1
|
Wang J, Chang X, Li C, Gao J, Guo Z, Zhuang H, Wang L, Huang Y, Wang W, Li C, He Q. DNA-PKcs-Driven YAP1 Phosphorylation and Nuclear Translocation: a Key Regulator of Ferroptosis in Hyperglycemia-Induced Cardiac Dysfunction in Type 1 Diabetes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2412698. [PMID: 40279648 DOI: 10.1002/advs.202412698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/12/2025] [Indexed: 04/27/2025]
Abstract
The DNA-Dependent Protein Kinase catalytic subunit (DNA-PKcs) acts as a principal executor in the DNA damage response (DDR), mediating the phosphorylation of a broad spectrum of substrates integral to DNA repair and apoptosis. This investigation seeks to discern the possible association and mechanisms linking hyperglycemia-induced ferroptosis and DNA-PKcs in DCM. This data exhibits a substantial activation of DNAPKcs- dependent DDR in mice with streptozotocin-induced DCM. However, deletion of DNA-PKcs in cardiomyocytes notably mitigates DNA damage, enhances heart function and dampens the inflammatory response. Co-IP/MS analysis and subsequent validation experiments demonstrate that DNA-PKcs directly interacts with and phosphorylates YAP1 at Thr226. This phosphorylation event facilitates the nuclear retention of YAP1, where it intensifies the transcription of ferroptosis-associated genes. Knockin mice expressing a nonphosphorylatable T226A YAP1 mutant display decreased ferroptosis, reduced myocardial fibrosis and improved heart function. Taken together, this study unravels that DDR acts as an intracellular stress damage sensor, perceiving hyperglycemic conditions and subsequently transmitting the damage signal to incite ferroptosis through the interplay between DNA-PKcs and YAP1. This novel insight suggests that the DNA-PKcs-mediated YAP1 phosphorylation and the ferroptosis activation could be the promising therapeutic targets for the management of DCM.
Collapse
Affiliation(s)
- Junyan Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Chun Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Jing Gao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Zhijiang Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Haowen Zhuang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Lingjun Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yusheng Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Wei Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Chao Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Qingyong He
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| |
Collapse
|
2
|
Chu L, Shen JM, Xu Z, Huang J, Ning L, Feng Z, Jiang Y, Wu P, Gao C, Wang W, Li Z, Ning S, Ying X, Chen S, Wang P, Zhou X, Xu Q, Fang A, Zhang Q, Wang Y, Chen H, Zhou R, Li X, Zuo Y, Zhang Y, Wang ZG. Stimuli-responsive hydrogel with spatiotemporal co-delivery of FGF21 and H₂S for synergistic diabetic wound repair. J Control Release 2025:113749. [PMID: 40252979 DOI: 10.1016/j.jconrel.2025.113749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Chronic diabetic wounds pose significant clinical challenges due to persistent inflammation, impaired angiogenesis, and disrupted cellular homeostasis. To address these multifactorial barriers, we engineered an injectable, biodegradable, and biocompatible methylated silk fibroin (SilMA) hydrogel system co-loaded with cobalt sulfide (CoS) and fibroblast growth factor 21 (FGF21), designed for on-demand therapeutic release. In the acidic microenvironment characteristic of the inflammatory phase of diabetic wounds, the hydrogel rapidly releases hydrogen sulfide (H₂S) and Co2+ ions, mitigating inflammation and exerting antibacterial effects. Subsequently, during the proliferative and remodeling phases, sustained release of FGF21 promotes cellular proliferation, angiogenesis, and enzymatic homeostasis, thereby accelerating wound healing. Mechanistic studies reveal that the hydrogel facilitates M2 macrophage polarization and activates the JAK/STAT signaling pathway, leading to upregulation of vascular endothelial growth factor (VEGF). Additionally, it enhances antioxidant enzyme activities (superoxide dismutase, catalase, glutathione) while suppressing pro-oxidant enzymes (NADPH oxidase, lipoxygenase, cyclooxygenase). In vivo studies using a diabetic mouse model demonstrate that this dual-functional hydrogel significantly improves wound closure rates and tissue regeneration. These findings suggest that the SilMA-FGF21/CoS hydrogel represents a promising therapeutic strategy for the management of diabetic wounds.
