1
|
Rodríguez CF, Guzmán-Sastoque P, Santacruz-Belalcazar A, Rodriguez C, Villamarin P, Reyes LH, Cruz JC. Magnetoliposomes for nanomedicine: synthesis, characterization, and applications in drug, gene, and peptide delivery. Expert Opin Drug Deliv 2025. [PMID: 40372113 DOI: 10.1080/17425247.2025.2506829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/25/2025] [Accepted: 05/12/2025] [Indexed: 05/16/2025]
Abstract
INTRODUCTION Magnetoliposomes represent a transformative advancement in nanomedicine by integrating magnetic nanoparticles with liposomal structures, creating multifunctional delivery platforms that overcome key limitations of conventional drug carriers. These hybrid systems enable precision targeting through external magnetic fields, controlled release via magnetic hyperthermia, and real-time theranostic capabilities, offering unprecedented spatiotemporal control over therapeutic administration. AREAS COVERED This manuscript focused primarily on studies from 2023-2025 however, a few select older references were included to provide background and context.This review examines the fundamental design principles of Magnetoliposomes, including bilayer composition, nanoparticle integration strategies, and physicochemical properties governing their biological performance. We comprehensively assess synthesis methodologies - from traditional thin-film hydration to advanced microfluidic approaches - highlighting their impact on colloidal stability, drug encapsulation, and scaling potential. Characterization techniques essential for quality control and regulatory approval are systematically reviewed, followed by applications across oncology, gene delivery, neurology, and infectious disease treatment, supported by recent experimental evidence. EXPERT OPINION While magnetoliposomes show remarkable therapeutic versatility, their clinical translation requires addressing biocompatibility concerns, manufacturing scalability, and regulatory hurdles. Integration with artificial intelligence, organ-on-chip technologies, and personalized medicine approaches will likely accelerate their development toward clinical reality, potentially revolutionizing treatment paradigms for complex diseases through tailored therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Coryna Rodriguez
- Biomedical Engineering Department, Universidad de los Andes, Bogotá, Colombia
| | - Paula Villamarin
- Biomedical Engineering Department, Universidad de los Andes, Bogotá, Colombia
| | - Luis H Reyes
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universi-dad de los Andes, Bogotá, Colombia
| | - Juan C Cruz
- Biomedical Engineering Department, Universidad de los Andes, Bogotá, Colombia
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universi-dad de los Andes, Bogotá, Colombia
| |
Collapse
|
2
|
Zeng X, Joshi PU, Lawton A, Manchester L, Heldt CL, Perry SL. Exploring the effects of excipients on complex coacervation. J Colloid Interface Sci 2025; 695:137808. [PMID: 40359635 DOI: 10.1016/j.jcis.2025.137808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/22/2025] [Accepted: 05/04/2025] [Indexed: 05/15/2025]
Abstract
Complex coacervation is an associative liquid-liquid phase separation phenomenon that takes place due to the electrostatic complexation of oppositely-charged polyelectrolytes and the entropic gains associated with the release of bound counterions and rearrangement of solvent. The aqueous nature of coacervation has resulted in its broad use in systems requiring high biocompatibility. The significance of electrostatic interactions in coacervates has meant that studies investigating the phase behaviors of these systems have tended to focus on parameters such as the charge stoichiometry of the polyions, the solution pH, and the ionic strength. However, the equilibrium that exists between the polymer-rich coacervate phase and the polymer-poor supernatant phase represents a balance among attractive electrostatic interactions and excluded volume repulsions as well as osmotic pressure effects. As such, we hypothesize that it should be possible to tune coacervate phase behavior via the addition of non-electrostatic excipients which would partition between the two phases and potentially alter both the solvent quality and the osmotic pressure balance. In particular, our work focuses on small molecule excipients such as sugars, amino acids, and other additives that have a history of use in vaccine formulation. We quantified the ability of these excipients to partition into the coacervate phase, and their potential for destabilizing the phase separation. Furthermore, we demonstrate that these additives can be combined with complex coacervation in the context of a virus formulation.
