1
|
Fornasier M, Krautforst K, Kulbacka J, Jönsson P, Murgia S, Bazylińska U. Cubosomes and hexosomes stabilized by sorbitan monooleate as biocompatible nanoplatforms against skin metastatic human melanoma. J Colloid Interface Sci 2025; 677:842-852. [PMID: 39173516 DOI: 10.1016/j.jcis.2024.08.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
Nanoparticles have become versatile assets in the medical field, providing notable benefits across diverse medical arenas including controlled drug delivery, imaging, and immunological assays. Among these, non-lamellar lipid nanoparticles, notably cubosomes and hexosomes, showcase remarkable biocompatibility and stability, rendering them as optimal choices for theranostic applications. Particularly, incorporating edge activators like sodium taurocholate enhances the potential of these nanoparticles for dermal and transdermal drug delivery, overcoming the stratum corneum, a first line of defense in our skin. This study reports on the formulation of monoolein-based cubosomes and hexosomes incorporating taurocholate and stabilized by Span 80 and co-encapsulating Chlorin e6 and coenzyme QH for photodynamic therapy in skin metastatic melanoma. The formulations were optimized using small-angle X-ray scattering, and cryo-transmission electron microscopy confirmed the presence of cubosomes or hexosomes, depending on the ratio between taurocholate and Span 80. Furthermore, the co-loaded nanoparticles exhibited high encapsulation efficiencies for both Ce6 and the coenzyme QH. In vitro studies on human melanoma cells (Me45) demonstrated the biocompatibility and photodynamic activity of the loaded formulations. These findings show the possibility of formulating more biocompatible cubosomes and hexosomes for photodynamic therapy in skin cancer treatment.
Collapse
Affiliation(s)
- Marco Fornasier
- Department of Chemistry, Lund University, SE-22100 Lund, Sweden.
| | - Karolina Krautforst
- Department of Chemical and Geological Sciences, University of Cagliari, s.s. 554 bivio Sestu, I-09042 Monserrato, CA, Italy; Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wroclaw University, University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland; CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, 50019 Sesto Fiorentino, FI, Italy
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland; Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Santariškių 5, 08410 Vilnius, Lithuania
| | - Peter Jönsson
- Department of Chemistry, Lund University, SE-22100 Lund, Sweden
| | - Sergio Murgia
- CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, 50019 Sesto Fiorentino, FI, Italy; Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, S.P. 8 Km 0.700, 09042 Monserrato, CA, Italy
| | - Urszula Bazylińska
- Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wroclaw University, University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
2
|
Choromańska A, Szwedowicz U, Szewczyk A, Daczewska M, Saczko J, Kruszakin R, Pawlik KJ, Baczyńska D, Kulbacka J. Electroporation-derived melanoma extracellular particles activate fibroblasts. Biochim Biophys Acta Gen Subj 2024; 1868:130723. [PMID: 39426760 DOI: 10.1016/j.bbagen.2024.130723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 10/05/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Although the pulse electric field (PEF) has been used in electrochemotherapy (ECT) for many years, the kinetics and profile of extracellular particles (EPs) released as a result of reversible electroporation have yet to be studied. It also needs to be clarified whether and how the profile of released EPs depends on the parameters of the applied PEF. The presented studies investigated the effect of EPs released from human melanoma cells after various parameters of reversible electroporation on markers indicating EP-mediated transformation of normal fibroblasts into tumor-associated fibroblasts. The expression levels of the vascular cell adhesion molecule-1 (VCAM-1) and changes in the expression of phosphor-histone H3 (pHH3), a biomarker specific for cells in mitosis, cell viability, and the migration capacity of the studied fibroblast cells, were analyzed. EPs were isolated from two commercial malignant melanoma cell lines previously subjected to reversible electroporation. Human primary fibroblasts (HPFs) were selected for EPs exposure. It was observed that after incubation with melanoma-derived EPs, HPFs showed differences in cell viability, migration capacity, VCAM-1, pHH3, and N-cadherin expression, depending on PEF parameters and the grade of melanoma cells. This study highlights that small extracellular particles (sEPs) from cancer cells can promote metastasis by carrying specific signals that lead to the upregulation of molecules like FAK, MMP-9, and N-cadherin in recipient cells.