Collapse
Affiliation(s)
- Liuxi Chu
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang 315300, China; The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jia-Men Shen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zeping Xu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Junqing Huang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Luying Ning
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646099, China
| | - Zunyong Feng
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yi Jiang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ping Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chen Gao
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Wenjia Wang
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Ziyi Li
- Cixi Biomedical Research Institute of Wenzhou Medical University, Ningbo, Zhejiang 315300, China
| | - Shaoxia Ning
- Cixi Biomedical Research Institute of Wenzhou Medical University, Ningbo, Zhejiang 315300, China
| | - Xinwang Ying
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shiyao Chen
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Piao Wang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Xujie Zhou
- The 1st School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qian Xu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ao Fang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Quan Zhang
- Integrative Muscle Biology Lab, Department of Kinesiology & Sports Management, Texas A&M University, College Station, TX, United States
| | - Yuetong Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Haoman Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Rui Zhou
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaokun Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China..
| | - Yanming Zuo
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China..
| | - Yalin Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.; State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China.
| | - Zhou-Guang Wang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China..
| |
Collapse
|
3
|
Wang Y, Liu J, Yang M, Wang Y, Jiang L, Wang Y, Hu L. A Recent Review on Stimuli-Responsive Hydrogel Photonic Materials. Macromol Rapid Commun 2025:e2500002. [PMID: 40205957 DOI: 10.1002/marc.202500002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/07/2025] [Indexed: 04/11/2025]
Abstract
The unique optical properties of structural colors found in nature garner significant attention. Inspired by these natural phenomena, scientists develop a variety of stimuli-responsive hydrogel photonic materials with periodic structures that can adjust their structural colors in response to environmental changes. In recent years, the emergence of these materials continue to grow, showcasing potential in various advanced applications. This article reviews the latest advancements in stimuli-responsive hydrogel photonic materials, focusing on their classification, manufacturing methods, and practical applications. It provides detailed descriptions of photonic materials across different dimensions and highlights the unique optical properties derived from their periodic microstructures. Additionally, the article outlines innovative technologies that are employed in creating diverse photonic structures. These materials demonstrate sensitivity to a range of external stimuli, including temperature, humidity, pH, light exposure, and mechanical force, allowing for dynamic adjustments in both structure and performance. Furthermore, the article discusses typical applications of stimuli-responsive hydrogel photonic materials in areas such as visual sensing, anti-counterfeiting technology, and drug delivery. Last, it examines the current challenges faced in the field and offers forward-looking insights regarding the future manufacturing and application of stimuli-responsive hydrogel photonic materials.
Collapse
Affiliation(s)
- Yajie Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Jinnan Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Mengfan Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yingxue Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Li Jiang
- Radiation Oncology Center, Huashan Hospital, Fudan University, Shanghai, 201100, China
| | - Yang Wang
- Radiation Oncology Center, Huashan Hospital, Fudan University, Shanghai, 201100, China
| | - Liang Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| |
Collapse
|
4
|
Luo C, Fang C, Zou R, Jiang J, Zhang M, Ge T, Zhou H, Fan X, Zheng B, Zeng Z. Hyperglycemia-induced DNA damage response activates DNA-PK complex to promote endothelial ferroptosis in type 2 diabetic cardiomyopathy. Theranostics 2025; 15:4507-4525. [PMID: 40225587 PMCID: PMC11984385 DOI: 10.7150/thno.109514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/06/2025] [Indexed: 04/15/2025] Open
Abstract
Rationale: Hyperglycemia-induced endothelial dysfunction is a hallmark of diabetic cardiomyopathy, yet the underlying molecular mechanisms remain incompletely understood. This study aimed to investigate how the DNA damage response (DDR) pathway regulates endothelial cell ferroptosis under hyperglycemic conditions, potentially revealing new therapeutic targets for mitigating cardiac damage in type 2 diabetes mellitus (T2DM). Methods: We performed an integrated analysis of publicly available RNA sequencing datasets (GSE280770, GSE89475, GSE161931, CRA007245) to evaluate the role of DDR in hyperglycemia-induced endothelial dysfunction in vitro and in vivo, including in a T2DM mouse model. Key DDR and ferroptosis markers were validated in cardiac microvascular endothelial cells (CMECs) isolated from mice with streptozotocin (STZ)/high-fat diet (HFD)-induced T2DM, with and without treatment with the DNA-PK inhibitors NU7441 or M9831. Results: Hyperglycemia induced a robust DDR in endothelial cells, characterized by the upregulation of DNA-PK complex genes (PRKDC, XRCC5, XRCC6) and increased markers of DNA damage (γH2AX, 8-oxo-dG). This was accompanied by increased expression of pro-ferroptotic genes (Tfrc, Acsl4, Ptgs2), decreased expression of anti-ferroptotic genes (Gpx4, Slc7a11), and elevated lipid peroxidation (MDA, 4-HNE). Pharmacological inhibition of DNA-PK mitigated these effects, reducing oxidative stress, lipid peroxidation, and endothelial permeability, while improving cardiac contractile and relaxation parameters. Conclusions: Our findings implicate the DNA-PK complex as a key regulator of hyperglycemia-induced endothelial ferroptosis in T2DM cardiomyopathy. Targeting DNA-PK complex may represent a novel therapeutic strategy for mitigating microvascular dysfunction and cardiac decline in T2DM.
