1
|
Rahman N, Mian MF, Hayes CL, Nazli A, Kaushic C. G. vaginalis increases HSV-2 infection by decreasing vaginal barrier integrity and increasing inflammation in vivo. Front Immunol 2024; 15:1487726. [PMID: 39650661 PMCID: PMC11621107 DOI: 10.3389/fimmu.2024.1487726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/06/2024] [Indexed: 12/11/2024] Open
Abstract
Introduction Clinically, a dysbiotic vaginal microbiota (VMB) colonized with anaerobic species such as Gardnerella vaginalis has been linked to increased susceptibility to viral sexually transmitted infections (STIs) such as Herpes Simplex Virus Type 2 (HSV-2). The mechanism is poorly understood due to the lack of small animal models. Methods Mice were inoculated with 107 CFU of the eubiotic bacteria Lactobacillus crispatus, the dysbiotic bacteria G. vaginalis, or PBS as a negative control every 48 h for ten days. On day ten, mice were inoculated with 105 PFU WT HSV-2 333 and survival, pathology, and viral titers were assessed. To elucidate changes in the vaginal microenvironment following bacterial inoculations, vaginal tissue and washes were collected following ten days of inoculations. To assess barrier integrity, tissue was fixed and stained for the barrier protein Desmoglein-1 (DSG-1). To evaluate the immune microenvironment, tissue was processed for flow cytometry to examine tissue-resident T cells and cytokine production by T cells. Vaginal washes were used for multiplex cytokine/chemokine analysis. Results G. vaginalis inoculated mice infected with HSV-2 had significantly decreased survival rates, increased pathology, and higher viral titers than PBS and L. crispatus inoculated mice. The vaginal epithelium of G. vaginalis inoculated mice showed decreased DSG-1 staining compared to other groups, indicating compromised barrier function. Decreased total numbers of CD4+ and CD8+ T cells expressing activated mucosal immune markers CD44, CD69, and CD103 were observed in the vaginal tract of G. vaginalis inoculated mice. They also showed increased proportions of T cells expressing inflammatory cytokines TNF-α and IFN-γ, while L. crispatus inoculated mice had increased proportions and absolute counts of T cells expressing the regulatory cytokine IL-10. In the multiplex assay, vaginal washes from G. vaginalis mice had increased inflammatory cytokines and chemokines compared to L. crispatus and PBS groups. Discussion These results suggest G. vaginalis inoculation may be increasing HSV-2 infection by disrupting the epithelial barrier, decreasing protective immune responses and increasing tissue inflammation in the vaginal tract.
Collapse
Affiliation(s)
- Nuzhat Rahman
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Center, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada
| | - M. Firoz Mian
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Center, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada
| | - Christina L. Hayes
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Center, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada
| | - Aisha Nazli
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Center, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada
| | - Charu Kaushic
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Center, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
2
|
Espinar-Buitrago MDLS, Magro-López E, Vázquez-Alejo E, Muñoz-Fernández MÁ. Enhanced Immunomodulatory Effects of Thymosin-Alpha-1 in Combination with Polyanionic Carbosilane Dendrimers against HCMV Infection. Int J Mol Sci 2024; 25:1952. [PMID: 38396631 PMCID: PMC10887890 DOI: 10.3390/ijms25041952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Resistance and toxicity associated with current treatments for human cytomegalovirus (HCMV) infection highlight the need for alternatives and immunotherapy has emerged as a promising strategy. This study examined the in vitro immunological effects of co-administration of Thymosin-alpha-1 (Tα1) and polyanionic carbosilane dendrimers (PCDs) on peripheral blood mononuclear cells (PBMCs) during HCMV infection. The biocompatibility of PCDs was assessed via MTT and LDH assays. PBMCs were pre-treated with the co-administered compounds and then exposed to HCMV for 48 h. Morphological alterations in PBMCs were observed using optical microscopy and total dendritic cells (tDCs), myeloid dendritic cells (mDCs), and plasmacytoid dendritic cells (pDCs), along with CD4+/CD8+ T cells and regulatory T cells (Treg), and were characterized using multiparametric flow cytometry. The findings revealed that Tα1 + PCDs treatments increased DC activation and maturation. Furthermore, increased co-receptor expression, intracellular IFNγ production in T cells and elevated Treg functionality and reduced senescence were evident with Tα1 + G2-S24P treatment. Conversely, reduced co-receptor expression, intracellular cytokine production in T cells, lower functionality and higher senescence in Treg were observed with Tα1 + G2S16 treatment. In summary, Tα1 + PCDs treatments demonstrate synergistic effects during early HCMV infection, suggesting their use as an alternative therapeutic for preventing virus infection.