Collapse
Affiliation(s)
- Anna Choromańska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland.
| | - Urszula Szwedowicz
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Roksana Kruszakin
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Krzysztof J Pawlik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių 5, 08410 Vilnius, Lithuania
| |
Collapse
|
3
|
Esposito E, Pecorelli A, Ferrara F, Lila MA, Valacchi G. Feeding the Body Through the Skin: Ethosomes and Transethosomes as a New Topical Delivery System for Bioactive Compounds. Annu Rev Food Sci Technol 2024; 15:53-78. [PMID: 38941493 DOI: 10.1146/annurev-food-072023-034528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Because the feeding of our body through the oral route can be associated with many drawbacks due to the degradation of natural molecules during transit in the gastrointestinal tract, a transdermal delivery strategy, usually employed in the pharmaceutical field, can present an effective alternative for delivery of bioactives and nutrients from foods. In this review, the chance to feed the body with nutritive and bioactive molecules from food through transdermal administration is discussed. Various nanotechnological devices employed for topical and transdermal delivery of bioactive compounds are described. In addition, mechanisms underlying their potential use in the delivery of nutritive molecules, as well as their capability to efficaciously reach the dermis and promote systemic distribution, are detailed.
Collapse
Affiliation(s)
- Elisabetta Esposito
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandra Pecorelli
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Mary Ann Lila
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, North Carolina, USA
| | - Giuseppe Valacchi
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
- Department of Animal Science, North Carolina State University, Kannapolis, North Carolina, USA;
- Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
4
|
Consoli V, Fallica AN, Virzì NF, Salerno L, Intagliata S, Sorrenti V, Greish K, Giuffrida A, Vanella L, Pittalà V. Synthesis and in Vitro Evaluation of CAPE Derivatives as Ferroptosis Inducers in Triple Negative Breast Cancer. ACS Med Chem Lett 2024; 15:706-713. [PMID: 38746881 PMCID: PMC11089544 DOI: 10.1021/acsmedchemlett.4c00099] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/11/2025] Open
Abstract
Herein, we describe the design, synthesis, and in vitro biological evaluation of HO-1 inducers endowed with cytotoxic effects mediated by ferroptosis activation. Using the natural HO-1 inducer caffeic acid phenethyl ester (CAPE) as a chemical scaffold, new derivatives were synthesized by performing modifications in the cathecol moiety and in the phenethyl ester aromatic ring. Biological assays aimed at evaluating an imbalanced activity of ferroptosis key players identified that 2-(1H-indol-3-yl)ethyl cinnamate (compound 24) possesses improved anticancer activity toward the MDA-MB 231 triple negative breast cancer cell line when compared to CAPE. Increased ROS and LOOH levels, reduced GSH levels, imbalanced mitochondrial activity, and restored cell viability after ferrostatin-1 treatment suggested a ferroptotic mechanism of action, which did not involve GPX4 inhibition. Compound 24 represents an intriguing hit compound useful for the identification of novel ferroptosis inducers.