Collapse
Affiliation(s)
- Xianci Zeng
- Department of Chemical Engineering, University of Massachusetts Amherst, United States
| | - Pratik U Joshi
- Department of Chemical Engineering, Michigan Technological University, United States
| | - Alexander Lawton
- Department of Chemical Engineering, University of Massachusetts Amherst, United States
| | - Lynn Manchester
- Department of Chemical Engineering, Michigan Technological University, United States
| | - Caryn L Heldt
- Department of Chemical Engineering, Michigan Technological University, United States.
| | - Sarah L Perry
- Department of Chemical Engineering, University of Massachusetts Amherst, United States.
| |
Collapse
|
3
|
Arte KS, Chen M, Patil CD, Huang Y, Qu L, Zhou Q. Recent advances in drying and development of solid formulations for stable mRNA and siRNA lipid nanoparticles. J Pharm Sci 2025; 114:805-815. [PMID: 39694272 DOI: 10.1016/j.xphs.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024]
Abstract
Current RNA lipid nanoparticle (LNP) based products are typically liquid formulations that require ultra-cold storage temperatures for stability. To address this limitation, recent efforts have focused on enhancing stability and enabling room temperature storage by converting these formulations into solid forms through drying processes such as lyophilization, spray drying, and spray-freeze drying. Nevertheless, the drying process itself can influence the stability of RNA/LNP formulations. Therefore, understanding the factors that contribute to instability during drying is essential. The choice of drying technique for LNPs depends on factors such as the mode of delivery, lipid components, and desired final product characteristics. Additionally, the drying mechanism and associated stresses must also be carefully considered. Drying methods involve a range of process parameters related to formulation, process settings, and the manufacturing environment. It is essential to understand how these parameters influence the final solid-state products' attributes, including appearance, moisture content, flow properties, and reconstitution time, as these can significantly affect the physical and chemical stability of the formulation. This review focuses on various drying techniques and their impact on the stability of RNA/LNP-based systems.
Collapse
Affiliation(s)
- Kinnari Santosh Arte
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Manlin Chen
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Chanakya D Patil
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Yijing Huang
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Li Qu
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA.
| | - Qi Zhou
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
4
|
Shreya AB, Pandey A, Kulkarni S, Bhaskar KV, Parekh HS, Mutalik S. Exploring peptide dendrimers for intestinal lymphatic targeting: formulation and evaluation of peptide dendrimer conjugated liposomes for enhancing the oral bioavailability of Asenapine maleate. Sci Rep 2024; 14:28225. [PMID: 39548220 PMCID: PMC11568265 DOI: 10.1038/s41598-024-79372-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024] Open
Abstract
Asenapine maleate (ASPM) is a second-generation atypical antipsychotic that is approved for treating acute schizophrenia and bipolar disorder in adults by the US FDA. The major downside of ASPM therapy is rapid, extensive first-pass hepatic metabolism following its oral administration with a very low oral bioavailability of < 2%. In this work, we developed ASPM nanoformulations conjugated with ligands such as arginine-glycine-aspartic acid (RGD) and peptide dendrimers (PDs) with the intention of improving the oral bioavailability of the drug by targeting it to the intestinal lymphatic system (ILS). Peptide dendrimers (PDs), both lipidated and nonlipidated, were synthesized by Fmoc solid phase peptide synthesis (SPPS). Reverse phase high performance chromatography (RP-HPLC) was used to purify the synthesized PDs, and the PDs were characterized by differential scanning calorimetry (DSC) electrospray ionization mass spectroscopy (ESI+-MS), Nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopy. The thin film hydration method was used to prepare liposomes, and the process variables affecting the liposome parameters were optimized using the Box‒Behnken design (BBD).Liposomes were PEGylated using DSPE-PEG-COOH2000 and further conjugated with ligands (RGD, PD-1 and PD-2) using EDC-NHS chemistry. The formulation was characterized using different spectroscopic techniques. In vitro, cell line studies, such as cytotoxicity, cell uptake, uptake mechanism, and receptor saturation studies, were performed on both Caco2 and Raji-B cells. The pharmacokinetic parameters of the developed liposomal formulation were evaluated using pharmacokinetic studies on Sprague- Dawley (SD) rats. The psychostimulant-induced hyperactivity model was used to evaluate the pharmacodynamic performance of the developed formulations by measuring the reversal of hyperlocomotor activity induced by levodopa-carbidopa.