Collapse
Affiliation(s)
- Cheng Luo
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Chen Fang
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Rongjun Zou
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510120, Guangdong, China
| | - Jingwei Jiang
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- The First Clinical Medical College of Guangxi Medical University, Nanning, 530021, China
| | - Miao Zhang
- College of Pharmacy, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Teng Ge
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
| | - Hao Zhou
- University of Rochester Medical Center Rochester, NY, 601 Elmwood Ave, Rochester, NY 14642, United States
| | - Xiaoping Fan
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510120, Guangdong, China
| | - Baoshi Zheng
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Zhiyu Zeng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 530021 Nanning, Guangxi, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, 530021 Nanning, Guangxi, China
- Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, 530021 Nanning, Guangxi, China
| |
Collapse
|
5
|
Tan Y, Ouyang Y, Ma Z, Huang J, Tan C, Qiu J, Wu F. Mitochondrial Quality Control Systems in Septic AKI: Molecular Mechanisms and Therapeutic Implications. Int J Med Sci 2025; 22:1852-1864. [PMID: 40225865 PMCID: PMC11983313 DOI: 10.7150/ijms.107012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/05/2025] [Indexed: 04/15/2025] Open
Abstract
Objectives: Despite significant advancements in medical treatments, the creation of a successful treatment strategy for acute kidney injury (AKI) remains a pressing concern. Given the well-documented clinical benefits of canagliflozin in renal protection, our research focused on exploring the possible therapeutic benefits of canagliflozin in treating AKI, with a focus on its underlying mechanisms of action. Methods: To induce AKI, we utilized lipopolysaccharide (LPS) in the presence of canagliflozin, allowing us to assess the drug's effects on kidney function and structure. Results: Our results indicate that canagliflozin lowered blood urea nitrogen and serum creatinine concentrations while enhancing tubular architecture in rodents with LPS-triggered septic AKI. It additionally diminished inflammation, oxidative damage, and tubular cell apoptosis. In vitro, canagliflozin maintained mitochondrial functionality in LPS-exposed HK-2 cells by stabilizing membrane potential, reducing ROS generation, and normalizing respiratory chain activity. Its benefits were facilitated through the AMPKα1/PGC1α/NRF1 axis, promoting mitochondrial regeneration. Importantly, blocking this pathway or employing AMPKα1-deficient animals negated canagliflozin's protective effects, highlighting the essential role of AMPKα1 in its kidney-protective mechanisms. Conclusion: Our investigation implies that canagliflozin might represent a viable treatment strategy for septic AKI, operating through the stimulation of the AMPKα1/PGC1α/NRF1 axis to preserve kidney performance and structural integrity. These findings warrant further investigation into the clinical potential of canagliflozin in this context.
Collapse
Affiliation(s)
- Ying Tan
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yue Ouyang
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zisheng Ma
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jianming Huang
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Chuhong Tan
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Junxiong Qiu
- Department of Cardiovascular Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Feng Wu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
6
|
Wang Q, Shi H, Zhuang H, Dong G, Gao K, Liu L, Zhou H, Nie Y, Wang J, Liu L. SIRT6 mitigates doxorubicin-induced cardiomyopathy via amelioration of mitochondrial dysfunction: A mechanistic study implicating the activation of the Nrf-2/FUNDC1 signaling axis. Int J Med Sci 2025; 22:1640-1657. [PMID: 40093797 PMCID: PMC11905259 DOI: 10.7150/ijms.101520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 02/15/2025] [Indexed: 03/19/2025] Open
Abstract
Doxorubicin-induced myocardial injury, characterized by myocardial hypertrophy and heart failure (HF), represents a primary contributor to end-stage cardiovascular mortality associated with anthracycline drugs. Prior research has elucidated that SIRT6-mediated oxidative processes and mitochondrial metabolic reprogramming are pivotal in sustaining energy metabolism during mitochondrial damage in cardiomyocytes. In the aftermath of doxorubicin-induced myocardial injury, myocardial hypertrophy and fibrosis exacerbate the impairment of cardiac ejection function, resulting in elevated myocardial oxygen consumption. This condition is accompanied by disrupted ATP production, diminished mitochondrial biogenesis, and inadequate synthesis of new mitochondrial DNA, collectively triggering necroptosis and apoptosis pathways. Our preliminary experimental results have confirmed that SIRT6, associated with traditional medicine, exerts cardioprotective effects. Nevertheless, the interaction between SIRT6 and Nrf-2-mediated mitochondrial biogenesis in the context of doxorubicin-induced HF and myocardial hypertrophy remains inadequately understood. The generation of mitochondria is a key mechanism that is involved in DNA repair and cell cycle management.