Collapse
Affiliation(s)
- Valeria Consoli
- Department
of Drug and Health Sciences, University
of Catania, 95125 Catania, Italy
| | - Antonino N. Fallica
- Department
of Drug and Health Sciences, University
of Catania, 95125 Catania, Italy
| | - Nicola F. Virzì
- Department
of Drug and Health Sciences, University
of Catania, 95125 Catania, Italy
| | - Loredana Salerno
- Department
of Drug and Health Sciences, University
of Catania, 95125 Catania, Italy
| | | | - Valeria Sorrenti
- Department
of Drug and Health Sciences, University
of Catania, 95125 Catania, Italy
- CERNUT
- Research Centre on Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
| | - Khaled Greish
- Department
of Molecular Medicine, Arabian Gulf University, Manama 329, Bahrain
| | | | - Luca Vanella
- Department
of Drug and Health Sciences, University
of Catania, 95125 Catania, Italy
- CERNUT
- Research Centre on Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
| | - Valeria Pittalà
- Department
of Drug and Health Sciences, University
of Catania, 95125 Catania, Italy
- CERNUT
- Research Centre on Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
- Department
of Molecular Medicine, Arabian Gulf University, Manama 329, Bahrain
| |
Collapse
|
5
|
Kulbacka J, Choromańska A, Szewczyk A, Michel O, Baczyńska D, Sikora A, Rossowska J, Kulbacki M, Rembiałkowska N. Nanoelectropulse delivery for cell membrane perturbation and oxidation in human colon adenocarcinoma cells with drug resistance. Bioelectrochemistry 2023; 150:108356. [PMID: 36566573 DOI: 10.1016/j.bioelechem.2022.108356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Ultrashort electric pulses in the nanosecond range (nsPEF) can affect extra- and intracellular lipid structures and can also alternate cell functioning reversibly and irreversibly. Several of the nsPEF effects are due to the abrupt rise in intracellular free calcium levels and calcium ions influx from the outside. Calcium is one of the most important factors in cell proliferation, differentiation, and cell death (apoptosis or necrosis). Manipulating calcium levels using electroporation can have different effects on normal and malignant cells. This study aimed to examine the impact of nsPEFs, combined with 1 mM Ca2+ in human colon adenocarcinoma cell lines: sensitive- LoVo and drug resistant-LoVoDX. In this study 200 pulses of 10 ns and high voltage (12.5-50 kVcm-1) were used. Cell viability was determined by MTT and clonogenic assay. Proteasomal activity, GSH/GSSG assay, ROS production, and PALS-1 protein were evaluated as oxidative stress markers and protein damage. Cell morphology was visualized by AFM, SEM, and confocal microscopy imaging. The results revealed that nsPEF with 1 mM Ca2+ is cytotoxic, particularly for LoVoDX cells, and safe for normal cells. NsPEF provoked ROS release, altered cell polarity, and destabilized cell morphology. These results can be important for future protocols for colon adenocarcinoma using calcium nsPEF.
Collapse
Affiliation(s)
- Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland.
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland; Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Wroclaw, Poland
| | - Olga Michel
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Andrzej Sikora
- Department of Nanometrology, Faculty of Electronics, Photonics and Microsystems, Wroclaw, University of Science and Technology, Wroclaw, Poland
| | - Joanna Rossowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Marek Kulbacki
- Polish-Japanese Academy of Information Technology, Warsaw, Poland; DIVE IN AI, Wroclaw, Poland
| | - Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
6
|
Kulbacka J, Rembiałkowska N, Szewczyk A, Rossowska J, Drąg-Zalesińska M, Kulbacki M, Choromańska A. Nanosecond PEF Induces Oxidative Stress and Apoptosis via Proteasomal Activity Inhibition in Gastric Adenocarcinoma Cells with Drug Resistance. Int J Mol Sci 2022; 23:12943. [PMID: 36361727 PMCID: PMC9657809 DOI: 10.3390/ijms232112943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/06/2022] [Accepted: 10/18/2022] [Indexed: 08/01/2023] Open
Abstract
Nanosecond (ns) pulsed electric field (PEF) is a technology in which the application of ultra-short electrical pulses can be used to disrupt the barrier function of cell plasma and internal membranes. Disruptions of the membrane integrity cause a substantial imbalance in cell homeostasis in which oxidative stress is a principal component. In the present study, nsPEF-induced oxidative stress was investigated in two gastric adenocarcinoma cell lines (EPG85-257P and EPG85-257RDB) which differ by their sensitivity to daunorubicin. Cells were exposed to 200 pulses of 10 ns duration, with the amplitude and pulse repetition frequency at 1 kHz, with electric field intensity varying from 12.5 to 50 kV/cm. The electroporation buffer contained either 1 mM or 2 mM calcium chloride. CellMask DeepRed visualized cell plasma permeabilization, Fluo-4 was used to visualize internal calcium ions content, and F-actin was labeled with AlexaFluor®488 for the cytoskeleton. The cellular viability was determined by MTT assay. An alkaline and neutral comet assay was employed to detect apoptotic and necrotic cell death. The luminescent method estimated the modifications in GSSG/GSH redox potential and the imbalance of proteasomal activity (chymotrypsin-, trypsin- and caspase-like). The reactive oxygen species (ROS) level was measured by flow cytometry using dihydroethidium (DHE) dye. Morphological visualization indicated cell shrinkage, affected cell membranes (characteristic bubbles and changed cell shape), and the reorganization of actin fibers with sites of its dense concentration; the effect was more intense with the increasing electric field strength. The most significant decrease in cell viability and GSSG/GSH redox potential was noted at the highest amplitude of 50 kV/cm, and calcium ions amplified this effect. nsPEF, particularly with calcium ions, inhibited proteasomal activities, resulting in increased protein degradation. nsPEF increased the percentage of apoptotic cells and ROS levels. The EPG85-257 RDB cell line, which is resistant to standard chemotherapy, was more sensitive to applied nsPEF protocols. The applied nsPEF method disrupted the metabolism of cancer cells and induced apoptotic cell death. The nsPEF ability to cause apoptosis, oxidative stress, and protein degradation make the nsPEF methodology a suitable alternative to current anticancer pharmacological methods.