Collapse
Affiliation(s)
- Ajjappla Basavaraj Shreya
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Abhijeet Pandey
- Global Drug Development/Technical Research and Development, Novartis Healthcare Pvt. Ltd., Genome Valley, Hyderabad, Telangana, 500101, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - K Vijaya Bhaskar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Harendra S Parekh
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
5
|
Monola J, Koivunotko E, Zini J, Niemelä A, Koivuniemi A, Kröger A, Korhonen O, Valkonen S, Merivaara A, Harjumäki R, Yliperttula M, Kekkonen J. Freeze-drying-induced mutarotation of lactose detected by Raman spectroscopy. Eur J Pharm Biopharm 2024:114534. [PMID: 39427685 DOI: 10.1016/j.ejpb.2024.114534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/01/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Freeze-drying enables delicate, heat-sensitive biomaterials to be stored in a dry form even at room temperature. However, exposure to physicochemical stress induced by freeze-drying presents challenges for maintaining material characteristics and functionality upon reconstitution, for which reason excipients are required. Although wide variety of different excipients are available for pharmaceutical applications, their protective role in the freeze-drying is not yet fully understood. In this study our aim was to use molecular dynamics simulations to screen the properties of different sugars and amino acids, which could be combined with plant-based nanofibrillated cellulose (NFC) hydrogel to provide protective matrix system for future freeze-drying for pharmaceuticals and biologics. The changes in the NFC-based formulations before and after freeze-drying and reconstitution were evaluated using non-invasive Timegate PicoRaman spectroscopy and traditional characterization methods. We continued to the freeze-drying with the NFC hydrogel formulations including lactose with and without glycine, which showed the highest attraction preferences on NFC surface in silico. This formulation enabled successful freeze-drying and subsequent reconstitution with preserved physicochemical and rheological properties. Raman spectroscopy gave us insights of the molecular-level changes during freeze-drying, especially the mutarotation of lactose. This research showed the potential of integrating in silico screening and non-invasive spectroscopical method to design novel biomaterial-based formulations for freeze-drying. The research provided insights of the molecular-level interactions and orientational changes of the excipients, which might be crucial in future freeze-drying applications of pharmaceuticals and biologics.
Collapse
Affiliation(s)
- Julia Monola
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790 Helsinki, Finland.
| | - Elle Koivunotko
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790 Helsinki, Finland
| | - Jacopo Zini
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790 Helsinki, Finland; Timegate Instruments Oy, 90590 Oulu, Finland
| | - Akseli Niemelä
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790 Helsinki, Finland
| | - Artturi Koivuniemi
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790 Helsinki, Finland
| | - Aleksi Kröger
- School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland
| | - Ossi Korhonen
- School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland
| | - Sami Valkonen
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790 Helsinki, Finland; School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland
| | - Arto Merivaara
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790 Helsinki, Finland; School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland
| | - Riina Harjumäki
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790 Helsinki, Finland
| | - Marjo Yliperttula
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790 Helsinki, Finland
| | - Jere Kekkonen
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790 Helsinki, Finland; Timegate Instruments Oy, 90590 Oulu, Finland; School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland; Circuits and Systems Research Unit, University of Oulu, 90014 Oulu, Finland
| |
Collapse
|
6
|
Fan Y, Rigas D, Kim LJ, Chang FP, Zang N, McKee K, Kemball CC, Yu Z, Winkler P, Su WC, Jessen P, Hura GL, Chen T, Koenig SG, Nagapudi K, Leung D, Yen CW. Physicochemical and structural insights into lyophilized mRNA-LNP from lyoprotectant and buffer screenings. J Control Release 2024; 373:727-737. [PMID: 39059500 DOI: 10.1016/j.jconrel.2024.07.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
The surge in RNA therapeutics has revolutionized treatments for infectious diseases like COVID-19 and shows the potential to expand into other therapeutic areas. However, the typical requirement for ultra-cold storage of mRNA-LNP formulations poses significant logistical challenges for global distribution. Lyophilization serves as a potential strategy to extend mRNA-LNP stability while eliminating the need for ultra-cold supply chain logistics. Although recent advancements have demonstrated the promise of lyophilization, the choice of lyoprotectant is predominately focused on sucrose, and there remains a gap in comprehensive evaluation and comparison of lyoprotectants and buffers. Here, we aim to systematically investigate the impact of a diverse range of excipients including oligosaccharides, polymers, amino acids, and various buffers, on the quality and performance of lyophilized mRNA-LNPs. From the screening of 45 mRNA-LNP formulations under various lyoprotectant and buffer conditions for lyophilization, we identified previously unexplored formulation compositions, e.g., polyvinylpyrrolidone (PVP) in Tris or acetate buffers, as promising alternatives to the commonly used oligosaccharides to maintain the physicochemical stability of lyophilized mRNA-LNPs. Further, we delved into how physicochemical and structural properties influence the functionality of lyophilized mRNA-LNPs. Leveraging high-throughput small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (cryo-TEM), we showed that there is complex interplay between mRNA-LNP structural features and cellular translation efficacy. We also assessed innate immune responses of the screened mRNA-LNPs in human peripheral blood mononuclear cells (PBMCs), and showed minimal alterations of cytokine secretion profiles induced by lyophilized formulations. Our results provide valuable insights into the structure-activity relationship of lyophilized formulations of mRNA-LNP therapeutics, paving the way for rational design of these formulations. This work creates a foundation for a comprehensive understanding of mRNA-LNP properties and in vitro performance change resulting from lyophilization.