Collapse
Affiliation(s)
- Qi Wang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Hongshuo Shi
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haowen Zhuang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong,510006, China
| | - Guangtong Dong
- Beijing University of Chinese Medicine, Beijing, 100105, China
| | - Kuo Gao
- Beijing University of Chinese Medicine, Beijing, 100105, China
| | - Leilei Liu
- Beijing University of Chinese Medicine, Beijing, 100105, China
| | - Hao Zhou
- University of Rochester Medical Center Rochester, NY, 601 Elmwood Ave, Rochester, NY 14642, United States
| | - Yifeng Nie
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R China
| | - Junyan Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong,510006, China
| | - Li Liu
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| |
Collapse
|
7
|
Shen C, Zhou Z, Li R, Yang S, Zhou D, Zhou F, Geng Z, Su J. Silk fibroin-based hydrogels for cartilage organoids in osteoarthritis treatment. Theranostics 2025; 15:560-584. [PMID: 39744693 PMCID: PMC11671376 DOI: 10.7150/thno.103491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/06/2024] [Indexed: 01/11/2025] Open
Abstract
Osteoarthritis (OA) is a common joint disease characterized by cartilage degeneration. It can cause severe pain, deformity and even amputation risk. However, existing clinical treatment methods for cartilage repair present certain deficiencies. Meanwhile, the repair effect of cartilage tissue engineering is also unsatisfactory. Cartilage organoids are multicellular aggregates with cartilage-like three-dimensional structure and function. On the one hand, cartilage organoids can be used to explore the pathogenesis of OA by constructing disease models. On the other hand, it can be used as filler for rapid cartilage repair. Extracellular matrix (ECM)-like three-dimensional environment is the key to construct cartilage organoids. Silk fibroin (SF)-based hydrogels not only have ECM-like structure, but also have unique mechanical properties and remarkable biocompatibility. Therefore, SF-based hydrogels are considered as ideal biomaterials for constructing cartilage organoids. In this review, we reviewed the studies of cartilage organoids and SF-based hydrogels. The advantages of SF-based hydrogels in constructing cartilage organoids and the iterative optimization of cartilage organoids through designing hydrogels by using artificial intelligence (AI) calculation are also discussed. This review aims to provide a theoretical basis for the treatment of OA using SF-based biomaterials and cartilage organoids.
Collapse
Affiliation(s)
- Congyi Shen
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Ziyang Zhou
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Ruiyang Li
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Shike Yang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
- Department of Anesthesiology, Shanghai Zhongye Hospital, Shanghai, 200941, China
| | - Dongyang Zhou
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Fengjin Zhou
- Department of Orthopedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| |
Collapse
|
8
|
Wang X, Zeng J, Gan D, Ling K, He M, Li J, Lu Y. Recent Strategies and Advances in Hydrogel-Based Delivery Platforms for Bone Regeneration. NANO-MICRO LETTERS 2024; 17:73. [PMID: 39601916 PMCID: PMC11602938 DOI: 10.1007/s40820-024-01557-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/01/2024] [Indexed: 11/29/2024]
Abstract
Bioactive molecules have shown great promise for effectively regulating various bone formation processes, rendering them attractive therapeutics for bone regeneration. However, the widespread application of bioactive molecules is limited by their low accumulation and short half-lives in vivo. Hydrogels have emerged as ideal carriers to address these challenges, offering the potential to prolong retention times at lesion sites, extend half-lives in vivo and mitigate side effects, avoid burst release, and promote adsorption under physiological conditions. This review systematically summarizes the recent advances in the development of bioactive molecule-loaded hydrogels for bone regeneration, encompassing applications in cranial defect repair, femoral defect repair, periodontal bone regeneration, and bone regeneration with underlying diseases. Additionally, this review discusses the current strategies aimed at improving the release profiles of bioactive molecules through stimuli-responsive delivery, carrier-assisted delivery, and sequential delivery. Finally, this review elucidates the existing challenges and future directions of hydrogel encapsulated bioactive molecules in the field of bone regeneration.