Collapse
Affiliation(s)
- María de la Sierra Espinar-Buitrago
- Section of Immunology, Immuno-Molecular Biology Laboratory (LIBM), University General Hospital Gregorio Marañon (HGUGM), 28007 Madrid, Spain; (M.d.l.S.E.-B.); (E.M.-L.); (E.V.-A.)
- Gregorio Marañon Health Research Institute (IiSGM), 28009 Madrid, Spain
- Center for Biomedical Research in Bioengineering, Biomaterials and Nanotechnology Network (CIBER-BBN), 28029 Madrid, Spain
| | - Esmeralda Magro-López
- Section of Immunology, Immuno-Molecular Biology Laboratory (LIBM), University General Hospital Gregorio Marañon (HGUGM), 28007 Madrid, Spain; (M.d.l.S.E.-B.); (E.M.-L.); (E.V.-A.)
- Gregorio Marañon Health Research Institute (IiSGM), 28009 Madrid, Spain
- Center for Biomedical Research in Bioengineering, Biomaterials and Nanotechnology Network (CIBER-BBN), 28029 Madrid, Spain
| | - Elena Vázquez-Alejo
- Section of Immunology, Immuno-Molecular Biology Laboratory (LIBM), University General Hospital Gregorio Marañon (HGUGM), 28007 Madrid, Spain; (M.d.l.S.E.-B.); (E.M.-L.); (E.V.-A.)
- Gregorio Marañon Health Research Institute (IiSGM), 28009 Madrid, Spain
- Center for Biomedical Research in Bioengineering, Biomaterials and Nanotechnology Network (CIBER-BBN), 28029 Madrid, Spain
| | - María Ángeles Muñoz-Fernández
- Section of Immunology, Immuno-Molecular Biology Laboratory (LIBM), University General Hospital Gregorio Marañon (HGUGM), 28007 Madrid, Spain; (M.d.l.S.E.-B.); (E.M.-L.); (E.V.-A.)
- Gregorio Marañon Health Research Institute (IiSGM), 28009 Madrid, Spain
- Center for Biomedical Research in Bioengineering, Biomaterials and Nanotechnology Network (CIBER-BBN), 28029 Madrid, Spain
- HIV-HGM Biobank, University General Hospital Gregorio Marañon (HGUGM), 28007 Madrid, Spain
| |
Collapse
|
3
|
Pierański MK, Kosiński JG, Szymczak K, Sadowski P, Grinholc M. Antimicrobial Photodynamic Inactivation: An Alternative for Group B Streptococcus Vaginal Colonization in a Murine Experimental Model. Antioxidants (Basel) 2023; 12:847. [PMID: 37107222 PMCID: PMC10135335 DOI: 10.3390/antiox12040847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Streptococcus agalactiae, referred to as Group B Streptococcus (GBS), is a prominent bacterium causing life-threatening neonatal infections. Although antibiotics are efficient against GBS, growing antibiotic resistance forces the search for alternative treatments and/or prevention approaches. Antimicrobial photodynamic inactivation (aPDI) appears to be a potent alternative non-antibiotic strategy against GBS. METHODS The effect of rose bengal aPDI on various GBS serotypes, Lactobacillus species, human eukaryotic cell lines and microbial vaginal flora composition was evaluated. RESULTS RB-mediated aPDI was evidenced to exert high bactericidal efficacy towards S. agalactiae in vitro (>4 log10 units of viability reduction for planktonic and >2 log10 units for multispecies biofilm culture) and in vivo (ca. 2 log10 units of viability reduction in mice vaginal GBS colonization model) in microbiological and metagenomic analyses. At the same time, RB-mediated aPDI was evidenced to be not mutagenic and safe for human vaginal cells, as well as capable of maintaining the balance and viability of vaginal microbial flora. CONCLUSIONS aPDI can efficiently kill GBS and serve as an alternative approach against GBS vaginal colonization and/or infections.
