1
|
Futaki M, Inamura K, Nishimura T, Niitsu T, Tojo T, Sugibayashi K, Todo H. A Hollow Microneedle Equipped with a Micropillar for Improved Needle Insertion and Injection of Drug Solution. Pharm Res 2024; 41:819-831. [PMID: 38443630 DOI: 10.1007/s11095-024-03681-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/21/2024] [Indexed: 03/07/2024]
Abstract
PURPOSE Hollow-type microneedles (hMNs) are a promising device for the effective administration of drugs into intradermal sites. Complete insertion of the needle into the skin and administration of the drug solution without leakage must be achieved to obtain bioavailability or a constant effect. In the present study, several types of hMN with or without a rounded blunt tip micropillar, which suppresses skin deformation, around a hollow needle, and the effect on successful needle insertion and administration of a drug solution was investigated. Six different types of hMNs with needle lengths of 1000, 1300, and 1500 µm with or without a micropillar were used. METHODS Needle insertion and the disposition of a drug in rat skin were investigated. In addition, the displacement-force profile during application of hMNs was also investigated using a texture analyzer with an artificial membrane to examine needle factors affecting successful insertion and administration of a drug solution by comparing with in vivo results. RESULTS According to the results with the drug distribution of iodine, hMN1300 with a micropillar was able to successfully inject drug solution into an intradermal site with a high success rate. In addition, the results of displacement-force profiles with an artificial membrane showed that a micropillar can be effective for depth control of the injected solution as well as the prevention of contact between the hMN pedestal and the deformed membrane. CONCLUSION In the present study, hMN1300S showed effective solution delivery into an intradermal site. In particular, a micropillar can be effective for depth control of the injected solution as well as preventing contact between the hMN pedestal and the deformed membrane. The obtained results will help in the design and development of hMNs that ensure successful injection of an administered drug.
Collapse
Affiliation(s)
- Mika Futaki
- Graduate School of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Kazuya Inamura
- Graduate School of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Tomoya Nishimura
- Processing Development Research Lab., Kao Corp., 2606 Akabane, Ichikai-cho, Haga-gun, Tochigi, 321-3426, Japan
| | - Takatoshi Niitsu
- Processing Development Research Lab., Kao Corp., 2606 Akabane, Ichikai-cho, Haga-gun, Tochigi, 321-3426, Japan
| | - Takehiko Tojo
- Processing Development Research Lab., Kao Corp., 2606 Akabane, Ichikai-cho, Haga-gun, Tochigi, 321-3426, Japan
| | - Kenji Sugibayashi
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
- Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane, Chiba-ken, 283-8555, Japan
| | - Hiroaki Todo
- Graduate School of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan.
| |
Collapse
|
2
|
Wang X, Wang Z, Xiao M, Li Z, Zhu Z. Advances in biomedical systems based on microneedles: design, fabrication, and application. Biomater Sci 2024; 12:530-563. [PMID: 37971423 DOI: 10.1039/d3bm01551c] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Wearable devices have become prevalent in biomedical studies due to their convenient portability and potential utility in biomarker monitoring for healthcare. Accessing interstitial fluid (ISF) across the skin barrier, microneedle (MN) is a promising minimally invasive wearable technology for transdermal sensing and drug delivery. MN has the potential to overcome the limitations of conventional transdermal drug administration, making it another prospective mode of drug delivery after oral and injectable. Subsequently, combining MN with multiple sensing approaches has led to its extensive application to detect biomarkers in ISF. In this context, employing MN platforms and control schemes to merge diagnostic and therapeutic capabilities into theranostic systems will facilitate on-demand therapy and point-of-care diagnostics, paving the way for future MN technologies. A comprehensive analysis of the growing advances of microneedles in biomedical systems is presented in this review to summarize the latest studies for academics in the field and to offer for reference the issues that need to be addressed in MN application for healthcare. Covering an array of novel studies, we discuss the following main topics: classification of microneedles in the biomedical field, considerations of MN design, current applications of microneedles in diagnosis and therapy, and the regulatory landscape and prospects of microneedles for biomedical applications. This review sheds light on the significance of microneedle-based innovations, presenting an analysis of their potential implications and contributions to the community of wearable healthcare technologies. The review provides a comprehensive understanding of the field's current state and potential, making it a valuable resource for academics and clinicians seeking to harness the full potential of MN applications.