Collapse
Affiliation(s)
- Yuchen Fan
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Diamanda Rigas
- Biochemical and Cellular Pharmacology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Lee Joon Kim
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Lab, Berkeley, CA 94020, USA
| | - Feng-Peng Chang
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Nanzhi Zang
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kristina McKee
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Christopher C Kemball
- Biochemical and Cellular Pharmacology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Zhixin Yu
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Pascal Winkler
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Wan-Chih Su
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Pierce Jessen
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Greg L Hura
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Lab, Berkeley, CA 94020, USA; Chemistry and Biochemistry Department, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Tao Chen
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Stefan G Koenig
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Karthik Nagapudi
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Dennis Leung
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Chun-Wan Yen
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
7
|
Gatto MS, Najahi-Missaoui W. Lyophilization of Nanoparticles, Does It Really Work? Overview of the Current Status and Challenges. Int J Mol Sci 2023; 24:14041. [PMID: 37762348 PMCID: PMC10530935 DOI: 10.3390/ijms241814041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Nanoparticles are being increasingly used as drug delivery systems to enhance the delivery to and uptake by target cells and to reduce off-target toxicity of free drugs. However, although the advantages of nanoparticles as drug carriers are clear, there are still some limitations, especially in maintaining their long-term stability. Lyophilization, also known as freeze-drying, has been heavily investigated as a solution to this problem. This strategy has been shown to be effective in increasing both the long-term stability of nanoparticles and the shelf life of the drug product. However, the process is still in need of improvement in several aspects, such as the process parameters, formulation factors, and characterization techniques. This review summarizes the advantages and limitations of nanoparticles for the treatment of disease, advantages and limitations, and the status of the lyophilization of nanoparticles for therapeutic use and provides insight into both the advantages and the limitations.
Collapse
Affiliation(s)
| | - Wided Najahi-Missaoui
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
8
|
Duangjit S, Takayama K, Bumrungthai S, Mahadlek J, Ngawhirunpat T, Opanasopit P. Development of invaethosomes and invaflexosomes for dermal delivery of clotrimazole: optimization, characterization and antifungal activity. Pharm Dev Technol 2023; 28:611-624. [PMID: 37357890 DOI: 10.1080/10837450.2023.2229104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
The objective of this study was to develop novel invaethosomes (I-ETS) and invaflexosomes (I-FXS) to enhance the dermal delivery of clotrimazole (CZ). Twenty model CZ-loaded I-ETS and I-FXS formulations were created according to a face-centered central composite experimental design. CZ-loaded vesicle formulations containing a constant concentration of 0.025% w/v CZ and various amounts of ethanol, d-limonene, and polysorbate 20 as penetration enhancers were prepared using the thin film hydration method. The physicochemical characteristics, skin permeability, and antifungal activity were characterized. The skin permeability of the experimental CZ-loaded I-ETS/I-FXS was significantly higher than that of conventional ethosomes, flexosomes, and the commercial product (1% w/w CZ cream). The mechanism of action was confirmed to be skin penetration of low ethanol base vesicles through the disruption of the skin microstructure. The optimal I-ETS in vitro antifungal activity against C. albicans differed significantly from that of ETS and the commercial cream (control). The response surface methodology predicted by Design Expert® was helpful in understanding the complicated relationship between the causal factors and the response variables of the 0.025% w/v CZ-loaded I-ETS/I-FXS formulation. Based on the available information, double vesicles seem to be promising versatile carriers for dermal drug delivery of CZ.