Collapse
Affiliation(s)
- Xiao Wang
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China
| | - Jia Zeng
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China
| | - Donglin Gan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Kun Ling
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China
| | - Mingfang He
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Yongping Lu
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China.
| |
Collapse
|
9
|
Tang Y, Mu Z, Pan D, Liu R, Hong S, Xiong Z. The role and mechanism of β-catenin-mediated skeletal muscle satellite cells in osteoporotic fractures by Jian-Pi-Bu-Shen formula. J Mol Histol 2024; 55:875-893. [PMID: 39105942 DOI: 10.1007/s10735-024-10238-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/26/2024] [Indexed: 08/07/2024]
Abstract
Osteoporosis is a metabolic bone disease. β-Catenin is associated with fractures. Jian-Pi-Bu-Shen (JPBS) can promote the healing of osteoporotic fractures (OPF). However, the mechanism of β-catenin-mediated skeletal muscle satellite cells (SMSCs) in OPF by the JPBS is unclear. SMSCs were isolated and divided into five groups. The results showed that the survival rate of SMSCs was significantly higher in the low, medium, and high dose JPBS-containing serum groups after 7 days of incubation. The ALP activity and the number of SMSCs mineralized in the JPBS-containing serum intervention group were elevated. Axin, GSK-3β, β-catenin siRNAs were constructed and transfected into cells. Transfection of siRNAs reduced Axin, GSK-3β, and β-catenin expressions, respectively. β-Catenin-siRNA reversed ALP activity, the number of SMSCs mineralized, and the expression of β-catenin, BMP2, Runx2, COL-I, SP7/Ostrix, Osteocalcin, and BMP-7. Transcriptomic results suggested that the TNF signaling pathway associated with OPF was enriched. SD rats were subjected to the construction of OPF model by removing the ovaries. JPBS decreased the levels of PINP, ALP, CTX, and NTX through β-catenin in OPF rats, while increasing Runx2, β-catenin expressions through β-catenin at the broken end of fractures. Moreover, JPBS decreased BMC, BMD, and BV/TV and improved pathological damage through β-catenin in OPF rats. JPBS decreased the expression of Axin, GSK-3β mRNA, and protein, but increased the expressions of β-catenin, Pax7, COL-II, COL-II, BMP2, and Runx2 through β-catenin in OPF rats. In conclusion, JPBS inhibits Axin/GSK-3β expression, activates the β-catenin signaling, and promotes the osteogenic differentiation of SMSCs.
Collapse
Affiliation(s)
- Yanghua Tang
- Department of Orthopedics, Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, No. 156, Yucai Road, Xiaoshan District, Hangzhou, 311201, Zhejiang, China
| | - Zhuosong Mu
- Third Clinical Medical College, Zhejiang Chinese Medical University, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Dong Pan
- Third Clinical Medical College, Zhejiang Chinese Medical University, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Renqi Liu
- Third Clinical Medical College, Zhejiang Chinese Medical University, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Shenghu Hong
- Department of Orthopedics, Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, No. 156, Yucai Road, Xiaoshan District, Hangzhou, 311201, Zhejiang, China
| | - Zhenfei Xiong
- Department of Orthopedics, Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, No. 156, Yucai Road, Xiaoshan District, Hangzhou, 311201, Zhejiang, China.
| |
Collapse
|
10
|
Shan BH, Wu FG. Hydrogel-Based Growth Factor Delivery Platforms: Strategies and Recent Advances. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210707. [PMID: 37009859 DOI: 10.1002/adma.202210707] [Citation(s) in RCA: 97] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Growth factors play a crucial role in regulating a broad variety of biological processes and are regarded as powerful therapeutic agents in tissue engineering and regenerative medicine in the past decades. However, their application is limited by their short half-lives and potential side effects in physiological environments. Hydrogels are identified as having the promising potential to prolong the half-lives of growth factors and mitigate their adverse effects by restricting them within the matrix to reduce their rapid proteolysis, burst release, and unwanted diffusion. This review discusses recent progress in the development of growth factor-containing hydrogels for various biomedical applications, including wound healing, brain tissue repair, cartilage and bone regeneration, and spinal cord injury repair. In addition, the review introduces strategies for optimizing growth factor release including affinity-based delivery, carrier-assisted delivery, stimuli-responsive delivery, spatial structure-based delivery, and cellular system-based delivery. Finally, the review presents current limitations and future research directions for growth factor-delivering hydrogels.