Collapse
Affiliation(s)
- Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland
| | - Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wroclaw, 50-335 Wroclaw, Poland
| | - Joanna Rossowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 50-422 Wroclaw, Poland
| | - Małgorzata Drąg-Zalesińska
- Division of Histology and Embryology, Division of Human Morpholog and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Marek Kulbacki
- Polish-Japanese Academy of Information Technology, 02-008 Warsaw, Poland
- DIVE IN AI, 53-307 Wroclaw, Poland
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland
| |
Collapse
|
7
|
Rembiałkowska N, Novickij V, Baczyńska D, Dubińska-Magiera M, Saczko J, Rudno-Rudzińska J, Maciejewska M, Kulbacka J. Micro- and Nanosecond Pulses Used in Doxorubicin Electrochemotherapy in Human Breast and Colon Cancer Cells with Drug Resistance. Molecules 2022; 27:2052. [PMID: 35408450 PMCID: PMC9000361 DOI: 10.3390/molecules27072052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/30/2022] Open
Abstract
(1) Background: Pulsed electric field (PEF) techniques are commonly used to support the delivery of various molecules. A PEF seems a promising method for low permeability drugs or when cells demonstrate therapy resistance and the cell membrane becomes an impermeable barrier. (2) Methods: In this study, we have used doxorubicin-resistant and sensitive models of human breast cancer (MCF-7/DX, MCF-7/WT) and colon cancer cells (LoVo, LoVoDX). The study aimed to investigate the susceptibility of the cells to doxorubicin (DOX) and electric fields in the 20-900 ns pulse duration range. The viability assay was utilized to evaluate the PEF protocols' efficacy. Cell confluency and reduced glutathione were measured after PEF protocols. (3) Results: The obtained results showed that PEFs significantly supported doxorubicin delivery and cytotoxicity after 48 and 72 h. The 60 kV/cm ultrashort pulses × 20 ns × 400 had the most significant cytotoxic anticancer effect. The increase in DOX concentration provokes a decrease in cell viability, affected cell confluency, and reduced GSSH when combined with the ESOPE (European Standard Operating Procedures of Electrochemotherapy) protocol. Additionally, reactive oxygen species after PEF and PEF-DOX were detected. (4) Conclusions: Ultrashort electric pulses with low DOX content or ESOPE with higher DOX content seem the most promising in colon and breast cancer treatment.
Collapse
Affiliation(s)
- Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (N.R.); (D.B.); (J.S.)
| | - Vitalij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, LT-03227 Vilnius, Lithuania;
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (N.R.); (D.B.); (J.S.)
| | - Magda Dubińska-Magiera
- Department of Animal Developmental Biology, Faculty of Biological Science, University of Wroclaw, Sienkiewicza 21, 50-335 Wroclaw, Poland;
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (N.R.); (D.B.); (J.S.)
| | - Julia Rudno-Rudzińska
- 2nd Department of General Surgery and Surgical Oncology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Magdalena Maciejewska
- Laboratory of Experimental Anticancer Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Rudolfa Weigla 12, 53-114 Wroclaw, Poland;
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (N.R.); (D.B.); (J.S.)