Collapse
Affiliation(s)
- Xinghao Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| | - Zifeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| | - Min Xiao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| | - Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| |
Collapse
|
3
|
Kim Y, Park IH, Shin J, Choi J, Jeon C, Jeon S, Shin JS, Jung H. Sublingual Dissolving Microneedle (SLDMN)-Based Vaccine for Inducing Mucosal Immunity against SARS-CoV-2. Adv Healthc Mater 2023; 12:e2300889. [PMID: 37337388 DOI: 10.1002/adhm.202300889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/07/2023] [Indexed: 06/21/2023]
Abstract
The coronavirus pandemic has accelerated the development of next-generation vaccination technology to combat future pandemic outbreaks. Mucosal vaccination effectively protects the mucosal surfaces, the primary sites of viral entry, by inducing the secretion of immunoglobulin A (IgA) and humoral IgG. Here, a dissolving microneedle (DMN) is adopted as a mucosal vaccine delivery platform to directly penetrate the sublingual site, which is rich in antigen-presenting cells (APCs) and lymphoid tissues. The sublingual dissolving microneedle (SLDMN) vaccination platform comprised a micropillar-based compartment and a 3D-printed SLDMN applicator as a substitute for the DMN patch. The penetration efficacy of SLDMNs is assessed using in vitro optical coherence tomography (OCT) and in vivo histological analysis. The efficacy of SLDMN is also evaluated in a vaccine form using the recombinant spike (S1) protein of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Furthermore, SLDMN is used to challenge transgenic mice expressing human angiotensin-converting enzyme 2 (hACE2) receptors. Its effects are evaluated on antibody production, survival rate, and inflammation attenuation after infection compared to the intramuscular (IM) injections. Overall, SLDMN effectively induced mucosal immunity via IgA secretion, attenuated lung inflammation, and lowered the levels of cytokines and chemokines, which may prevent the "cytokine storm" after SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Youseong Kim
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - In Ho Park
- Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jiwoo Shin
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jaibyung Choi
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Chansol Jeon
- JUVIC, 208Ho, 272, Digital-ro, Guro-gu, Seoul, 08389, Republic of Korea
| | - Seonghun Jeon
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jeon-Soo Shin
- Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyungil Jung
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- JUVIC, 208Ho, 272, Digital-ro, Guro-gu, Seoul, 08389, Republic of Korea
| |
Collapse
|
4
|
Min HS, Kim Y, Nam J, Ahn H, Kim M, Kang G, Jang M, Yang H, Jung H. Shape of dissolving microneedles determines skin penetration ability and efficacy of drug delivery. BIOMATERIALS ADVANCES 2023; 145:213248. [PMID: 36610239 DOI: 10.1016/j.bioadv.2022.213248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/28/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Dissolving microneedles (DMNs) are used for minimally invasive transdermal drug delivery. Dissolution of drugs is achieved in the body after skin penetration by DMNs. Unlike injections, the insertion depth of the DMN is an important issue because the amount of dissolved DMN in the skin determines the amount of drug delivered. Therefore, the inaccurate drug delivery due to the incomplete insertion is one of the limitations of the DMN. Thus, many insertion and penetration tests have been essentially conducted in DMN studies, yet only incomplete insertion is known and the exact standard for how much it is not inserted is still unknown. Moreover, there are various shapes have been introduced in the microneedle field, there have been only few studies that have compared and evaluated the insertion depth of the shapes. Here, we present an intensive approach for DMN insertion based on DMN shape among various insertion deciding factors. We numerically analyzed the volumetric distribution of three types of DMN shapes: conical-shaped DMN, funnel-shaped DMN, and candlelit-shaped DMN, and introduced a new insertion evaluation criterion while covering previous insertion evaluations. Using optical coherence tomography, the images of DMNs embedded in the skin were analyzed in rea l-time, and the amount of drug delivered was analyzed at sectioned depth with a cryotome. The in vitro data confirmed that the insertion depth differed based on shape, and the resulting drug delivery depended on the volume assigned to the insertion depth. Insulin-loaded DMNs were applied to C57BL/6 mice, and the results of pharmacokinetic and pharmacodynamic analyses supported the results of the in vitro analysis. Our approach, which considers the correlation between DMN shape and insertion depth, will contribute to establishing criteria for various DMN design and maximizing drug delivery.