Collapse
Affiliation(s)
- Bai-Hui Shan
- State Key Laboratory of Digital Medical Engineering Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| |
Collapse
|
11
|
Yu P, Li Y, Sun H, Zhang H, Kang H, Wang P, Xin Q, Ding C, Xie J, Li J. Mimicking Antioxidases and Hyaluronan Synthase: A Zwitterionic Nanozyme for Photothermal Therapy of Osteoarthritis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303299. [PMID: 37459592 DOI: 10.1002/adma.202303299] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 09/24/2023]
Abstract
Restoring joint homeostasis is crucial for relieving osteoarthritis (OA). Current strategies are limited to unilateral efforts in joint lubrication, inhibition of inflammation, free radicals scavenging, and cartilage regeneration. Herein, by modifying molybdenum disulfide (MoS2 ) with Mg2+ -doped polydopamine and coating with polysulfobetaines, a dual-bionic photothermal nanozyme (MPMP) is constructed to mimic antioxidases/hyaluronan synthase for OA therapy. Photothermally enhanced lubrication lowers the coefficient of friction (0.028) in the early stage of OA treatment. The antioxidases-mimicking properties of MPMP nanozyme contribute to eliminating reactive oxygen and nitrogen species (ROS/RNS) (over 90% of scavenging ratio for H2 O2 /·OH/O· 2 - /DPPH/ABTS+ ) and supplying O2 . With NIR irradiation, the MPMP nanozyme triggers thermogenesis (upregulating HSP70 expression) and Mg2+ release, which promotes the chondrogenesis in inflammatory conditions by deactivating NF-κB/IL-17 signaling pathways and enhancing MAPK signaling pathway. Benefiting from HSP70 and Mg2+ , MPMP-NIR shows HAS-mimicking activity to increase the intracellular (twofold) and extracellular (3.12-fold) HA production. Therefore, MPMP-NIR demonstrates superior spatiotemporally therapeutic effect on OA in mice model, in terms of osteophytes (83.41% of reduction), OARSI scores (88.57% of reduction), and ACAN expression (2.70-fold of increment). Hence, insights into dual-bionic nanozymes can be a promising strategy for OA therapy or other inflammation-related diseases.
Collapse
Affiliation(s)
- Peng Yu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yanyan Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China
| | - Hui Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Hongbo Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Han Kang
- Life Science Core Facilities, College of Life Sciences, Sichuan University, Chengdu, 610065, P. R. China
| | - Peng Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Qiangwei Xin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Chunmei Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Jing Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
12
|
Immunomodulatory PEG-CRGD Hydrogels Promote Chondrogenic Differentiation of PBMSCs. Pharmaceutics 2022; 14:pharmaceutics14122622. [PMID: 36559119 PMCID: PMC9780903 DOI: 10.3390/pharmaceutics14122622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Cartilage damage is a common injury. Currently, tissue engineering scaffolds with composite seed cells have emerged as a promising approach for cartilage repair. Polyethylene glycol (PEG) hydrogels are attractive tissue engineering scaffold materials as they have high water absorption capacity as well as nontoxic and nutrient transport properties. However, PEG is fundamentally bio-inert and lacks intrinsic cell adhesion capability, which is critical for the maintenance of cell function. Cell adhesion peptides are usually added to improve the cell adhesion capability of PEG-based hydrogels. The suitable cell adhesion peptide can not only improve cell adhesion capability, but also promote chondrogenesis and regulate the immune microenvironment. To improve the interactions between cells and PEG hydrogels, we designed cysteine-arginine-glycine-aspartic acid (CRGD), a cell adhesion peptide covalently cross-linked with PEG hydrogels by a Michael addition reaction, and explored the tissue-engineering hydrogels with immunomodulatory effects and promoted chondrogenic differentiation of mesenchymal stem cells (MSCs). The results indicated that CRGD improved the interaction between peripheral blood mesenchymal stem cells (PBMSCs) and PEG hydrogels. PEG hydrogels modified with 1 mM CRGD had the optimal capacity to promote chondrogenic differentiation, and CRGD could induce macrophage polarization towards the M2 phenotype to promote tissue regeneration and repair. PEG-CRGD hydrogels combined with PBMSCs have the potential to be suitable scaffolds for cartilage tissue engineering.