Collapse
Affiliation(s)
- Sureewan Duangjit
- Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Kozo Takayama
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama, Japan
| | - Sureewan Bumrungthai
- Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Jongjan Mahadlek
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | | | | |
Collapse
|
9
|
Exploration of Microneedle-assisted Skin Delivery of Cyanocobalamin formulated in Ultraflexible Lipid Vesicles. Eur J Pharm Biopharm 2022; 177:184-198. [PMID: 35787430 DOI: 10.1016/j.ejpb.2022.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/26/2022] [Accepted: 06/29/2022] [Indexed: 11/22/2022]
Abstract
Vitamin B12 (cyanocobalamin) deficiency is a widespread condition because of its different aetiologies, like malabsorption syndrome or lifestyles as strict veganism that is increasing its incidence and prevalence in developed countries. It has important haematological consequences that require pharmacological treatment. Current therapy consists of oral or parenteral supplements of cyanocobalamin; however, the oral route is discarded for malabsorption syndrome patients and the parenteral route is not well accepted generally. Topical treatments have been suggested as an alternative, but the molecular weight and hydrophilicity of cyanocobalamin limits its diffusion through the skin. Lipid vesicles can allow the transdermal absorption of molecules >500 Da. The aim of this work was to use different ultraflexible lipid vesicles (transfersomes and ethosomes) to enhance cyanocobalamin transdermal delivery. Vesicles were characterized and lyophilised for long-term stability. The ability to deliver cyanocobalamin through the skin was assessed in vitro using full-thickness porcine skin in Franz diffusion cells. As expected, the best transdermal fluxes were provided by ultraflexible vesicles, in comparison to a drug solution. Moreover, the pre-treatment of the skin with a solid microneedle array boosts the amount of drug that could potentially reach the systemic circulation.
Collapse
|
10
|
Wei Chen H, Po Fang W. A novel method for the microencapsulation of curcumin by high-pressure processing for enhancing the stability and preservation. Int J Pharm 2021; 613:121403. [PMID: 34933079 DOI: 10.1016/j.ijpharm.2021.121403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/04/2021] [Accepted: 12/15/2021] [Indexed: 11/25/2022]
Abstract
Curcumin is used for the development of new pharmaceutical and food products, but its application is generally hindered by the poor solubility of curcumin and thermal instability during storage and processing. In this study, the liposomes of curcumin (cur-liposomes) were prepared by a novel combination of ethanol injection and high-pressure processing (HPP) to enhance the stability and preservation of curcumin. The pasteurization, mean particle size, size distribution, and encapsulation efficiency of cur-liposomes and the kinetics of their thermal degradation were also investigated in this research. From the results, the kinetic rate constants of curcumin in samples of free curcumin and cur-liposome at 25 °C were found to be 1.6 × 10-3 and 0.8 × 10-3 min-1, respectively. The phospholipid bilayer structure could protect curcumin. The results propose that the HPP method for liposome preparation is superior to the probe-sonication method in terms of stability, encapsulation efficiency, and homogeneity. Furthermore, the preparation of cur-liposomes by HPP with a hydrostatic pressure of 200 MPa could maintain the optimal particle size (206.4 nm) and polydispersity index (0.19). Conclusively, the combination of ethanol injection and HPP can not only successfully inactivate the microorganisms during liposome preparation for microencapsulation of bioactive compounds but also effectively preventthe thermal degradation of heat-sensitive substances in non-thermal processing for practical applications.
Collapse
Affiliation(s)
- Hua Wei Chen
- Department of Chemical and Materials Engineering, National Ilan University, 1, Sec. 1, Shen-Lung Road, Yilan 260, Taiwan, Republic of China.