Collapse
Affiliation(s)
- Hye Su Min
- Department of Biotechnology, Building 123, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Youseong Kim
- Department of Biotechnology, Building 123, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Jeehye Nam
- Department of Biotechnology, Building 123, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Hyeri Ahn
- Department of Biotechnology, Building 123, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Minkyung Kim
- Department of Biotechnology, Building 123, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Geonwoo Kang
- Juvic Inc., 272 Digital-ro, Guro-gu, Seoul 08389, South Korea
| | - Mingyu Jang
- Juvic Inc., 272 Digital-ro, Guro-gu, Seoul 08389, South Korea
| | - Huisuk Yang
- Juvic Inc., 272 Digital-ro, Guro-gu, Seoul 08389, South Korea
| | - Hyungil Jung
- Department of Biotechnology, Building 123, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea; Juvic Inc., 272 Digital-ro, Guro-gu, Seoul 08389, South Korea.
| |
Collapse
|
5
|
Kim Y, Min HS, Shin J, Nam J, Kang G, Sim J, Yang H, Jung H. Film-trigger applicator (FTA) for improved skin penetration of microneedle using punching force of carboxymethyl cellulose film acting as a microneedle applicator. Biomater Res 2022; 26:53. [PMID: 36199121 PMCID: PMC9533547 DOI: 10.1186/s40824-022-00302-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/22/2022] [Indexed: 11/21/2022] Open
Abstract
Background Dissolving microneedle (DMN) is a transdermal drug delivery system that creates pore in the skin and directly deliver drug through the pore channel. DMN is considered as one of the promising system alternatives to injection because it is minimally invasive and free from needle-related issues. However, traditional DMN patch system has limitations of incomplete insertion and need of complex external devices. Here, we designed film-trigger applicator (FTA) system that successfully delivered DMN inside the skin layers using fracture energy of carboxymethyl cellulose (CMC) film via micropillars. We highlighted advantages of FTA system in DMN delivery compared with DMN patch, including that the film itself can act as DMN applicator. Methods FTA system consists of DMNs fabricated on the CMC film, DMN array holder having holes aligned to DMN array, and micropillars prepared using general purpose polystyrene. We analyzed punching force on the film by micropillars until the film puncture point at different CMC film concentrations and micropillar diameters. We also compared drug delivery efficiency using rhodamine B fluorescence diffusion and skin penetration using optical coherence tomography (OCT) of FTA with those of conventional DMN patch. In vivo experiments were conducted to evaluate DMN delivery efficiency using C57BL/6 mice and insulin as a model drug. Results FTA system showed enhanced delivery efficiency compared with that of the existing DMN patch system. We concluded CMC film as a successful DMN applicator as it showed enhanced DMN penetration in OCT and rhodamine B diffusion studies. Further, we applied FTA on shaved mouse dorsal skin and observed successful skin penetration. The FTA group showed higher level of plasma insulin in vivo than that of the DMN patch group. Conclusions FTA system consisting of simple polymer film and micropillars showed enhanced DMN delivery than that of the existing DMN patch system. Because FTA works with simple finger force without sticky patch and external devices, FTA is a novel and promising platform to overcome the limitations of conventional microneedle patch delivery system; we suggest FTA as a next generation applicator for microneedle application in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s40824-022-00302-5.
Collapse
Affiliation(s)
- Youseong Kim
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Hye Su Min
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Jiwoo Shin
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Jeehye Nam
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Geonwoo Kang
- Juvic Inc, 208Ho, 272, Digital-ro, Guro-gu, Seoul, 08389, Republic of Korea
| | - Jeeho Sim
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Huisuk Yang
- Juvic Inc, 208Ho, 272, Digital-ro, Guro-gu, Seoul, 08389, Republic of Korea
| | - Hyungil Jung
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea. .,Juvic Inc, 208Ho, 272, Digital-ro, Guro-gu, Seoul, 08389, Republic of Korea.