Collapse
Affiliation(s)
- Michał K. Pierański
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, 80-307 Gdańsk, Poland
| | - Jan G. Kosiński
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-712 Poznań, Poland
| | - Klaudia Szymczak
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, 80-307 Gdańsk, Poland
| | - Piotr Sadowski
- Department of Pathomorphology, University Hospital in Kraków, 31-501 Kraków, Poland
| | - Mariusz Grinholc
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, 80-307 Gdańsk, Poland
| |
Collapse
|
4
|
Khwaza V, Buyana B, Nqoro X, Peter S, Mbese Z, Feketshane Z, Alven S, Aderibigbe BA. Strategies for delivery of antiviral agents. VIRAL INFECTIONS AND ANTIVIRAL THERAPIES 2023:407-492. [DOI: 10.1016/b978-0-323-91814-5.00018-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Rodríguez‐Izquierdo I, Sepúlveda‐Crespo D, Lasso JM, Resino S, Muñoz‐Fernández MÁ. Baseline and time-updated factors in preclinical development of anionic dendrimers as successful anti-HIV-1 vaginal microbicides. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1774. [PMID: 35018739 PMCID: PMC9285063 DOI: 10.1002/wnan.1774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022]
Abstract
Although a wide variety of topical microbicides provide promising in vitro and in vivo efficacy, most of them failed to prevent sexual transmission of human immunodeficiency virus type 1 (HIV-1) in human clinical trials. In vitro, ex vivo, and in vivo models must be optimized, considering the knowledge acquired from unsuccessful and successful clinical trials to improve the current gaps and the preclinical development protocols. To date, dendrimers are the only nanotool that has advanced to human clinical trials as topical microbicides to prevent HIV-1 transmission. This fact demonstrates the importance and the potential of these molecules as microbicides. Polyanionic dendrimers are highly branched nanocompounds with potent activity against HIV-1 that disturb HIV-1 entry. Herein, the most significant advancements in topical microbicide development, trying to mimic the real-life conditions as closely as possible, are discussed. This review also provides the preclinical assays that anionic dendrimers have passed as microbicides because they can improve current antiviral treatments' efficacy. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
| | - Daniel Sepúlveda‐Crespo
- Unidad de Infección Viral e Inmunidad, Centro Nacional de MicrobiologíaInstituto de Salud Carlos IIIMadridSpain
| | | | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de MicrobiologíaInstituto de Salud Carlos IIIMadridSpain
| | - Ma Ángeles Muñoz‐Fernández
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM)MadridSpain
- Spanish HIV HGM BioBankMadridSpain
- Section of Immunology, Laboratorio InmunoBiología MolecularHospital General Universitario Gregorio Marañón (HGUGM)MadridSpain
| |
Collapse
|
6
|
Royo-Rubio E, Martín-Cañadilla V, Rusnati M, Milanesi M, Lozano-Cruz T, Gómez R, Jiménez JL, Muñoz-Fernández MÁ. Prevention of Herpesviridae Infections by Cationic PEGylated Carbosilane Dendrimers. Pharmaceutics 2022; 14:pharmaceutics14030536. [PMID: 35335912 PMCID: PMC8950866 DOI: 10.3390/pharmaceutics14030536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/28/2022] Open
Abstract
Infections caused by viruses from the Herpesviridae family produce some of the most prevalent transmitted diseases in the world, constituting a serious global public health issue. Some of the virus properties such as latency and the appearance of resistance to antiviral treatments complicate the development of effective therapies capable of facing the infection. In this context, dendrimers present themselves as promising alternatives to current treatments. In this study, we propose the use of PEGylated cationic carbosilane dendrimers as inhibitors of herpes simplex virus 2 (HSV-2) and human cytomegalovirus (HCMV)infections. Studies of mitochondrial toxicity, membrane integrity, internalization and viral infection inhibition indicated that G2-SN15-PEG, G3-SN31-PEG, G2-SN15-PEG fluorescein isothiocyanate (FITC) labeled and G3-SN31-PEG-FITC dendrimers are valid candidates to target HSV-2 and HCMV infections since they are biocompatible, can be effectively internalized and are able to significantly inhibit both infections. Later studies (including viral inactivation, binding inhibition, heparan sulphate proteoglycans (HSPG)binding and surface plasmon resonance assays) confirmed that inhibition takes place at first infection stages. More precisely, these studies established that their attachment to cell membrane heparan sulphate proteoglycans impede the interaction between viral glycoproteins and these cell receptors, thus preventing infection. Altogether, our research confirmed the high capacity of these PEGylated carbosilane dendrimers to prevent HSV-2 and HCMV infections, making them valid candidates as antiviral agents against Herpesviridae infections.