| |
Collapse
|
8
|
Potential of Withaferin-A, Withanone and Caffeic Acid Phenethyl ester as ATP-competitive inhibitors of BRAF: A bioinformatics study. Curr Res Struct Biol 2022; 3:301-311. [PMID: 35028596 PMCID: PMC8714769 DOI: 10.1016/j.crstbi.2021.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/22/2022] Open
Abstract
Serine/threonine-protein kinase B-raf (BRAF) plays a significant role in regulating cell division and proliferation through MAPK/ERK pathway. The constitutive expression of wild-type BRAF (BRAFWT) and its mutant forms, especially V600E (BRAFV600E), has been linked to multiple cancers. Various synthetic drugs have been approved and are in clinical trials, but most of them are reported to become ineffective within a short duration. Therefore, combinational therapy involving multiple drugs are often recruited for cancer treatment. However, they lead to toxicity and adverse side effects. In this computational study, we have investigated three natural compounds, namely Withaferin-A (Wi-A), Withanone (Wi-N) and Caffeic Acid Phenethyl ester (CAPE) for anti-BRAFWT and anti-BRAFV600E activity. We found that these compounds could bind stably at ATP-binding site in both BRAFWT and BRAFV600E proteins. In-depth analysis revealed that these compounds maintained the active conformation of wild-type BRAF protein by inducing αC-helix-In, DFG-In, extended activation segment and well-aligned R-spine residues similar to already known drugs Vemurafenib (VEM), BGB283 and Ponatinib. In terms of binding energy, among the natural compounds, CAPE showed better affinity towards both wild-type and V600E mutant proteins than the other two compounds. These data suggested that CAPE, Wi-A and Wi-N have potential to block constitutive autophosphorylation of BRAF and hence warrant in vitro and in vivo experimental validation. Out of all the human cancers approximately 8% involve BRAF mutations. The 40–50% of the commercialized drugs in the market are from the natural sources or inspired by it. Three natural compounds Withaferin-A , Withanone and Caffeic acid phenethyl ester (CAPE) have been studied against BRAF. CAPE binds with higher binding affinity with BRAF wild type protein and BRAF V600E mutant protein than other natural compounds.
Collapse
|
9
|
Molecular Insights into the Antistress Potentials of Brazilian Green Propolis Extract and Its Constituent Artepillin C. Molecules 2021; 27:molecules27010080. [PMID: 35011307 PMCID: PMC8746355 DOI: 10.3390/molecules27010080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 11/25/2022] Open
Abstract
Propolis, also known as bee-glue, is a resinous substance produced by honeybees from materials collected from plants they visit. It contains mixtures of wax and bee enzymes and is used by bees as a building material in their hives and by humans for different purposes in traditional healthcare practices. Although the composition of propolis has been shown to depend on its geographic location, climatic zone, and local flora; two largely studied types of propolis: (i) New Zealand and (ii) Brazilian green propolis have been shown to possess Caffeic Acid Phenethyl Ester (CAPE) and Artepillin C (ARC) as the main bioactive constituents, respectively. We have earlier reported that CAPE and ARC possess anticancer activities, mediated by abrogation of mortalin-p53 complex and reactivation of p53 tumor suppressor function. Like CAPE, Artepillin C (ARC) and the supercritical extract of green propolis (GPSE) showed potent anticancer activity. In this study, we recruited low doses of GPSE and ARC (that did not affect either cancer cell proliferation or migration) to investigate their antistress potential using in vitro cell based assays. We report that both GPSE and ARC have the capability to disaggregate metal- and heat-induced aggregated proteins. Metal-induced aggregation of GFP was reduced by fourfold in GPSE- as well as ARC-treated cells. Similarly, whereas heat-induced misfolding of luciferase protein showed 80% loss of activity, the cells treated with either GPSE or ARC showed 60–80% recovery. Furthermore, we demonstrate their pro-hypoxia (marked by the upregulation of HIF-1α) and neuro-differentiation (marked by differentiation morphology and upregulation of expression of GFAP, β-tubulin III, and MAP2). Both GPSE and ARC also offered significant protection against oxidative stress and, hence, may be useful in the treatment of old age-related brain pathologies.
Collapse
|