1
|
Regeni I, Bonnet S. Supramolecular approaches for the treatment of hypoxic regions in tumours. Nat Rev Chem 2025:10.1038/s41570-025-00705-7. [PMID: 40185999 DOI: 10.1038/s41570-025-00705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2025] [Indexed: 04/07/2025]
Abstract
Supramolecular chemistry provides a range of 'weak' intermolecular interactions that allow drugs and prodrugs to self-assemble. In the complex biological setting of blood and tumours, these interactions must be stable enough for efficient and selective drug delivery to the tumour site, but weak enough to allow the release of the cytotoxic load. The non-covalent nature of supramolecular interactions enables the detachment of smaller (pro)drug monomers that can penetrate cancer cells differently to the original nanoparticles. Hypoxic tumours show low oxygen levels due to poor vascularization, which poses challenges for drug delivery and generates biological resistances. Supramolecular building blocks specifically designed for hypoxic tumours offer targeted activation of prodrug self-assemblies, enhancing effectiveness against hypoxic cancer cells and hypoxic regions in tumours. This Review explores how supramolecular chemistry can improve (pro)drug delivery and activation in hypoxic tumours.
Collapse
Affiliation(s)
- Irene Regeni
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
2
|
Sharma D, Czarnota GJ. Using ultrasound and microbubble to enhance the effects of conventional cancer therapies in clinical settings. Cancer Metastasis Rev 2025; 44:39. [PMID: 40088396 PMCID: PMC11910443 DOI: 10.1007/s10555-025-10255-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/20/2025] [Indexed: 03/17/2025]
Abstract
It has been demonstrated in preclinical research that the administration of microbubbles with ultrasound can augment the proapoptotic sphingolipid pathway and enhance chemotherapy or radiation therapy-induced vascular endothelial disruption resulting in enhanced tumor cell death. Specifically, ultrasound-stimulated microbubbles (USMB) can increase blood vessel permeability facilitating the release of therapeutic substances in the target area. USMB can also serve as a potential radiation enhancing therapy as USMB exposure increases tumor cell death significantly as observed in preclinical models. Clinical studies have found the combination of USMB and these existing cancer therapies to be safe and also to be associated with greater tumor responses. USMB-based treatment can be applicable in a clinical setting using either ultrasound imaging or magnetic resonance imaging (MRI) guidance for precise treatment. In the latter, the ultrasound device is integrated into the MRI system platform for sonication to facilitate microbubble stimulation. In this review, we concisely present findings related to USMB and existing cancer therapies (chemotherapy and radiation therapy) in clinical trial settings. The possible underlying mechanism involved in USMB-enhanced chemotherapy or radiotherapy enhancement is also discussed. Lastly, the study concludes with some limitations and an examination of the future direction of these combined therapies.
Collapse
Affiliation(s)
- Deepa Sharma
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.
- Departments of Medical Biophysics, and Radiation Oncology, University of Toronto, Toronto, Ontario, Canada.
| | - Gregory J Czarnota
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.
- Departments of Medical Biophysics, and Radiation Oncology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Chandrasekaran B, Bayan MF, Hmedat A, Al-Jaidi BA, Al-Tawalbeh DM, Abuarqoub D, Rasras AJ, Jaradat DMM, Dakkah AN, Hourani W, Karpoormath R. Synthesis, Anticancer Screening, and In Silico Evaluations of Thieno[2,3- c]pyridine Derivatives as Hsp90 Inhibitors. Pharmaceuticals (Basel) 2025; 18:153. [PMID: 40005967 PMCID: PMC11858597 DOI: 10.3390/ph18020153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Thieno[2,3-c]pyridines and their analogs are not well explored for their anticancer properties. Hence, our research aimed to establish the anticancer potential of thieno[2,3-c]pyridines through cell-based assays and in silico evaluations. Methods: Thieno[2,3-c]pyridine derivatives 6(a-k) were synthesized and characterized using FT-IR, 1H-NMR, 13C-NMR, and HRMS. All the synthesized compounds were screened initially for their anticancer activity against MCF7 and T47D (breast cancer), HSC3 (head and neck cancer), and RKO (colorectal cancer) cell lines using MTT assay. Apoptosis and cell cycle analyses were conducted using Annexin V/propidium iodide (PI) double staining for apoptosis assessment and PI staining for cell cycle analysis to investigate the mechanisms underlying the reduced cell viability. In silico molecular docking was accomplished for the synthesized compounds against the Hsp90 and determined pharmacokinetics properties. Results: From the screening assay, compounds 6a and 6i were identified as potential inhibitors and were further subjected to IC50 determination. The compound 6i showed potent inhibition against HSC3 (IC50 = 10.8 µM), T47D (IC50 = 11.7 µM), and RKO (IC50 = 12.4 µM) cell lines, all of which indicated a broad spectrum of anticancer activity. Notably, 6i was found to induce G2 phase arrest, thereby inhibiting cell cycle progression. Molecular docking results indicated crucial molecular interactions of the synthesized ligands against the target Hsp90. Conclusion: The compound 6i induced cell death via mechanisms that are different from apoptosis. Thus, the synthesized thieno[2,3-c]pyridine derivatives can be suitable lead compounds to be optimized to obtain potent anticancer agents through Hsp90 inhibition.
Collapse
Affiliation(s)
- Balakumar Chandrasekaran
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan; (M.F.B.); (A.N.D.); (W.H.)
| | - Mohammad F. Bayan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan; (M.F.B.); (A.N.D.); (W.H.)
| | - Ali Hmedat
- Department of Pharmaceutical Technology and Pharmaceutics, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan;
| | - Bilal A. Al-Jaidi
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan; (B.A.A.-J.); (D.M.A.-T.)
| | - Deniz M. Al-Tawalbeh
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan; (B.A.A.-J.); (D.M.A.-T.)
| | - Duaa Abuarqoub
- Department of Pharmacology and Medical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan;
| | - Anas J. Rasras
- Department of Chemistry, Faculty of Science, Al-Balqa Applied University, P.O. Box 206, Al-Salt 19117, Jordan; (A.J.R.); (D.M.M.J.)
| | - Da’san M. M. Jaradat
- Department of Chemistry, Faculty of Science, Al-Balqa Applied University, P.O. Box 206, Al-Salt 19117, Jordan; (A.J.R.); (D.M.M.J.)
| | - Abdel Naser Dakkah
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan; (M.F.B.); (A.N.D.); (W.H.)
| | - Wafa Hourani
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan; (M.F.B.); (A.N.D.); (W.H.)