| |
Collapse
|
6
|
Park S, Lee K, Ryu W. Research progress on detachable microneedles for advanced applications. Expert Opin Drug Deliv 2022; 19:1115-1131. [PMID: 36062366 DOI: 10.1080/17425247.2022.2121388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Microneedles (MNs) have undergone great advances in transdermal drug delivery, and commercialized MN applications are currently available in vaccination and cosmetic products. Despite the development of MN technologies, common limitations of MN products still exist. Typical MN patches are applied to target tissues, where the substrate of an MN patch must remain until the drug is delivered, which reduces patients' compliance and hinders the applicability of the MN technique to many diseases in various tissues. MN research is ongoing to solve this issue. AREAS COVERED Most recent MNs developed by combining various biomaterials with appropriate fabrication processes are detachable MNs (DeMNs). Because of advances in biomaterials and fabrication techniques, various DeMNs have been rapidly developed. In this review, we discuss four types of DeMN: substrate-separable, multi-layered, crack-inducing, and shell DeMN. These DeMNs deliver various therapeutic agents ranging from small- and large-molecular-weight drugs to proteins and even stem cells for regeneration therapy. Furthermore, DeMNs are applied to skin as well as non-transdermal tissues. EXPERT OPINION It has become increasingly evident that novel MN technologies can be expected in terms of designs, fabrication methods, materials, and even possible application sites given the recent advances in DeMNs.
Collapse
Affiliation(s)
- SeungHyun Park
- Department of Mechanical Engineering, Yonsei University, Republic of Korea
| | - KangJu Lee
- School of Healthcare and Biomedical Engineering, Chonnam National University, Republic of Korea
| | - WonHyoung Ryu
- Department of Mechanical Engineering, Yonsei University, Republic of Korea
| |
Collapse
|
7
|
Ali M, Namjoshi S, Benson HAE, Mohammed Y, Kumeria T. Dissolvable polymer microneedles for drug delivery and diagnostics. J Control Release 2022; 347:561-589. [PMID: 35525331 DOI: 10.1016/j.jconrel.2022.04.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
Abstract
Dissolvable transdermal microneedles (μND) are promising micro-devices used to transport a wide selection of active compounds into the skin. To provide an effective therapeutic outcome, μNDs must pierce the human stratum corneum (~10 to 20 μm), without rupturing or bending during penetration, then release their cargo at the predetermined area and time. The ability of dissolvable μND arrays/patches to sufficiently pierce the skin is a crucial requirement, which depends on the material composition, μND geometry and fabrication techniques. This comprehensive review not only provides contemporary knowledge on the μND design approaches, but also the materials science facilitating these delivery systems and the opportunities these advanced materials can provide to enhance clinical outcomes.
Collapse
Affiliation(s)
- Masood Ali
- Therapeutics Research Group, The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD 4102, Australia
| | - Sarika Namjoshi
- Therapeutics Research Group, The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD 4102, Australia; Vaxxas Pty Ltd, Brisbane, Woolloongabba, QLD 4102, Australia
| | - Heather A E Benson
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia; Basil Hetzel institute for Translational Health Research, Adelaide, SA 5001, Australia.
| | - Yousuf Mohammed
- Therapeutics Research Group, The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD 4102, Australia.
| | - Tushar Kumeria
- School of Materials Science and Engineering, The University of New South Wales, Sydney. NSW 2052, Australia; Australian Centre for Nanomedicine, The University of New South Wales, Sydney, NSW 2052, Australia; School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
| |
Collapse
|
8
|
Hassan J, Haigh C, Ahmed T, Uddin MJ, Das DB. Potential of Microneedle Systems for COVID-19 Vaccination: Current Trends and Challenges. Pharmaceutics 2022; 14:1066. [PMID: 35631652 PMCID: PMC9144974 DOI: 10.3390/pharmaceutics14051066] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/27/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
To prevent the coronavirus disease 2019 (COVID-19) pandemic and aid restoration to prepandemic normality, global mass vaccination is urgently needed. Inducing herd immunity through mass vaccination has proven to be a highly effective strategy for preventing the spread of many infectious diseases, which protects the most vulnerable population groups that are unable to develop immunity, such as people with immunodeficiencies or weakened immune systems due to underlying medical or debilitating conditions. In achieving global outreach, the maintenance of the vaccine potency, transportation, and needle waste generation become major issues. Moreover, needle phobia and vaccine hesitancy act as hurdles to successful mass vaccination. The use of dissolvable microneedles for COVID-19 vaccination could act as a major paradigm shift in attaining the desired goal to vaccinate billions in the shortest time possible. In addressing these points, we discuss the potential of the use of dissolvable microneedles for COVID-19 vaccination based on the current literature.