| | - Wu Po Fang
- Department of Chemical and Materials Engineering, National Ilan University, 1, Sec. 1, Shen-Lung Road, Yilan 260, Taiwan, Republic of China
| |
Collapse
|
11
|
David M, Budziak-Wieczorek I, Karcz D, Florescu M, Matwijczuk A. Insight into dual fluorescence effects induced by molecular aggregation occurring in membrane model systems containing 1,3,4-thiadiazole derivatives. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:1083-1101. [PMID: 34515830 PMCID: PMC8566415 DOI: 10.1007/s00249-021-01569-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 05/23/2021] [Accepted: 06/02/2021] [Indexed: 11/27/2022]
Abstract
This work reports on biophysical insights into the excited state intramolecular proton transfer (ESIPT) processes taking place in three 1,3,4-thiadiazole derivatives that served as model compounds, on which electronic absorption, fluorescence, Fourier-transform infrared spectroscopy (FTIR), surface plasmon resonance (SPR) and electrochemical impedance spectroscopy (EIS) studies were performed. The fluorescence spectra recorded in various solvents revealed an interesting dual fluorescence effect. In molecules in their monomeric form, the effect is associated with the ESIPT phenomenon, and may be further enhanced by aggregation-related effects, such as aggregation-induced emissions. Other spectroscopic studies on the selected molecules in a liposomal medium as a model revealed that, in a biomimetic environment, they can exist in both monomeric and aggregated forms. In both cases, however, the effects observed are closely related to the lipid's main phase transition temperature and the structure of the molecule. Introduction of specific substituents to the phenyl moiety either allows or prevents proton transfer from occurring in the excited state. The hydrophobicity changes in a lipid environment may result in an emergence of specific molecular forms and therefore either facilitate or hinder ESIPT processes. SPR and EIS confirmed the significant hydrophobicity changes in the model lipid systems, while FTIR measurements revealed a notable influence of 1,3,4-thiadiazoles on the fluidity of liposomal membranes. The results obtained clearly show that the thiadiazole derivatives are very good model molecules for studying hydrophobic-hydrophilic environments, and particularly with polymers or liposomes used as drug delivery systems.
Collapse
Affiliation(s)
- Melinda David
- Faculty of Medicine, Transilvania University of Brașov, 500019, Brașov, Romania
| | | | - Dariusz Karcz
- Department of Chemical Technology and Environmental Analytics (C1), Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155, Kraków, Poland
| | - Monica Florescu
- Faculty of Medicine, Transilvania University of Brașov, 500019, Brașov, Romania.
| | - Arkadiusz Matwijczuk
- Department of Biophysics, University of Life Sciences in Lublin, Lublin, Poland.
| |
Collapse
|
12
|
Song T, Wang H, Liu Y, Cai R, Yang D, Xiong Y. TPGS-Modified Long-Circulating Liposomes Loading Ziyuglycoside I for Enhanced Therapy of Myelosuppression. Int J Nanomedicine 2021; 16:6281-6295. [PMID: 34548791 PMCID: PMC8449650 DOI: 10.2147/ijn.s326629] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/07/2021] [Indexed: 01/02/2023] Open
Abstract
Background Ziyuglycoside I (ZgI), an active ingredient isolated from traditional Chinese medicine Sanguisorba officinalis L, has been demonstrated to increase the leucocytes and protect hematopoietic stem cells. However, the poor solubility and a short half-life of ZgI limit its bioavailability and efficacy. The D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) has been widely used to increase the solubility, improve the encapsulation rate, and extend the half-life of drugs. Methods Here, we formulated the TPGS-modified long-circulating liposomes loading ZgI with a sustained drug release and enhanced therapy for myelosuppression. ZgI-TPGS-liposomes were manufactured using a thin-film hydration technique, followed by characterizations of physicochemical properties, including the particle size, zeta potential, TEM, SEM, FTIR, XRD, stability, drug loading (DL), encapsulation efficiency (EE). The in vitro and in vivo delivery efficiency were further evaluated by cellular uptake, in vitro drug release and in vivo pharmacokinetics. Finally, therapeutic effect on myelosuppression was investigated. Results The ZgI-TPGS-liposomes had an particle size of 97.89 ± 1.42 nm and ZP of −28.65 ± 0.16 mV. It exhibited DL of 9.06 ± 0.76% and EE of 92.34 ± 3.83%, along with excellent storage stability, cellular uptake and sustained drug release to free ZgI and liposomes without TPGS. Additionally, the TPGS modified liposomes significantly enhanced the therapeutic effect of ZgI on CTX induced myelosuppression, which can be confirmed in the apoptosis inhibition and cell viability promotion of CTX injured HSPC-1 cells. Also, the mice in vivo pharmacodynamics demonstrated that TPGS liposomes promoted ZgI increasing the numbers of leucocytes and neutrophils in myelosuppression mice induced by CTX. Conclusion Our research suggest that TPGS-modified long-circulating liposomes loading ziyuglycoside I has potential application in myelosuppression therapy.