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa;
| |
Collapse
|
4
|
Correa TS, Lima WG, do Couto Campos AB, Galdino AS, de Oliveira Lima EC, Cardoso VN, Fernandes SOA, Campos-da-Paz M. Biodistribution and Tumor Targeted Accumulation of Anti-CEA-loaded Iron Nanoparticles. Curr Pharm Biotechnol 2025; 26:108-119. [PMID: 38321899 DOI: 10.2174/0113892010268872240104114444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 02/08/2024]
Abstract
INTRODUCTION Active targeting of tumors by nanomaterials favors early diagnosis and the reduction of harsh side effects of chemotherapeuticals. METHODS We synthesized magnetic nanoparticles (64 nm; -40 mV) suspended in a magnetic fluid (MF) and decorated them with anti-carcinoembryonic antigen (MFCEA; 144 nm; -39 mV). MF and MFCEA nanoparticles were successfully radiolabeled with technetium-99m (99mTc) and intravenously injected in CEA-positive 4T1 tumor-bearing mice to perform biodistribution studies. Both 99mTc-MF and 99mTc-MFCEA had marked uptake by the liver and spleen, and the renal uptake of 99mTc-MFCEA was higher than that observed for 99mTc-MF at 20h. At 1 and 5 hours, the urinary excretion was higher for 99mTc-MF than for 99mTc-MFCEA. RESULTS These data suggest that anti-CEA decoration might be responsible for a delay in renal clearance. Regarding the tumor, 99mTc-MFCEA showed tumor uptake nearly two times higher than that observed for 99mTc-MFCEA. Similarly, the target-nontarget ratio was higher with 99mTc-MFCEA when compared to the group that received the 99mTc-MF. CONCLUSION These data validated the ability of active tumor targeting by the as-developed anti- CEA loaded nanoparticles and are very promising results for the future development of a nanodevice for the management of breast cancer and other types of CEA-positive tumors.
Collapse
Affiliation(s)
- Thais Silva Correa
- Department of Biochemistry, Federal University of São João del Rei, Divinópolis, MG, 35500-291, Brazil
| | - William Gustavo Lima
- School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | - Mariana Campos-da-Paz
- Department of Biochemistry, Federal University of São João del Rei, Divinópolis, MG, 35500-291, Brazil
| |
Collapse
|
5
|
Khafaga AF, Gaballa MMS, Karam R, Shoulah SA, Shamma RN, Khalifa NE, Farrag NE, Noreldin AE. Synergistic therapeutic strategies and engineered nanoparticles for anti-vascular endothelial growth factor therapy in cancer. Life Sci 2024; 341:122499. [PMID: 38342375 DOI: 10.1016/j.lfs.2024.122499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
Angiogenesis is one of the defining characteristics of cancer. Vascular endothelial growth factor (VEGF) is crucial for the development of angiogenesis. A growing interest in cancer therapy is being caused by the widespread use of antiangiogenic drugs in treating several types of human cancer. However, this therapeutic approach can worsen resistance, invasion, and overall survival. As we proceed, refining combination strategies and addressing the constraint of targeted treatments are paramount. Therefore, major challenges in using novel combinations of antiangiogenic agents with cytotoxic treatments are currently focused on illustrating the potential of synergistic therapeutic strategies, alongside advancements in nanomedicine and gene therapy, present opportunities for more precise interference with angiogenesis pathways and tumor environments. Nanoparticles have the potential to regulate several crucial activities and improve several drug limitations such as lack of selectivity, non-targeted cytotoxicity, insufficient drug delivery at tumor sites, and multi-drug resistance based on their unique features. The goal of this updated review is to illustrate the enormous potential of novel synergistic therapeutic strategies and the targeted nanoparticles as an alternate strategy for t treating a variety of tumors employing antiangiogenic therapy.
Collapse
Affiliation(s)
- Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt.
| | - Mohamed M S Gaballa
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt.
| | - Reham Karam
- Department of Virology, Faculty of Veterinary Medicine, Mansoura University, 35511, Egypt.
| | - Salma A Shoulah
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt.
| | - Rehab N Shamma
- Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh 51511, Egypt.
| | - Nehal E Farrag
- Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt.
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt.
| |
Collapse
|
6
|
Rajora AK, Ahire ED, Rajora M, Singh S, Bhattacharya J, Zhang H. Emergence and impact of theranostic-nanoformulation of triple therapeutics for combination cancer therapy. SMART MEDICINE 2024; 3:e20230035. [PMID: 39188518 PMCID: PMC11235932 DOI: 10.1002/smmd.20230035] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/30/2023] [Indexed: 08/28/2024]
Abstract
Cancer remains a major global health threat necessitating the multipronged approaches for its prevention and management. Traditional approaches in the form of chemotherapy, surgery, and radiotherapy are often encountered with poor patient outcomes evidenced by high mortality and morbidity, compelling the need for precision medicine for cancer patients to enable personalized and targeted cancer treatment. There has been an emergence of smart multimodal theranostic nanoformulation for triple combination cancer therapy in the last few years, which dramatically enhances the overall safety of the nanoformulation for in vivo and potential clinical applications with minimal toxicity. However, it is imperative to gain insight into the limitations of this system in terms of clinical translation, cost-effectiveness, accessibility, and multidisciplinary collaboration. This review paper aims to highlight and compare the impact of the recent theranostic nanoformulations of triple therapeutics in a single nanocarrier for effective management of cancer and provide a new dimension for diagnostic and treatment simultaneously.
