open-access articles published in English, between January 2015 and December 2020, from the following databases: Cochrane, Elsevier, NCBI/PubMed, NCBI/PMC, PEDro, and ISI Web of Knowledge/Science (the latter was also used to identify ISI indexed articles). The contextually searched syntax used was ”Pelotherapy/Peloidotherapy/Mud-therapy/ /Fango-therapy AND Rehabilitation”. The selected articles were analyzed in detail regarding pathologies addressed by mud therapy and country scientific relevance for this therapeutic method. The meta-analysis proceeded was designated to estimate the prevalence of various pathologies in the use of mud therapy.
Results. Our search identified, first, 394 articles. Based on the successive filtering stages and, respectively, on the classification criteria of the Physiotherapy Evidence Database (PEDro), we finally identified/retained and analyzed 68 articles. Although, in principle, a rigorous method – and we have followed the PRISMA type paradigm – there still might be some missing works of our related article selection. On the other hand, to augment/ consolidate our documentation base, we have used also 40 papers freely found in the literature, and even – aiming, too, at an as exhaustive knowledge underpinning as possible – derogatively, we have also considered some articles which, probably being very new, couldn't yet have reached the PEDro threshold score we have settled.
Conclusions. This paper overviews the current state-of-the-art knowledge in the approach of peloidotherapy in rehabilitation, with a focal point on the therapeutic properties of peloids.
Keywords: mud-therapy, pelotherapy, peloidotherapy, fango therapy, rehabilitation, balneotherapy, natural therapeutic factors,
Collapse
Affiliation(s)
- Constantin MUNTEANU
- 1. Romanian Association of Balneology, Bucharest, Romania 2. Teaching Emergency Hospital ”Bagdasar-Arseni”, Bucharest, Romania 3. Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, Iași, Romania
| | - Mariana ROTARIU
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, Iași, Romania
| | - Gabriela DOGARU
- Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca, Romania 6. Clinical Rehabilitation Hospital Cluj-Napoca, Romania
| | - Elena Valentina IONESCU
- Faculty of Medicine, “Ovidius” University of Constanța, Romania 9. Computer Science Department, University Politehnica of Bucharest, Romania
| | - Vlad CIOBANU
- Computer Science Department, University Politehnica of Bucharest, Romania
| | - Gelu ONOSE
- 2. Teaching Emergency Hospital ”Bagdasar-Arseni”, Bucharest, Romania
| |
Collapse
|