Collapse
Affiliation(s)
- Elena Royo-Rubio
- Laboratorio InmunoBiologia Molecular, Instituto Investigacion Sanitaria Gregorio Maranon (IiSGM), Hospital General Universitario Gregorio Maranon (HGUGM), 28009 Madrid, Spain; (E.R.-R.); (V.M.-C.)
- Plataforma de Laboratorio (Inmunologia), HGUGM, IiSGM, Spanish HIV HGM BioBank, 28009 Madrid, Spain;
| | - Vanessa Martín-Cañadilla
- Laboratorio InmunoBiologia Molecular, Instituto Investigacion Sanitaria Gregorio Maranon (IiSGM), Hospital General Universitario Gregorio Maranon (HGUGM), 28009 Madrid, Spain; (E.R.-R.); (V.M.-C.)
- Plataforma de Laboratorio (Inmunologia), HGUGM, IiSGM, Spanish HIV HGM BioBank, 28009 Madrid, Spain;
| | - Marco Rusnati
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.R.); (M.M.)
| | - Maria Milanesi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.R.); (M.M.)
| | - Tania Lozano-Cruz
- Departmento Quimica Organica y Quimica Inorganica, Instituto de Investigacion Quimica “Andres M. del Rio″ (IQAR), Universidad de Alcalá (IRYCIS), Campus Universitario, 28871 Madrid, Spain; (T.L.-C.); (R.G.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Rafael Gómez
- Departmento Quimica Organica y Quimica Inorganica, Instituto de Investigacion Quimica “Andres M. del Rio″ (IQAR), Universidad de Alcalá (IRYCIS), Campus Universitario, 28871 Madrid, Spain; (T.L.-C.); (R.G.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - José Luís Jiménez
- Plataforma de Laboratorio (Inmunologia), HGUGM, IiSGM, Spanish HIV HGM BioBank, 28009 Madrid, Spain;
| | - Maria Ángeles Muñoz-Fernández
- Laboratorio InmunoBiologia Molecular, Instituto Investigacion Sanitaria Gregorio Maranon (IiSGM), Hospital General Universitario Gregorio Maranon (HGUGM), 28009 Madrid, Spain; (E.R.-R.); (V.M.-C.)
- Correspondence: or
| |
Collapse
|
7
|
Relaño-Rodríguez I, Espinar-Buitrago MDLS, Martín-Cañadilla V, Gómez-Ramírez R, Muñoz-Fernández MÁ. G2-S16 Polyanionic Carbosilane Dendrimer Can Reduce HIV-1 Reservoir Formation by Inhibiting Macrophage Cell to Cell Transmission. Int J Mol Sci 2021; 22:8366. [PMID: 34445073 PMCID: PMC8393995 DOI: 10.3390/ijms22168366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/21/2021] [Accepted: 07/31/2021] [Indexed: 11/16/2022] Open
Abstract
Human immunodeficiency virus (HIV-1) is still a major problem, not only in developing countries but is also re-emerging in several developed countries, thus the development of new compounds able to inhibit the virus, either for prophylaxis or treatment, is still needed. Nanotechnology has provided the science community with several new tools for biomedical applications. G2-S16 is a polyanionic carbosilane dendrimer capable of inhibiting HIV-1 in vitro and in vivo by interacting directly with viral particles. One of the main barriers for HIV-1 eradication is the reservoirs created in primoinfection. These reservoirs, mainly in T cells, are untargetable by actual drugs or immune system. Thus, one approach is inhibiting HIV-1 from reaching these reservoir cells. In this context, macrophages play a main role as they can deliver viral particles to T cells establishing reservoirs. We showed that G2-S16 dendrimer is capable of inhibiting the infection from infected macrophages to healthy T CD4/CD8 lymphocytes by eliminating HIV-1 infectivity inside macrophages, so they are not able to carry infectious particles to other body locations, thus preventing the reservoirs from forming.
Collapse
Affiliation(s)
- Ignacio Relaño-Rodríguez
- Section Head Immunology, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), 28007 Madrid, Spain; (I.R.-R.); (M.d.l.S.E.-B.); (V.M.-C.)
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007 Madrid, Spain
| | - María de la Sierra Espinar-Buitrago
- Section Head Immunology, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), 28007 Madrid, Spain; (I.R.-R.); (M.d.l.S.E.-B.); (V.M.-C.)
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007 Madrid, Spain
| | - Vanessa Martín-Cañadilla
- Section Head Immunology, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), 28007 Madrid, Spain; (I.R.-R.); (M.d.l.S.E.-B.); (V.M.-C.)