Collapse
Affiliation(s)
- Amit Kumar Rajora
- NanoBiotechnology LabSchool of BiotechnologyJawaharlal Nehru UniversityNew DelhiIndia
| | - Eknath D. Ahire
- Department of Pharmaceutics, Mumbai Educational Trust (MET), Institute of PharmacyAffiliated to Savitribai Phule, Pune UniversityNashikMaharashtraIndia
| | - Manju Rajora
- College of NursingAll India Institute of Medical SciencesNew DelhiIndia
| | - Sukhvir Singh
- Radiological Physics and Internal Dosimetry (RAPID) GroupInstitute of Nuclear Medicine and Allied SciencesDefense Research & Development Organization, Ministry of DefenseTimarpurDelhiIndia
| | - Jaydeep Bhattacharya
- NanoBiotechnology LabSchool of BiotechnologyJawaharlal Nehru UniversityNew DelhiIndia
| | - Hongbo Zhang
- Pharmaceutical Sciences LaboratoryFaculty of Science and EngineeringÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CenterUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| |
Collapse
|
7
|
Mohammadi M, Sefidgar M, Aghanajafi C, Kohandel M, Soltani M. Computational Multi-Scale Modeling of Drug Delivery into an Anti-Angiogenic Therapy-Treated Tumor. Cancers (Basel) 2023; 15:5464. [PMID: 38001724 PMCID: PMC10670623 DOI: 10.3390/cancers15225464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
The present study develops a numerical model, which is the most complex one, in comparison to previous research to investigate drug delivery accompanied by the anti-angiogenesis effect. This paper simulates intravascular blood flow and interstitial fluid flow using a dynamic model. The model accounts for the non-Newtonian behavior of blood and incorporates the adaptation of the diameter of a heterogeneous microvascular network derived from modeling the evolution of endothelial cells toward a circular tumor sprouting from two-parent vessels, with and without imposing the inhibitory effect of angiostatin on a modified discrete angiogenesis model. The average solute exposure and its uniformity in solid tumors of different sizes are studied by numerically solving the convection-diffusion equation. Three different methodologies are considered for simulating anti-angiogenesis: modifying the capillary network, updating the transport properties, and considering both microvasculature and transport properties modifications. It is shown that anti-angiogenic therapy decreases drug wash-out in the periphery of the tumor. Results show the decisive role of microvascular structure, particularly its distribution, and interstitial transport properties modifications induced via vascular normalization on the quality of drug delivery, such that it is improved by 39% in uniformity by the second approach in R = 0.2 cm.
Collapse
Affiliation(s)
- Mahya Mohammadi
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19919-43344, Iran; (M.M.); (C.A.)
| | - Mostafa Sefidgar
- Department of Mechanical Engineering, Pardis Branch, Islamic Azad University, Pardis 16581-74583, Iran;
| | - Cyrus Aghanajafi
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19919-43344, Iran; (M.M.); (C.A.)
| | - Mohammad Kohandel
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - M. Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19919-43344, Iran; (M.M.); (C.A.)
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Centre for Sustainable Business, International Business University, Toronto, ON M5S 2V1, Canada
| |
Collapse
|
8
|
Zamborlin A, Voliani V. Gold nanoparticles as antiangiogenic and antimetastatic agents. Drug Discov Today 2023; 28:103438. [PMID: 36375738 DOI: 10.1016/j.drudis.2022.103438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Angiogenesis and metastasis are two interdependent cancer hallmarks, the latter of which is the key cause of treatment failure. Thus, establishing effective antiangiogenesis/antimetastasis agents is the final frontier in cancer research. Gold nanoparticles (GNPs) may provide disruptive advancements in this regard due to their intrinsic physical and physiological features. Here, we comprehensively discuss recent potential therapeutical strategies to treat angiogenesis and metastasis and present a critical review on the state-of-the-art in vitro and in vivo evaluations of the antiangiogenic/antimetastatic activity of GNPs. Finally, we provide perspectives on the contribution of GNPs to the advancement of cancer management.
Collapse
Affiliation(s)
- Agata Zamborlin
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro, 12 - 56127 Pisa, Italy; NEST-Scuola Normale Superiore, Piazza San Silvestro, 12 - 56127 Pisa, Italy
| | - Valerio Voliani
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro, 12 - 56127 Pisa, Italy; Department of Pharmacy, University of Genoa, Viale Cembrano, 4 - 16148 Genoa, Italy.
| |
Collapse
|
9
|
Joseph TM, Kar Mahapatra D, Esmaeili A, Piszczyk Ł, Hasanin MS, Kattali M, Haponiuk J, Thomas S. Nanoparticles: Taking a Unique Position in Medicine. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:574. [PMID: 36770535 PMCID: PMC9920911 DOI: 10.3390/nano13030574] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 06/01/2023]
Abstract
The human nature of curiosity, wonder, and ingenuity date back to the age of humankind. In parallel with our history of civilization, interest in scientific approaches to unravel mechanisms underlying natural phenomena has been developing. Recent years have witnessed unprecedented growth in research in the area of pharmaceuticals and medicine. The optimism that nanotechnology (NT) applied to medicine and drugs is taking serious steps to bring about significant advances in diagnosing, treating, and preventing disease-a shift from fantasy to reality. The growing interest in the future medical applications of NT leads to the emergence of a new field for nanomaterials (NMs) and biomedicine. In recent years, NMs have emerged as essential game players in modern medicine, with clinical applications ranging from contrast agents in imaging to carriers for drug and gene delivery into tumors. Indeed, there are instances where nanoparticles (NPs) enable analyses and therapies that cannot be performed otherwise. However, NPs also bring unique environmental and societal challenges, particularly concerning toxicity. Thus, clinical applications of NPs should be revisited, and a deep understanding of the effects of NPs from the pathophysiologic basis of a disease may bring more sophisticated diagnostic opportunities and yield more effective therapies and preventive features. Correspondingly, this review highlights the significant contributions of NPs to modern medicine and drug delivery systems. This study also attempted to glimpse the future impact of NT in medicine and pharmaceuticals.