Collapse
Affiliation(s)
- Tingting Song
- Department of Pharmacy, Zunyi Medical University, Zunyi City, People's Republic of China
| | - Hong Wang
- Department of Pharmacy, Zunyi Medical University, Zunyi City, People's Republic of China
| | - Yue Liu
- Department of Pharmacy, Zunyi Medical University, Zunyi City, People's Republic of China
| | - Rongshan Cai
- Department of Pharmacy, Zunyi Medical University, Zunyi City, People's Republic of China
| | - Dezhi Yang
- Department of Pharmacy, Zunyi Medical University, Zunyi City, People's Republic of China
| | - Yongai Xiong
- Department of Pharmacy, Zunyi Medical University, Zunyi City, People's Republic of China
| |
Collapse
|
13
|
Trenkenschuh E, Friess W. Freeze-drying of nanoparticles: How to overcome colloidal instability by formulation and process optimization. Eur J Pharm Biopharm 2021; 165:345-360. [PMID: 34052428 DOI: 10.1016/j.ejpb.2021.05.024] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/03/2021] [Accepted: 05/23/2021] [Indexed: 11/29/2022]
Abstract
Lyophilization of nanoparticle (NP) suspensions is a promising technology to improve stability, especially during long-term storage, and offers new routes of administration in solid state. Although considered as a gentle drying process, freeze-drying is also known to cause several stresses leading to physical instability, e.g. aggregation, fusion, or content leakage. NPs are heterogeneous regarding their physico-chemical properties which renders them different in their sensitivity to lyophilization stress and upon storage. But still basic concepts can be deducted. We summarize basic colloidal stabilization mechanisms of NPs in the liquid and the dried state. Furthermore, we give information about stresses occurring during the freezing and the drying step of lyophilization. Subsequently, we review the most commonly investigated NP types including lipophilic, polymeric, or vesicular NPs regarding their particle properties, stabilization mechanisms in the liquid state, and important freeze-drying process, formulation and storage strategies. Finally, practical advice is provided to facilitate purposeful formulation and process development to achieve NP lyophilizates with high colloidal stability.
Collapse
Affiliation(s)
- Eduard Trenkenschuh
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-Universitaet Muenchen, 81377 Munich, Germany
| | - Wolfgang Friess
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-Universitaet Muenchen, 81377 Munich, Germany.
| |
Collapse
|
14
|
Chen HW, Chang YW, Fang WP. A New Approach for the Microencapsulation of Clitoria Ternatea Petal Extracts by a High-Pressure Processing Method. Pharmaceutics 2020; 13:pharmaceutics13010023. [PMID: 33374428 PMCID: PMC7824060 DOI: 10.3390/pharmaceutics13010023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/10/2020] [Accepted: 12/18/2020] [Indexed: 12/27/2022] Open
Abstract
Toxic organic solvent residues and the active substances of thermal degradation (such as anthocyanin and polyphenols) are always a concern with the liposomes produced by traditional techniques. The present study focuses on a new approach for the microencapsulation of Clitoria ternatea petal (CTP) extracts, which contain anthocyanins, by high-pressure processing (HPP) at room temperature. Thus, a series of CTP liposomes were prepared and their physicochemical properties were analyzed by laser granulometry and by scanning electron microscopy (SEM). The results revealed that the average particle size of the liposomes after HPP treatment increased gradually from 300 MPa to 600 MPa, possibly due to the aggregation of liposomes and damage to the phospholipid bilayers. For the preparation of liposomes by the HPP method at 300 MPa, the mean particle size, polydispersity index (PDI), and encapsulation efficiency were 240.7 nm, 0.37, and 77.8%, respectively. The HPP method provided a number of advantages over conventional methods (magnet stirring and ultrasonication) as it could allow liposome preparation with higher encapsulation efficiency, smaller size, and narrower, more reproducible particle size distribution. Conclusively, microencapsulation in the liposomes was successfully achieved with the fast-adiabatic expansion of HPP.
Collapse
Affiliation(s)
- Hua-Wei Chen
- Correspondence: ; Tel.: +886-3-9317498; Fax: +886-3-9357025
| | | | | |
Collapse
|