Collapse
Affiliation(s)
- Jasmin Hassan
- Drug Delivery & Therapeutics Lab, Dhaka 1212, Bangladesh; (J.H.); (T.A.)
| | - Charlotte Haigh
- Department of Chemical Engineering, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK;
| | - Tanvir Ahmed
- Drug Delivery & Therapeutics Lab, Dhaka 1212, Bangladesh; (J.H.); (T.A.)
| | - Md Jasim Uddin
- Drug Delivery & Therapeutics Lab, Dhaka 1212, Bangladesh; (J.H.); (T.A.)
- Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK
- Department of Pharmacy, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Diganta B. Das
- Department of Chemical Engineering, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK;
| |
Collapse
|
9
|
Trends in Drug- and Vaccine-based Dissolvable Microneedle Materials and Methods of Fabrication. Eur J Pharm Biopharm 2022; 173:54-72. [DOI: 10.1016/j.ejpb.2022.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/24/2022] [Accepted: 02/19/2022] [Indexed: 12/18/2022]
|
10
|
Yin Y, Su W, Zhang J, Huang W, Li X, Ma H, Tan M, Song H, Cao G, Yu S, Yu D, Jeong JH, Zhao X, Li H, Nie G, Wang H. Separable Microneedle Patch to Protect and Deliver DNA Nanovaccines Against COVID-19. ACS NANO 2021; 15:14347-14359. [PMID: 34472328 PMCID: PMC8425335 DOI: 10.1021/acsnano.1c03252] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/26/2021] [Indexed: 05/12/2023]
Abstract
The successful control of coronavirus disease 2019 (COVID-19) pandemic is not only relying on the development of vaccines, but also depending on the storage, transportation, and administration of vaccines. Ideally, nucleic acid vaccine should be directly delivered to proper immune cells or tissue (such as lymph nodes). However, current developed vaccines are normally treated through intramuscular injection, where immune cells do not normally reside. Meanwhile, current nucleic acid vaccines must be stored in a frozen state that may hinder their application in developing countries. Here, we report a separable microneedle (SMN) patch to deliver polymer encapsulated spike (or nucleocapsid) protein encoding DNA vaccines and immune adjuvant for efficient immunization. Compared with intramuscular injection, SMN patch can deliver nanovaccines into intradermal for inducing potent and durable adaptive immunity. IFN-γ+CD4/8+ and IL-2+CD4/8+ T cells or virus specific IgG are significantly increased after vaccination. Moreover, in vivo results show the SMN patches can be stored at room temperature for at least 30 days without decreases in immune responses. These features of nanovaccines-laden SMN patch are important for developing advanced COVID-19 vaccines with global accessibility.
Collapse
Affiliation(s)
- Yue Yin
- CAS Key Laboratory for Biomedical Effects of
Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience,
National Center for Nanoscience and Technology, Beijing,
100190, China
| | - Wen Su
- CAS Key Laboratory for Biomedical Effects of
Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience,
National Center for Nanoscience and Technology, Beijing,
100190, China
| | - Jie Zhang
- CAS Key Laboratory for Biomedical Effects of
Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience,
National Center for Nanoscience and Technology, Beijing,
100190, China
| | - Wenping Huang
- CAS Key Laboratory for Biomedical Effects of
Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience,
National Center for Nanoscience and Technology, Beijing,
100190, China
| | - Xiaoyang Li
- CAS Key Laboratory for Biomedical Effects of
Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience,
National Center for Nanoscience and Technology, Beijing,
100190, China
- Department of Orthopedics, National Cancer
Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese
Academy of Medical Sciences and Peking Union Medical College, Beijing,
100021, China
| | - Haixia Ma
- CAS Key Laboratory for Biomedical Effects of
Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience,
National Center for Nanoscience and Technology, Beijing,
100190, China
| | - Mixiao Tan
- CAS Key Laboratory for Biomedical Effects of
Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience,
National Center for Nanoscience and Technology, Beijing,
100190, China
| | - Haohao Song
- CAS Key Laboratory for Biomedical Effects of
Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience,
National Center for Nanoscience and Technology, Beijing,
100190, China