Collapse
Affiliation(s)
- Tomy Muringayil Joseph
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza, 80-233 Gdańsk, Poland
| | - Debarshi Kar Mahapatra
- Department of Pharmaceutical Chemistry, Dadasaheb Balpande College of Pharmacy, Nagpur 440037, India
| | - Amin Esmaeili
- Department of Chemical Engineering, School of Engineering Technology and Industrial Trades, University of Doha for Science and Technology (UDST), Arab League St, Doha P.O. Box 24449, Qatar
| | - Łukasz Piszczyk
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza, 80-233 Gdańsk, Poland
| | - Mohamed S. Hasanin
- Cellulose and Paper Department, National Research Centre, Cairo 12622, Egypt
| | - Mashhoor Kattali
- Department of Biotechnology, EMEA College of Arts and Science, Kondotty 673638, India
| | - Józef Haponiuk
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza, 80-233 Gdańsk, Poland
| | - Sabu Thomas
- International and Inter-University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686560, India
| |
Collapse
|
10
|
Belitsky GA, Kirsanov KI, Lesovaya EA, Yakubovskaya MG. Mechanisms of the carcinogenicity of nanomaterials. ADVANCES IN MOLECULAR ONCOLOGY 2022. [DOI: 10.17650/2313-805x-2022-9-4-8-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nanomaterials become more widespread in the different areas of human life, forming the new technosphere philosophy, in particular, new approaches for development and usage of these materials in everyday life, manufacture, medicine etc.The physicochemical characteristics of nanomaterials differ significantly from the corresponding indicators of aggregate materials and at least some of them are highly reactive and / or highly catalytic. This suggests their aggressiveness towards biological systems, including involvement in carcinogenesis. The review considers the areas of use of modern nanomaterials, with special attention paid to the description of medicine production using nanotechnologies, an analysis of the mechanisms of action of a number of nanomaterials already recognized as carcinogenic, and also presents the available experimental and mechanistic data obtained from the study of the carcinogenic / procarcinogenic effects of various groups of nanomaterials currently not classified as carcinogenic to humans.Preparing the review, information bases of biomedical literature were analysed: Scopus (307), PubMed (461), Web of Science (268), eLibrary.ru (190) were used. To obtain full-text documents, the electronic resources of PubMed Central (PMC), Science Direct, Research Gate, Sci-Hub and eLibrary.ru databases were used.
Collapse
Affiliation(s)
- G. A. Belitsky
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - K. I. Kirsanov
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; Peoples’ Friendship University of Russia
| | - E. A. Lesovaya
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; I.P. Pavlov Ryazan State Medical University
| | - M. G. Yakubovskaya
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| |
Collapse
|
11
|
Firnau MB, Brieger A. CK2 and the Hallmarks of Cancer. Biomedicines 2022; 10:1987. [PMID: 36009534 PMCID: PMC9405757 DOI: 10.3390/biomedicines10081987] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer is a leading cause of death worldwide. Casein kinase 2 (CK2) is commonly dysregulated in cancer, impacting diverse molecular pathways. CK2 is a highly conserved serine/threonine kinase, constitutively active and ubiquitously expressed in eukaryotes. With over 500 known substrates and being estimated to be responsible for up to 10% of the human phosphoproteome, it is of significant importance. A broad spectrum of diverse types of cancer cells has been already shown to rely on disturbed CK2 levels for their survival. The hallmarks of cancer provide a rationale for understanding cancer's common traits. They constitute the maintenance of proliferative signaling, evasion of growth suppressors, resisting cell death, enabling of replicative immortality, induction of angiogenesis, the activation of invasion and metastasis, as well as avoidance of immune destruction and dysregulation of cellular energetics. In this work, we have compiled evidence from the literature suggesting that CK2 modulates all hallmarks of cancer, thereby promoting oncogenesis and operating as a cancer driver by creating a cellular environment favorable to neoplasia.
Collapse
Affiliation(s)
| | - Angela Brieger
- Department of Internal Medicine I, Biomedical Research Laboratory, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
12
|
Vo GV, Nguyen THT, Nguyen TP, Do THT, Tran NMA, Nguyen HT, Nguyen TT. In silico and in vitro studies on the anti-cancer activity of artemetin, vitexicarpin and penduletin compounds from Vitex negundo. Saudi Pharm J 2022; 30:1301-1314. [PMID: 36249935 PMCID: PMC9561309 DOI: 10.1016/j.jsps.2022.06.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/17/2022] [Indexed: 11/28/2022] Open
Abstract
Vitex negundo L. (V. negundo) is one of the important medicinal and anticancer enhancer herbs. This plant is commonly used in the preparation of traditional drugs to treat numerous diseases. Inspired by the medicinal properties of this plant, the current study aimed to investigate antiproliferative potential and the primary molecular mechanisms of the apoptotic induction against human HepG2 and MCF-7 cell lines, by pure compounds isolated from targeted fractions of V. negundo which were characterized by NMR, FTIR and HRMS analysis and identified as artemetin (FLV1), vitexicarpin (FLV2), and penduletin (FLV3) compounds. The FLV1, FLV2, and FLV3 compounds were evaluated for the antiproliferative potential against HepG2 and MCF-7 cell lines by cell viability assay and exhibited IC50 values of 2.3, 23.9 and 5.6 µM and 3.9, 25.8, and 6.4 µM, respectively. In addition, those compounds increased the level of reactive oxygen species production, induced cell death occurred via apoptosis, demonstrated by Annexin V-staining cells, contributed significantly to DNA damage, and led to the activation of caspase3/caspase8 pathways.Additionally, molecular docking was also conducted to rationalize the cancer cells inhibitory and to evaluate the ability of the FLV1, FLV2, and FLV3 compounds to be developed as good drug candidates for cancers treatment.