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007 Madrid, Spain
| | - Rafael Gómez-Ramírez
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá (UAH), 28871 Alcalá de Henares, Spain;
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - María Ángeles Muñoz-Fernández
- Section Head Immunology, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), 28007 Madrid, Spain; (I.R.-R.); (M.d.l.S.E.-B.); (V.M.-C.)
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Spanish HIV-HGM BioBank, Hospital General Universitario Gregorio Marañón C/Dr. Esquerdo 46, 28007 Madrid, Spain
| |
Collapse
|
8
|
Rodriguez-Izquierdo I, Ceña-Diez R, Serramia MJ, Rodriguez-Fernández R, Martínez I, Muñoz-Fernández M. Role of G2-S16 Polyanionic Carbosilane Dendrimer in the Prevention of Respiratory Syncytial Virus Infection In Vitro and In Vivo in Mice. Polymers (Basel) 2021; 13:polym13132141. [PMID: 34209827 PMCID: PMC8271643 DOI: 10.3390/polym13132141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022] Open
Abstract
The respiratory syncytial virus (RSV) causes respiratory infection and bronchiolitis, requiring hospitalization mainly in infants. The interaction between RSV, envelope glycoproteins G and F, and cell surface heparan sulfate proteoglycans (HSPG) is required for binding and entry into the host cells. A G2-S16 polyanionic carbosilane dendrimer was identified as a possible RSV inhibitor. We speculated that the G2-S16 dendrimer adheres to the host cell-surface HSPG, acts through binding to HS receptors, and prevents further RSV infection. The G2-S16 dendrimer was non-toxic when applied intranasally to Balb/c mice, and interestingly enough, this G2-S16 dendrimer inhibits 85% RSV. Therefore, our G2-S16 dendrimer could be a candidate for developing a new possible therapy against RSV infection.
Collapse
Affiliation(s)
- Ignacio Rodriguez-Izquierdo
- Immunology Section, Head Inmuno-Biology Molecular Laboratory, Gregorio Marañón University General Hospital (HGUGM), Gregorio Marañón Health Research Institute (IiSGM), 28007 Madrid, Spain; (I.R.-I.); (R.C.-D.); (M.J.S.)
- Spanish HIV HGM BioBank, C/Dr. Esquerdo 46, 28007 Madrid, Spain
| | - Rafael Ceña-Diez
- Immunology Section, Head Inmuno-Biology Molecular Laboratory, Gregorio Marañón University General Hospital (HGUGM), Gregorio Marañón Health Research Institute (IiSGM), 28007 Madrid, Spain; (I.R.-I.); (R.C.-D.); (M.J.S.)
| | - Maria Jesús Serramia
- Immunology Section, Head Inmuno-Biology Molecular Laboratory, Gregorio Marañón University General Hospital (HGUGM), Gregorio Marañón Health Research Institute (IiSGM), 28007 Madrid, Spain; (I.R.-I.); (R.C.-D.); (M.J.S.)
- Spanish HIV HGM BioBank, C/Dr. Esquerdo 46, 28007 Madrid, Spain
| | - Rosa Rodriguez-Fernández
- Hospital de Pediatría, Gregorio Marañón University General Hospital (HGUGM), Gregorio Marañón Health Research Institute (IiSGM), C/Dr. Esquerdo 46, 28007 Madrid, Spain;
| | - Isidoro Martínez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28007 Madrid, Spain;
| | - Mariángeles Muñoz-Fernández
- Immunology Section, Head Inmuno-Biology Molecular Laboratory, Gregorio Marañón University General Hospital (HGUGM), Gregorio Marañón Health Research Institute (IiSGM), 28007 Madrid, Spain; (I.R.-I.); (R.C.-D.); (M.J.S.)