Collapse
|
13
|
Composite silk fibroin hydrogel scaffolds for cartilage tissue regeneration. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Zhou Z, Cui J, Wu S, Geng Z, Su J. Silk fibroin-based biomaterials for cartilage/osteochondral repair. Am J Cancer Res 2022; 12:5103-5124. [PMID: 35836802 PMCID: PMC9274741 DOI: 10.7150/thno.74548] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/18/2022] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) is a common joint disease with a high disability rate. In addition, OA not only causes great physiological and psychological harm to patients, but also puts great pressure on the social healthcare system. Pathologically, the disintegration of cartilage and the lesions of subchondral bone are related to OA. Currently, tissue engineering, which is expected to overcome the defects of existing treatment methods, had a lot of research in the field of cartilage/osteochondral repair. Silk fibroin (SF), as a natural macromolecular material with good biocompatibility, unique mechanical properties, excellent processability and degradability, holds great potential in the field of tissue engineering. Nowadays, SF had been prepared into various materials to adapt to the demands of cartilage/osteochondral repair. SF-based biomaterials can also be functionally modified to enhance repair performance further. In this review, the preparation methods, types, structures, mechanical properties, and functional modifications of SF-based biomaterials used for cartilage/osteochondral repair are summarized and discussed. We hope that this review will provide a reference for the design and development of SF-based biomaterials in cartilage/osteochondral repair field.
Collapse
Affiliation(s)
- Ziyang Zhou
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China,Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China,School of Medicine, Shanghai University, Shanghai 200444, China,School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jin Cui
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China,Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China,Department of Orthopedics Trauma, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Shunli Wu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China,Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China,School of Medicine, Shanghai University, Shanghai 200444, China,School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China,Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China,✉ Corresponding authors: Zhen Geng, ; Jiacan Su,
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China,Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China,✉ Corresponding authors: Zhen Geng, ; Jiacan Su,
| |
Collapse
|
15
|
Maturavongsadit P, Wu W, Fan J, Roninson IB, Cui T, Wang Q. Graphene-incorporated hyaluronic acid-based hydrogel as a controlled Senexin A delivery system. BIOMATERIALS TRANSLATIONAL 2022; 3:152-161. [PMID: 36105568 PMCID: PMC9465987 DOI: 10.12336/biomatertransl.2022.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/16/2022] [Accepted: 05/30/2022] [Indexed: 11/23/2022]
Abstract
Perivascular delivery of therapeutic agents against established aetiologies for occlusive vascular remodelling has great therapeutic potential for vein graft failure. However, none of the perivascular drug delivery systems tested experimentally have been translated into clinical practice. In this study, we established a novel strategy to locally and sustainably deliver the cyclin-dependent kinase 8/19 inhibitor Senexin A (SenA), an emerging drug candidate to treat occlusive vascular disease, using graphene oxide-hybridised hyaluronic acid-based hydrogels. We demonstrated an approach to accommodate SenA in hyaluronic acid-based hydrogels through utilising graphene oxide nanosheets allowing for non-covalent interaction with SenA. The resulting hydrogels produced sustained delivery of SenA over 21 days with tunable release kinetics. In vitro assays also demonstrated that the hydrogels were biocompatible. This novel graphene oxide-incorporated hyaluronic acid hydrogel offers an optimistic outlook as a perivascular drug delivery system for treating occlusive vascular diseases, such as vein graft failure.