Collapse
Affiliation(s)
- Giau Van Vo
- Department of Biomedical Engineering, School of Medicine, Vietnam National University – Ho Chi Minh City (VNU-HCM), Ho Chi Minh City 70000, Vietnam
- Research Center for Genetics and Reproductive Health (CGRH), School of Medicine, Vietnam National University, Ho Chi Minh City (VNU-HCM), Ho Chi Minh City 70000, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City 70000, Vietnam
| | - Thi-Hoai-Thu Nguyen
- Faculty of Basic Sciences, University of Medicine and Pharmacy at Ho Chi Minh City, 217 Hong Bang Street, Dist. 5, Ho Chi Minh City 72714, Vietnam
| | - Thi-Phuong Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam
| | - Thi-Hong-Tuoi Do
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 41 Dinh Tien Hoang Street, Dist. 1, Ho Chi Minh City 72714, Vietnam
| | - Nguyen-Minh-An Tran
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City 71420, Vietnam
| | - Huy Truong Nguyen
- Application in Pharmaceutical Sciences Research Group, Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Corresponding authors.
| | - Thuy Trang Nguyen
- Faculty of Pharmacy, HUTECH University, Ho Chi Minh City 70000, Vietnam
- Corresponding authors.
| |
Collapse
|
13
|
Mohammadi M, Aghanajafi C, Soltani M, Raahemifar K. Numerical Investigation on the Anti-Angiogenic Therapy-Induced Normalization in Solid Tumors. Pharmaceutics 2022; 14:363. [PMID: 35214095 PMCID: PMC8877966 DOI: 10.3390/pharmaceutics14020363] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 01/27/2023] Open
Abstract
This study numerically analyzes the fluid flow and solute transport in a solid tumor to comprehensively examine the consequence of normalization induced by anti-angiogenic therapy on drug delivery. The current study leads to a more accurate model in comparison to previous research, as it incorporates a non-homogeneous real-human solid tumor including necrotic, semi-necrotic, and well-vascularized regions. Additionally, the model considers the effects of concurrently chemotherapeutic agents (three macromolecules of IgG, F(ab')2, and F(ab')) and different normalization intensities in various tumor sizes. Examining the long-term influence of normalization on the quality of drug uptake by necrotic area is another contribution of the present study. Results show that normalization decreases the interstitial fluid pressure (IFP) and spreads the pressure gradient and non-zero interstitial fluid velocity (IFV) into inner areas. Subsequently, wash-out of the drug from the tumor periphery is decreased. It is also demonstrated that normalization can improve the distribution of solute concentration in the interstitium. The efficiency of normalization is introduced as a function of the time course of perfusion, which depends on the tumor size, drug type, as well as normalization intensity, and consequently on the dominant mechanism of drug delivery. It is suggested to accompany anti-angiogenic therapy by F(ab') in large tumor size (Req=2.79 cm) to improve reservoir behavior benefit from normalization. However, IgG is proposed as the better option in the small tumor (Req=0.46 cm), in which normalization finds the opportunity of enhancing uniformity of IgG average exposure by 22%. This study could provide a perspective for preclinical and clinical trials on how to take advantage of normalization, as an adjuvant treatment, in improving drug delivery into a non-homogeneous solid tumor.
Collapse
Affiliation(s)
- Mahya Mohammadi
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran; (M.M.); (C.A.)
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Cyrus Aghanajafi
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran; (M.M.); (C.A.)
| | - M. Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran; (M.M.); (C.A.)
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Advanced Bioengineering Initiative Center, Multidisciplinary International Complex, K. N. Toosi University of Technology, Tehran 14176-14411, Iran
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Kaamran Raahemifar
- Data Science and Artificial Intelligence Program, College of Information Sciences and Technology (IST), Penn State University, State College, PA 16801, USA;
- School of Optometry and Vision Science, Faculty of Science, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue W, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
14
|
Zhou Y, Farooqi AA, Xu B. Comprehensive review on signaling pathways of dietary saponins in cancer cells suppression. Crit Rev Food Sci Nutr 2021:1-26. [PMID: 34751072 DOI: 10.1080/10408398.2021.2000933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Nutrigenomics utilizes high-throughput genomic technologies to reveal changes in gene and protein levels. Excitingly, ever-growing body of scientific findings has provided sufficient evidence about the interplay between diet and genes. Cutting-edge research and advancements in genomics, epigenetics and metabolomics have deepened our understanding on the role of dietary factors in the inhibition of carcinogenesis and metastasis. Dietary saponins, a type of triterpene glycosides, are generally found in Platycodon grandifloras, Dioscorea oppositifolia, asparagus, legumes, and sea cucumber. Wealth of information has started to shed light on pleiotropic mechanistic roles of dietary saponins in cancer prevention and inhibition. In this review, we have attempted to summarize the in vitro research of dietary saponins in the last two decades by searching common databases such as Google Scholar, PubMed, Scopus, and Web of Science. The results showed that dietary saponins exerted anti-cancer activities via regulation of apoptosis, autophagy, arrest cell cycle, anti-proliferation, anti-metastasis, and anti-angiogenesis, by regulation of several critical signaling pathways, including MAPK, PI3K/Akt/mTOR, NF-κB, and VEGF/VEGFR. However, there is no data about the dosage of dietary saponins for practical anti-cancer effects in human bodies. Extensive clinical studies are needed to confirm the effectiveness of dietary saponins for further commercial and medical applications.