- Spanish HIV HGM BioBank, C/Dr. Esquerdo 46, 28007 Madrid, Spain
- Correspondence: or ; Tel.: +34-91-462-4684
| |
Collapse
|
9
|
Relaño-Rodríguez I, Muñoz-Fernández MÁ. Emergence of Nanotechnology to Fight HIV Sexual Transmission: The Trip of G2-S16 Polyanionic Carbosilane Dendrimer to Possible Pre-Clinical Trials. Int J Mol Sci 2020; 21:ijms21249403. [PMID: 33321835 PMCID: PMC7764023 DOI: 10.3390/ijms21249403] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Development of new, safe, and effective microbicides to prevent human immunodeficiency virus HIV sexual transmission is needed. Unfortunately, most microbicides proved ineffective to prevent the risk of HIV-infection in clinical trials. We are working with G2-S16 polyanionic carbosilane dendrimer (PCD) as a new possible vaginal topical microbicide, based on its short reaction times, wide availability, high reproducibility, and quantitative yields of reaction. G2-S16 PCD exerts anti-HIV activity at an early stage of viral replication, by blocking gp120/CD4/CCR5 interaction, and providing a barrier against infection for long periods of time. G2-S16 PCD was stable at different pH values, as well as in the presence of seminal fluids. It maintained the anti-HIV activity against R5/X4 HIV over time, did not generate any type of drug resistance, and retained the anti-HIV effect when exposed to semen-enhanced viral infection. Importantly, G2-S16 PCD did not modify vaginal microbiota neither in vitro or in vivo. Histopathological examination did not show vaginal irritation, inflammation, lesions, or damage in the vaginal mucosa, after administration of G2-S16 PCD at different concentrations and times in female mice and rabbit animal models. Based on these promising data, G2-S16 PCD could become a good, safe, and readily available candidate to use as a topical vaginal microbicide against HIV.
Collapse
Affiliation(s)
- Ignacio Relaño-Rodríguez
- Head Section of Immunology, Molecular Immunology Laboratory, General Universitary Hospital Gregorio Marañón, C/Dr. Esquerdo 46, 28007 Madrid, Spain;
| | - Maria Ángeles Muñoz-Fernández
- Head Section of Immunology, Molecular Immunology Laboratory, General Universitary Hospital Gregorio Marañón, C/Dr. Esquerdo 46, 28007 Madrid, Spain;
- Health Research Institute Gregorio Marañon (IiSGM), C/Dr. Esquerdo 46, 28007 Madrid, Spain
- Spanish HIV HGM BioBank, C/Dr. Esquerdo 46, 28007 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/Dr. Esquerdo 46, 28007 Madrid, Spain
- Correspondence: or ; Tel.: +34-91-586-8565
| |
Collapse
|
10
|
dos Santos Ramos MA, dos Santos KC, da Silva PB, de Toledo LG, Marena GD, Rodero CF, de Camargo BAF, Fortunato GC, Bauab TM, Chorilli M. Nanotechnological strategies for systemic microbial infections treatment: A review. Int J Pharm 2020; 589:119780. [PMID: 32860856 PMCID: PMC7449125 DOI: 10.1016/j.ijpharm.2020.119780] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/27/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
Abstract
Systemic infections is one of the major causes of mortality worldwide, and a shortage of drug approaches applied for the rapid and necessary treatment contribute to increase the levels of death in affected patients. Several drug delivery systems based in nanotechnology such as metallic nanoparticles, liposomes, nanoemulsion, microemulsion, polymeric nanoparticles, solid lipid nanoparticles, dendrimers, hydrogels and liquid crystals can contribute in the biological performance of active substances for the treatment of microbial diseases triggered by fungi, bacteria, virus and parasites. In the presentation of these statements, this review article present and demonstrate the effectiveness of these drug delivery systems for the treatment of systemic diseases caused by several microorganisms, through a review of studies on scientific literature worldwide that contributes to better information for the most diverse professionals from the areas of health sciences. The studies demonstrated that the drug delivery systems described can contribute to the therapeutic scenario of these diseases, being classified as safe, active platforms and with therapeutic versatility.
Collapse
Affiliation(s)
- Matheus Aparecido dos Santos Ramos
- Department of Drugs and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State Zip Code: 14.800-903, Brazil,Corresponding authors
| | - Karen Cristina dos Santos
- Department of Drugs and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State Zip Code: 14.800-903, Brazil
| | - Patrícia Bento da Silva
- Department of Genetic and Morphology, Brasília University (UNB), Institute of Biological Sciences, Zip Code: 70735100, Brazil
| | - Luciani Gaspar de Toledo
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State Zip Code: 14.800-903, Brazil
| | - Gabriel Davi Marena
- Department of Drugs and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State Zip Code: 14.800-903, Brazil
| | - Camila Fernanda Rodero
- Department of Drugs and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State Zip Code: 14.800-903, Brazil
| | - Bruna Almeida Furquim de Camargo
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State Zip Code: 14.800-903, Brazil
| | - Giovanna Capaldi Fortunato
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State Zip Code: 14.800-903, Brazil
| | - Taís Maria Bauab
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State Zip Code: 14.800-903, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State Zip Code: 14.800-903, Brazil.
| |
Collapse
|