Collapse
Affiliation(s)
- Panita Maturavongsadit
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Weiwei Wu
- Department of Cell Biology and Anatomy School of Medicine Columbia, University of South Carolina, Columbia, SC, USA
| | - Jingyu Fan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Igor B. Roninson
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Taixing Cui
- Department of Cell Biology and Anatomy School of Medicine Columbia, University of South Carolina, Columbia, SC, USA,Corresponding authors: Taixing Cui, ; Qian Wang,
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA,Corresponding authors: Taixing Cui, ; Qian Wang,
| |
Collapse
|
16
|
Han X, Wu Y, Shan Y, Zhang X, Liao J. Effect of Micro-/Nanoparticle Hybrid Hydrogel Platform on the Treatment of Articular Cartilage-Related Diseases. Gels 2021; 7:gels7040155. [PMID: 34698122 PMCID: PMC8544595 DOI: 10.3390/gels7040155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 02/05/2023] Open
Abstract
Joint diseases that mainly lead to articular cartilage injury with prolonged severe pain as well as dysfunction have remained unexplained for many years. One of the main reasons is that damaged articular cartilage is unable to repair and regenerate by itself. Furthermore, current therapy, including drug therapy and operative treatment, cannot solve the problem. Fortunately, the micro-/nanoparticle hybrid hydrogel platform provides a new strategy for the treatment of articular cartilage-related diseases, owing to its outstanding biocompatibility, high loading capability, and controlled release effect. The hybrid platform is effective for controlling symptoms of pain, inflammation and dysfunction, and cartilage repair and regeneration. In this review, we attempt to summarize recent studies on the latest development of micro-/nanoparticle hybrid hydrogel for the treatment of articular cartilage-related diseases. Furthermore, some prospects are proposed, aiming to improve the properties of the micro-/nanoparticle hybrid hydrogel platform so as to offer useful new ideas for the effective and accurate treatment of articular cartilage-related diseases.
Collapse
|
17
|
Balakrishnan B. Role of Nanoscale Delivery Systems in Tissue Engineering. CURRENT PATHOBIOLOGY REPORTS 2021. [DOI: 10.1007/s40139-021-00225-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Lee HJ, Min SK, Park YH, Park JB. Application of Bone Morphogenetic Protein 7 Enhanced the Osteogenic Differentiation and Mineralization of Bone Marrow-Derived Stem Cells Cultured on Deproteinized Bovine Bone. COATINGS 2021; 11:642. [DOI: 10.3390/coatings11060642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
Abstract
The growth of bone morphogenetic protein 7 (BMP-7) has been applied for tissue regeneration due to its osteoinductive properties. The aim of this research is to analyze the enhancing effects of BMP-7 on the osteogenic differentiation and mineralization of human bone marrow-derived stem cells cultured on the bovine bone particle. After the stem cells were loaded onto the bone graft material, their morphology was observed on day 7. Viability assays based on the application of fluorescent stains were used for qualitative analyses. Alkaline phosphatase activity assays and Alizarin red staining were used for the assessment of osteogenic differentiation on days 7 and 14. Next-generation mRNA sequencing was applied to evaluate global gene expression. Gene ontology and pathway analysis was used to propose the underlying mechanism. Fibroblast-like morphology was attained with the stem cells. The cells were shown to be firmly attached to the bone particle. Most of the stem cells produced an intense green fluorescence. The relative cellular viability assay values for BMP-7 groups at 0, 10, and 100 ng/mL on day 7 were 0.295 ± 0.003, 0.250 ± 0.002, and 0.240 ± 0.003, respectively (p < 0.05). Alkaline phosphatase activity was significantly higher in BMP-7 groups at concentration of 100 ng/mL compared to the control on days 7 and 14 (p < 0.05). The results of the mineralization assay showed significantly higher values for BMP-7 groups at 100 ng/mL concentration when compared with the control (p < 0.05). The expression of RUNX2 was increased with application of BMP-7 and mitogen-activated protein kinase pathway was associated with the target genes. Overall, this study shows that in vitro application of BMP-7 increases alkaline phosphorylase activity and mineralization of stem cells culture on deproteinized bovine bone mineral. The study suggests that combining stem cells with osteoinductive growth factors with scaffolds can have synergy effects on osteogenic differentiation.
Collapse
Affiliation(s)
- Hyun-Jin Lee
- Department of Periodontics, College of Medicine, Catholic University of Korea, Seoul 06591, Korea
| | - Sae-Kyung Min
- Department of Periodontics, College of Medicine, Catholic University of Korea, Seoul 06591, Korea
| | - Yoon-Hee Park
- Ebiogen, #405, Sungsu A1 Center, 48 Ttukseom-ro 17-ga-gil, Seongdong-gu, Seoul 04784, Korea
| | - Jun-Beom Park
- Department of Periodontics, College of Medicine, Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
19
|
Injectable thermosensitive hydrogel-based drug delivery system for local cancer therapy. Colloids Surf B Biointerfaces 2021; 200:111581. [DOI: 10.1016/j.colsurfb.2021.111581] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/17/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022]
|