Collapse
Affiliation(s)
- Yifan Zhou
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, Guangdong, China.,Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | | | - Baojun Xu
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, Guangdong, China
| |
Collapse
|
15
|
Banik N, Yang SB, Kang TB, Lim JH, Park J. Heparin and Its Derivatives: Challenges and Advances in Therapeutic Biomolecules. Int J Mol Sci 2021; 22:ijms221910524. [PMID: 34638867 PMCID: PMC8509054 DOI: 10.3390/ijms221910524] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
Heparin has been extensively studied as a safe medicine and biomolecule over the past few decades. Heparin derivatives, including low-molecular-weight heparins (LMWH) and heparin pentasaccharide, are effective anticoagulants currently used in clinical settings. They have also been studied as functional biomolecules or biomaterials for various therapeutic uses to treat diseases. Heparin, which has a similar molecular structure to heparan sulfate, can be used as a remarkable biomedicine due to its uniquely high safety and biocompatibility. In particular, it has recently drawn attention for use in drug-delivery systems, biomaterial-based tissue engineering, nanoformulations, and new drug-development systems through molecular formulas. A variety of new heparin-based biomolecules and conjugates have been developed in recent years and are currently being evaluated for use in clinical applications. This article reviews heparin derivatives recently studied in the field of drug development for the treatment of various diseases.
Collapse
Affiliation(s)
- Nipa Banik
- Department of Integrated Biosciences, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea; (N.B.); (S.-B.Y.); (T.-B.K.); (J.-H.L.)
| | - Seong-Bin Yang
- Department of Integrated Biosciences, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea; (N.B.); (S.-B.Y.); (T.-B.K.); (J.-H.L.)
| | - Tae-Bong Kang
- Department of Integrated Biosciences, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea; (N.B.); (S.-B.Y.); (T.-B.K.); (J.-H.L.)
| | - Ji-Hong Lim
- Department of Integrated Biosciences, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea; (N.B.); (S.-B.Y.); (T.-B.K.); (J.-H.L.)
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Korea
| | - Jooho Park
- Department of Integrated Biosciences, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea; (N.B.); (S.-B.Y.); (T.-B.K.); (J.-H.L.)
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Korea
- Correspondence:
| |
Collapse
|
16
|
Arizmendi-Grijalva A, Martínez-Higuera AA, Soto-Guzmán JA, Martínez-Soto JM, Rodríguez-León E, Rodríguez-Beas C, López-Soto LF, Alvarez-Cirerol FJ, Garcia-Flores N, Cortés-Reynosa P, Pérez-Salazar E, Iñiguez-Palomares R. Effect on Human Vascular Endothelial Cells of Au Nanoparticles Synthesized from Vitex mollis. ACS OMEGA 2021; 6:24338-24350. [PMID: 34604617 PMCID: PMC8482397 DOI: 10.1021/acsomega.1c01506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Indexed: 06/13/2023]
Abstract
A green method for synthesizing gold nanoparticles is proposed using hydroethanolic extract of Vitex mollis fruit (Vm extract) as a reducer and stabilizer. The formation of gold nanoparticles synthesized with Vm extract (AuVmNPs) was monitored by measuring the ultraviolet-visible spectra. The morphology and crystalline phase were determined using scanning electron microscopy, X-ray diffraction, and high-resolution transmission electron microscopy. Synthesized nanoparticles were generally spherical, and the size distribution obtained by transmission electron microscopy shows two populations with mean sizes of 12.5 and 22.5 nm. Cell viability assay using MTT and cellular apoptosis studies using annexin V on human umbilical vein endothelial cells (HUVECs) and the human mammary epithelial cell line (MCF10A) indicate that AuVmNPs have low toxicity. Cell migration tests indicate that AuVmNPs significantly inhibit HUVEC cell migration in a dose-dependent manner. The evaluation of the localization of AuVmNPs in HUVECs using confocal laser scanning microscopy indicates that nanoparticles penetrate cells and are found in the cytosol without preferential distribution and without entering the nucleus. The inhibitory effect on cellular migration and low toxicity suggest AuVmNPs as appropriate candidates in future studies of antiangiogenic activity.
Collapse
Affiliation(s)
- Abraham Arizmendi-Grijalva
- Nanotechnology
Graduate Program, Department of Physics, Universidad de Sonora, Rosales and
Transversal, Hermosillo, Sonora 83000, Mexico
| | - Aarón Alberto Martínez-Higuera
- Nanotechnology
Graduate Program, Department of Physics, Universidad de Sonora, Rosales and
Transversal, Hermosillo, Sonora 83000, Mexico
| | - Jesús Adriana Soto-Guzmán
- Department
of Medicine and Health Science, Universidad
de Sonora, Rosales and
Transversal, Hermosillo, Sonora 83000, Mexico
| | - Juan Manuel Martínez-Soto
- Department
of Medicine and Health Science, Universidad
de Sonora, Rosales and
Transversal, Hermosillo, Sonora 83000, Mexico
| | - Ericka Rodríguez-León
- Nanotechnology
Graduate Program, Department of Physics, Universidad de Sonora, Rosales and
Transversal, Hermosillo, Sonora 83000, Mexico
| | - César Rodríguez-Beas
- Nanotechnology
Graduate Program, Department of Physics, Universidad de Sonora, Rosales and
Transversal, Hermosillo, Sonora 83000, Mexico
| | - Luis Fernando López-Soto
- Department
of Medicine and Health Science, Universidad
de Sonora, Rosales and
Transversal, Hermosillo, Sonora 83000, Mexico
| | - Francisco Javier Alvarez-Cirerol
- Health
Sciences Graduate Program, Department of Biological Chemistry, Universidad de Sonora, Rosales and Transversal, Hermosillo, Sonora 83000, Mexico
| | - Nadia Garcia-Flores
- Nanotechnology
Graduate Program, Department of Physics, Universidad de Sonora, Rosales and
Transversal, Hermosillo, Sonora 83000, Mexico
| | - Pedro Cortés-Reynosa
- Departamento
de Biología Celular, Cinvestav-IPN, San Pedro Zacatenco, 07360 Mexico DF, Mexico
| | - Eduardo Pérez-Salazar
- Departamento
de Biología Celular, Cinvestav-IPN, San Pedro Zacatenco, 07360 Mexico DF, Mexico
| | - Ramón Iñiguez-Palomares
- Nanotechnology
Graduate Program, Department of Physics, Universidad de Sonora, Rosales and
Transversal, Hermosillo, Sonora 83000, Mexico
| |
Collapse
|
17
|
Chen TL, Patel AS, Jain V, Kuppusamy R, Lin YW, Hou MH, Su TL, Lee TC. Discovery of Oral Anticancer 1,2-Bis(hydroxymethyl)benzo[ g]pyrrolo[2,1- a]phthalazine Hybrids That Inhibit Angiogenesis and Induce DNA Cross-Links. J Med Chem 2021; 64:12469-12486. [PMID: 34459195 DOI: 10.1021/acs.jmedchem.0c01733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Designing hybrid molecules with dual functions is one approach to improve the therapeutic efficacy of combination treatment. We have previously conjugated phthalazine and bis(hydroxymethyl)pyrrole pharmacophores to form hybrids bearing antiangiogenesis and DNA interstrand cross-linking activities. To improve the bioavailability, we adopted a benzology approach to design and synthesize a new series of 1,2-bis(hydroxymethyl)benzo[g]pyrrolo[2,1-a]phthalazines. These new hybrids retained the dual functions and could be formulated into vehicles for intravenous and oral administration. Among them, we demonstrated that compound 19a with dimethylamine at the C6 position markedly suppressed the tumor growth of human small cell lung cancer cell line H526, squamous lung cancer cell line H520, and renal cancer cell line 786-O in nude mice, implying that compound 19a is a broad-spectrum anticancer agent. Our results implicated that the conjugation of antiangiogenic and DNA cross-linking is likely to be a helpful approach to improving the efficacy of combination therapy.