| | - Guoliang Cao
- CAS Key Laboratory for Biomedical Effects of
Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience,
National Center for Nanoscience and Technology, Beijing,
100190, China
| | - Shengji Yu
- Department of Orthopedics, National Cancer
Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese
Academy of Medical Sciences and Peking Union Medical College, Beijing,
100021, China
| | - Di Yu
- Department of Immunology, Genetics and Pathology,
Science for Life Laboratory, Uppsala University, Uppsala,
75185, Sweden
| | - Ji Hoon Jeong
- School of Pharmacy, Sungkyunkwan
University, Suwon 16419, Republic of Korea
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of
Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience,
National Center for Nanoscience and Technology, Beijing,
100190, China
| | - Hui Li
- Dongfang Hospital, Beijing University of
Chinese Medicine, Beijing, 100078, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of
Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience,
National Center for Nanoscience and Technology, Beijing,
100190, China
- University of Chinese Academy of
Sciences, Beijing, 100049, China
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of
Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience,
National Center for Nanoscience and Technology, Beijing,
100190, China
- University of Chinese Academy of
Sciences, Beijing, 100049, China
| |
Collapse
|
11
|
Jin M, Jeon WJ, Lee H, Jung M, Kim HE, Yoo H, Won JH, Kim JC, Park JH, Yang MJ, Lee HK, Cho CW. Preparation and evaluation of rapid disintegrating formulation from coated microneedle. Drug Deliv Transl Res 2021; 12:415-425. [PMID: 34494223 DOI: 10.1007/s13346-021-01046-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2021] [Indexed: 11/25/2022]
Abstract
Microneedles (MNs), one of the transdermal drug delivery systems, have received extensive interest as an alternative to parenteral or parenteral administrations. For the successful drug delivery of coated MNs, the coated drug or chemical of MNs should be dissolved by skin's interstitial fluid and completely released from the MNs. Thus, the rapid disintegration of the drug from MNs plays a crucial role in ideal drug delivery of MNs. In this study, we developed the rapid disintegration coating formulation to reduce the application time of MN. The rapid disintegration MN was developed using polymers (PVA or HPMC), glycerol, croscarmellose sodium, tween 80, and Brij, as thickener, plasticizer, disintegrating agent, and surfactants, respectively. HPMC MN showed the burst release and rapid disintegration. Moreover, the drug from HPMC MN was successfully delivered into porcine skin within 1 min. In toxicological evaluation, the HPMC MN did not alter the liver and kidney function. Besides, HPMC MN did not induce the acute inflammation and change of skin structure after the application on rat skin. Thus, the coating formulation in this study could be one of the options for the development of safe and rapid disintegration MN.
Collapse
Affiliation(s)
- Minki Jin
- College of Pharmacy, Chungnam National University, 99, Daehak-ro, Daejeon, 31434, South Korea
| | - Woo-Jin Jeon
- College of Pharmacy, Chungnam National University, 99, Daehak-ro, Daejeon, 31434, South Korea
| | - Haesoo Lee
- College of Pharmacy, Chungnam National University, 99, Daehak-ro, Daejeon, 31434, South Korea
| | - Minwoo Jung
- College of Pharmacy, Chungnam National University, 99, Daehak-ro, Daejeon, 31434, South Korea
| | - Ha-Eun Kim
- College of Pharmacy, Chungnam National University, 99, Daehak-ro, Daejeon, 31434, South Korea
| | - Hyelim Yoo
- College of Pharmacy, Chungnam National University, 99, Daehak-ro, Daejeon, 31434, South Korea
| | - Jong-Hee Won
- College of Pharmacy, Chungnam National University, 99, Daehak-ro, Daejeon, 31434, South Korea
| | - Jong Chan Kim
- Department of BioNano Technology and Gachon BioNano Research Institute, Gachon University, Seongnam, 13120, South Korea
| | - Jung-Hwan Park
- Department of BioNano Technology and Gachon BioNano Research Institute, Gachon University, Seongnam, 13120, South Korea
| | - Mi-Jin Yang
- Pathology Research Group, Jeonbuk Branch, Korea Institute of Toxicology (KIT), Jeollabuk-do, Jeongeup, 53212, South Korea
| | - Hong-Ki Lee
- Animal Model Research Group, Jeonbuk Branch, Institute of Toxicology (KIT), Jeollabuk-do, Jeongeup, 53212, South Korea.