Collapse
Affiliation(s)
- Tai-Lin Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.,School of Pharmacy, China Medical University, Taichung 40400, Taiwan
| | - Anilkumar S Patel
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.,Department of Chemistry, Atmiya University, Rajkot 360005, Gujarat, India
| | - Vicky Jain
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.,Department of Chemistry, Marwadi University, Rajkot 360003, Gujarat, India
| | | | - Yi-Wen Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Hon Hou
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 40227, Taiwan
| | - Tsann-Long Su
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Te-Chang Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
18
|
Park JY, Hyun JS, Jee JG, Park SJ, Khang D. Structural Deformation of MTX Induced by Nanodrug Conjugation Dictate Intracellular Drug Transport and Drug Efficacy. Int J Nanomedicine 2021; 16:4943-4957. [PMID: 34326636 PMCID: PMC8315289 DOI: 10.2147/ijn.s317231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Understanding structural interactions between the active drug and conjugated nanoparticles is critical for optimizing intracellular drug transport and for increasing nano drug efficacy. In this regard, analyzing the conformational deformation of conjugated drugs surrounding nanoparticles is essential to understand the corresponding nanodrug efficacy. PURPOSE The objective of this study is to present an optimal synthesis method for efficient drug delivery through a clear structural analysis of nanodrugs according to the type of conjugation. METHODS AND RESULTS In this study, the structural variation of methotrexate (MTX) surrounding carbon nanotubes, depending on the type of conjugation style, such as covalent and non-covalent (PEGylation) bonds, was investigated. Specifically, covalent bonds of MTX surrounding CNTs induced greater structural deformation compared to non-covalent bonds (ie, PEGylated CNT). CONCLUSION Greater changes in the structural variations of MTX analyzed by nuclear magnetic resonance (NMR) significantly improved the anti-inflammatory drug efficacy of human fibroblast-like synovial cells (FLS) via stable drug release in the extracellular environment and burst drug release under intracellular conditions.
Collapse
Affiliation(s)
- Jun-Young Park
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Republic of Korea
| | - Ja-Shil Hyun
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, 21936, Republic of Korea
| | - Jun-Goo Jee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sung Jean Park
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, 21936, Republic of Korea
| | - Dongwoo Khang
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Republic of Korea
- Department of Physiology, College of Medicine, Gachon University, Incheon, 21999, Republic of Korea
| |
Collapse
|
19
|
Chen Z, Wu Q, Guo W, Niu M, Tan L, Wen N, Zhao L, Fu C, Yu J, Ren X, Liang P, Meng X. Nanoengineered biomimetic Cu-based nanoparticles for multifunational and efficient tumor treatment. Biomaterials 2021; 276:121016. [PMID: 34274778 DOI: 10.1016/j.biomaterials.2021.121016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/03/2021] [Accepted: 07/07/2021] [Indexed: 12/27/2022]
Abstract
The microwave dynamic therapy (MDT) mediated by cytotoxic reactive oxygen species (ROS) is a promising anticancer therapeutic method. However, the therapeutic efficiency of MDT is restricted by several limitations including insufficient ROS generation, strong proangiogenic response, and low tumor-targeting efficiency. Herein, we find that Cu-based nanoparticles can produce oxygen under microwave (MW) irradiation to raise the generation of ROS, such as •O2, •OH and 1O2, especially •O2. On this basis, a nanoengineered biomimetic strategy is designed to improve the efficiency of MDT. After intravenous administration, the nanoparticles accumulate to the tumor site through targeting effect mediated by biomimetic modification, and it can continuously produce oxygen to raise the levels of ROS in tumor microenvironment under MW irradiation for MDT. Additionally, Apatinib is incorporated as antiangiogenic drug to downregulate the expression of vascular endothelial growth factor (VEGF), which can effectively inhibit the tumor angiogenesis after MDT. Hence, the tumor inhibition rate is as high as 96.79%. This study provides emerging strategies to develop multifunctional nanosystems for efficient tumor therapy by MDT.
Collapse
Affiliation(s)
- Zengzhen Chen
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 East Road Zhongguancun, Beijing, 100190, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Qiong Wu
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 East Road Zhongguancun, Beijing, 100190, People's Republic of China
| | - Wenna Guo
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 East Road Zhongguancun, Beijing, 100190, People's Republic of China; School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, People's Republic of China
| | - Meng Niu
- Department of Radiology, First Hospital of China Medical University Key Laboratory of Diagnostic Imaging and Interventional Radiology in Liaoning Province, Shenyang, 110001, People's Republic of China
| | - Longfei Tan
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 East Road Zhongguancun, Beijing, 100190, People's Republic of China
| | - Ning Wen
- Department of Stomatology, the General Hospital of Chinese PLA, Beijing, 100853, People's Republic of China
| | - Lisheng Zhao
- Department of Stomatology, the General Hospital of Chinese PLA, Beijing, 100853, People's Republic of China.
| | - Changhui Fu
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 East Road Zhongguancun, Beijing, 100190, People's Republic of China
| | - Jie Yu
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Xiangling Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 East Road Zhongguancun, Beijing, 100190, People's Republic of China
| | - Ping Liang
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 East Road Zhongguancun, Beijing, 100190, People's Republic of China.
| |
Collapse
|
20
|
Ursachi VC, Dodi G, Rusu AG, Mihai CT, Verestiuc L, Balan V. Paclitaxel-Loaded Magnetic Nanoparticles Based on Biotinylated N-Palmitoyl Chitosan: Synthesis, Characterization and Preliminary In Vitro Studies. Molecules 2021; 26:molecules26113467. [PMID: 34200350 PMCID: PMC8201305 DOI: 10.3390/molecules26113467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 12/17/2022] Open
Abstract
A considerable interest in cancer research is represented by the development of magnetic nanoparticles based on biofunctionalized polymers for controlled-release systems of hydrophobic chemotherapeutic drugs targeted only to the tumor sites, without affecting normal cells. The objective of the paper is to present the synthesis and in vitro evaluation of the nanocomposites that include a magnetic core able to direct the systems to the target, a polymeric surface shell that provides stabilization and multi-functionality, a chemotherapeutic agent, Paclitaxel (PTX), and a biotin tumor recognition layer. To our best knowledge, there are no studies concerning development of magnetic nanoparticles obtained by partial oxidation, based on biotinylated N-palmitoyl chitosan loaded with PTX. The structure, external morphology, size distribution, colloidal and magnetic properties analyses confirmed the formation of well-defined crystalline magnetite conjugates, with broad distribution, relatively high saturation magnetization and irregular shape. Even if the ability of the nanoparticles to release the drug in 72 h was demonstrated, further complex in vitro and in vivo studies will be performed in order to validate the magnetic nanoparticles as PTX delivery system.
Collapse
Affiliation(s)
- Vlad Constantin Ursachi
- Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (V.C.U.); (L.V.)
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (G.D.); (C.T.M.)
| | - Gianina Dodi
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (G.D.); (C.T.M.)
| | - Alina Gabriela Rusu
- Natural Polymers, Bioactive and Biocompatible Materials Laboratory, Petru Poni Institute of Macromolecular Chemistry, 700487 Iasi, Romania;
| | - Cosmin Teodor Mihai
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (G.D.); (C.T.M.)
| | - Liliana Verestiuc
- Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (V.C.U.); (L.V.)
| | - Vera Balan
- Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (V.C.U.); (L.V.)
- Correspondence: ; Tel.: +40-232-213573
| |
Collapse
|
21
|
Levit SL, Tang C. Polymeric Nanoparticle Delivery of Combination Therapy with Synergistic Effects in Ovarian Cancer. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1048. [PMID: 33923947 PMCID: PMC8072532 DOI: 10.3390/nano11041048] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022]
Abstract
Treatment of ovarian cancer is challenging due to late stage diagnosis, acquired drug resistance mechanisms, and systemic toxicity of chemotherapeutic agents. Combination chemotherapy has the potential to enhance treatment efficacy by activation of multiple downstream pathways to overcome drug resistance and reducing required dosages. Sequence of delivery and the dosing schedule can further enhance treatment efficacy. Formulation of drug combinations into nanoparticles can further enhance treatment efficacy. Due to their versatility, polymer-based nanoparticles are an especially promising tool for clinical translation of combination therapies with tunable dosing schedules. We review polymer nanoparticle (e.g., micelles, dendrimers, and lipid nanoparticles) carriers of drug combinations formulated to treat ovarian cancer. In particular, the focus on this review is combinations of platinum and taxane agents (commonly used first line treatments for ovarian cancer) combined with other small molecule therapeutic agents. In vitro and in vivo drug potency are discussed with a focus on quantifiable synergistic effects. The effect of drug sequence and dosing schedule is examined. Computational approaches as a tool to predict synergistic drug combinations and dosing schedules as a tool for future nanoparticle design are also briefly discussed.
Collapse
Affiliation(s)
- Shani L Levit
- Chemical and Life Science Engineering Department, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Christina Tang
- Chemical and Life Science Engineering Department, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
22
|
Persano F, Gigli G, Leporatti S. Lipid-polymer hybrid nanoparticles in cancer therapy: current overview and future directions. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/abeb4b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
Cancer remains one of the leading cause of death worldwide. Current therapies are still ineffective in completely eradicating the disease. In the last two decades, the use of nanodelivery systems has emerged as an effective way to potentiate the therapeutic properties of anti-cancer drugs by improving their solubility and stability, prolong drug half-lives in plasma, minimize drug’s toxicity by reducing its off-target distribution, and promote drugs’ accumulation at the desired target site. Liposomes and polymer nanoparticles are the most studied and have demonstrated to be the most effective delivery systems for anti-cancer drugs. However, both liposomes and polymeric nanoparticles suffer from limitations, including high instability, rapid drug release, limited drug loading capacity, low biocompatibility and lack of suitability for large-scale production. To overcome these limitations, lipid-polymer hybrid nanoparticles (LPHNPs) have been developed to merge the advantages of both lipid- and polymer-based nanocarriers, such as high biocompatibility and stability, improved drug loading and controlled release, as well as increased drug half-lives and therapeutic efficacy. This review provides an overview on the synthesis, properties and application of LPHNPs for cancer therapy.
Collapse
|