| | - Cheong-Weon Cho
- College of Pharmacy, Chungnam National University, 99, Daehak-ro, Daejeon, 31434, South Korea.
| |
Collapse
|
12
|
Dalvi M, Kharat P, Thakor P, Bhavana V, Singh SB, Mehra NK. Panorama of dissolving microneedles for transdermal drug delivery. Life Sci 2021; 284:119877. [PMID: 34384832 DOI: 10.1016/j.lfs.2021.119877] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/25/2021] [Accepted: 07/31/2021] [Indexed: 11/16/2022]
Abstract
Recently, microfabrication technology has been developed to increase the permeability of drugs for transdermal delivery. Microneedles are ultra-small needles usually in the micron size range (different dimensions in micron), generate pores, and allow for delivery of local medication in the systemic circulation via skin. The microneedles have been available in dissolving, solid, coated, hollow, and hydrogel-based microneedles. Dissolving microneedles have been fabricated using micro-molding, photo-polymerization, drawing lithography and droplet blowing techniques. Dissolving microneedles could be a valuable option for the delivery of low molecular weight drugs, peptides, enzymes, vaccines and bio-therapeutics. It consists of water-soluble materials including maltose, polyvinyl pyrrolidone, chondroitin sulfate, dextran, hyaluronic acid, and albumin. The microneedles have almost dissolved after patch removal, leaving only blunt stubs behind, which are easily removable. In this review, we summarize the major building blocks, classification, fabrication techniques, characterization, diffusion models and application of microneedles in diverse area. We also reviewed the regulatory aspects, computational studies, patents, clinical data, and market trends of microneedles.
Collapse
Affiliation(s)
- Mayuri Dalvi
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Pratik Kharat
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Pradip Thakor
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Valamla Bhavana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Shashi Bala Singh
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
13
|
Zhang L, Guo R, Wang S, Yang X, Ling G, Zhang P. Fabrication, evaluation and applications of dissolving microneedles. Int J Pharm 2021; 604:120749. [PMID: 34051319 DOI: 10.1016/j.ijpharm.2021.120749] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 01/25/2023]
Abstract
In recent years, transdermal preparations have emerged as one of the most promising modes of administration. In particular, dissolving microneedles have attracted extensive attention because of their painlessness, safety, high delivery efficiency and easily operation for patients. This article mainly reviews the preparation methods, the types of matrix polymer materials, the content of dissolving microneedles performance testing, and the applications of dissolving microneedles. It is expected to lay a solid knowledge foundation for the in-depth study of the dissolving microneedles.
Collapse
Affiliation(s)
- Lijing Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Ranran Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Siqi Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Xiaotong Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
14
|
Pahal S, Badnikar K, Ghate V, Bhutani U, Nayak MM, Subramanyam DN, Vemula PK. Microneedles for Extended Transdermal Therapeutics: A Route to Advanced Healthcare. Eur J Pharm Biopharm 2021; 159:151-169. [PMID: 33388372 DOI: 10.1016/j.ejpb.2020.12.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/10/2020] [Accepted: 12/22/2020] [Indexed: 11/17/2022]
Abstract
Sustained release of drugs over a pre-determined period is required to maintain an effective therapeutic dose for variety of drug delivery applications. Transdermal devices such as polymeric microneedle patches and other microneedle-based devices have been utilized for sustained release of their payload. Swift clearing of drugs can be prevented either by designing a slow-degrading polymeric matrix or by providing physiochemical triggers to different microneedle-based devices for on-demand release. These long-acting transdermal devices prevent the burst release of drugs. This review highlights the recent advances of microneedle-based devices for sustained release of vaccines, hormones, and antiretrovirals with their prospective safe clinical translation.
Collapse
Affiliation(s)
- Suman Pahal
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka 560065, India.
| | - Kedar Badnikar
- Department of Electronics Systems Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Vivek Ghate
- Department of Electronics Systems Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Utkarsh Bhutani
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka 560065, India
| | - Mangalore Manjunatha Nayak
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | | | - Praveen Kumar Vemula
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka 560065, India.
| |
Collapse
|