1
|
Nolli MG, Terracciano M, Rea I, D'Errico S, Placido Mineo G, De Stefano L, Piccialli G, Riela S, Oliviero G, Borbone N. Mild-Temperature Catalyzed Hydrosilylation for Simplified Carbohydrate Functionalization of Porous Silicon Nanoparticles. Chemistry 2025; 31:e202402818. [PMID: 39679769 PMCID: PMC11724234 DOI: 10.1002/chem.202402818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Indexed: 12/17/2024]
Abstract
Porous silicon is one of the most explored nanostructured materials in various biomedical applications owing to its remarkable properties. However, its inherent chemical instability mandates a robust surface modification procedure, and proper surface bioengineering is essential to ensure its effectiveness in the biomedical field. In this study, we introduce a one-pot functionalization strategy that simultaneously stabilizes porous silicon nanoparticles and decorates their surface with carbohydrates through hydrosilylation chemistry, combining mild temperatures and a Lewis acid catalyst. This approach yielded a surface functionalization degree of 300 μmol g-1 in just 4 hours at 60 °C, significantly reducing both the prolonged reaction times and high temperatures typically associated with conventional hydrosilylation. Furthermore, this advancement opens the way for utilizing thermolabile molecules useful for surface bioengineering.
Collapse
Affiliation(s)
- Maria Grazia Nolli
- Department of PharmacyUniversity of Naples Federico IIvia D. Montesano 4980131NaplesItaly
| | - Monica Terracciano
- Department of PharmacyUniversity of Naples Federico IIvia D. Montesano 4980131NaplesItaly
| | - Ilaria Rea
- Naples Unit-National Research CouncilInstitute of Applied Sciences and Intelligent Systems (ISASI)via P. Castellino 11180131NaplesItaly
| | - Stefano D'Errico
- Department of PharmacyUniversity of Naples Federico IIvia D. Montesano 4980131NaplesItaly
| | | | - Luca De Stefano
- Naples Unit-National Research CouncilInstitute of Applied Sciences and Intelligent Systems (ISASI)via P. Castellino 11180131NaplesItaly
| | - Gennaro Piccialli
- Department of PharmacyUniversity of Naples Federico IIvia D. Montesano 4980131NaplesItaly
- ISBE-ITUniversity of Naples Federico IICorso Umberto I 4080138NaplesItaly
| | - Serena Riela
- Department of Chemical SciencesUniversity of CataniaVia A. Doria 695125CataniaItaly
| | - Giorgia Oliviero
- ISBE-ITUniversity of Naples Federico IICorso Umberto I 4080138NaplesItaly
- Department of Molecular Medicines and Medical BiotechnologiesUniversity of Naples Federico IIvia S. Pansini 580131NaplesItaly
| | - Nicola Borbone
- Department of PharmacyUniversity of Naples Federico IIvia D. Montesano 4980131NaplesItaly
- ISBE-ITUniversity of Naples Federico IICorso Umberto I 4080138NaplesItaly
| |
Collapse
|
2
|
Marzano M, Prencipe F, Delre P, Mangiatordi GF, Travagliante G, Ronga L, Piccialli G, Saviano M, D’Errico S, Tesauro D, Oliviero G. A CD Study of a Structure-Based Selection of N-Heterocyclic Bis-Carbene Gold(I) Complexes as Potential Ligands of the G-Quadruplex-Forming Human Telomeric hTel23 Sequence. Molecules 2024; 29:5446. [PMID: 39598835 PMCID: PMC11597854 DOI: 10.3390/molecules29225446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Herein, we report the structure-based selection via molecular docking of four N-heterocyclic bis-carbene gold(I) complexes, whose potential as ligands for the hTel23 G-quadruplex structure has been investigated using circular dichroism (CD) spectroscopy, CD melting, and polyacrylamide gel electrophoresis (PAGE). The complex containing a bis(1,2,3,4,6,7,8,9-octahydro-11H-11λ3-pyridazino[1,2-a]indazol-11-yl) scaffold induces a transition from the hybrid (3 + 1) topology to a prevalent parallel G-quadruplex conformation, whereas the complex featuring a bis(2-(2-acetamidoethyl)-3λ3-imidazo[1,5-a]pyridin-3(2H)-yl) moiety disrupted the original G-quadruplex structure. These results deserve particular attention in light of the recent findings on the pathological involvements of G-quadruplexes in neurodegenerative diseases.
Collapse
Affiliation(s)
- Maria Marzano
- Centro di Servizio di Ateneo per le Scienze e Tecnologie per la Vita (CESTEV), University of Napoli Federico II, Via Tommaso De Amicis 95, 80145 Napoli, Italy;
| | - Filippo Prencipe
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy;
| | - Pietro Delre
- Institute of Crystallography (IC), CNR, Via Amendola 122/O, 70126 Bari, Italy; (P.D.); (G.F.M.)
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy;
| | | | - Gabriele Travagliante
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy;
| | - Luisa Ronga
- Institute of Analytical and Physical Chemistry for the Environment and Materials (IPREM-UMR 5254), Université de Pau Et Des Pays de L’Adour, E2S UPPA, CNRS, 64053 Pau, France;
| | - Gennaro Piccialli
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy;
| | - Michele Saviano
- Institute of Crystallography (IC), CNR, Via Vivaldi 43, 81100 Caserta, Italy;
- Interuniversity Research Centre on Bioactive Peptides (CIRPEB), University of Naples Federico II, 80134 Naples, Italy
| | - Stefano D’Errico
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy;
| | - Diego Tesauro
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy;
- Interuniversity Research Centre on Bioactive Peptides (CIRPEB), University of Naples Federico II, 80134 Naples, Italy
| | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnology, University of Napoli Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy;
| |
Collapse
|
3
|
Zhang J, Sun Y, Ren L, Chen L, Nie L, Shavandi A, Yunusov KE, Aharodnikau UE, Solomevich SO, Jiang G. Red Blood Cell Membrane-Camouflaged Polydopamine and Bioactive Glass Composite Nanoformulation for Combined Chemo/Chemodynamic/Photothermal Therapy. ACS Biomater Sci Eng 2024; 10:442-454. [PMID: 38047725 DOI: 10.1021/acsbiomaterials.3c01239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Combinations of different therapeutic strategies, including chemotherapy (CT), chemodynamic therapy (CDT), and photothermal therapy (PTT), are needed to effectively address evolving drug resistance and the adverse effects of traditional cancer treatment. Herein, a camouflage composite nanoformulation (TCBG@PR), an antitumor agent (tubercidin, Tub) loaded into Cu-doped bioactive glasses (CBGs) and subsequently camouflaged by polydopamine (PDA), and red blood cell membranes (RBCm), was successfully constructed for targeted and synergetic antitumor therapies by combining CT of Tub, CDT of doped copper ions, and PTT of PDA. In addition, the TCBG@PRs composite nanoformulation was camouflaged with a red blood cell membrane (RBCm) to improve biocompatibility, longer blood retention times, and excellent cellular uptake properties. It integrated with long circulation and multimodal synergistic treatment (CT, CDT, and PTT) with the benefit of RBCms to avoid immune clearance for efficient targeted delivery to tumor locations, producing an "all-in-one" nanoplatform. In vivo results showed that the TCBG@PRs composite nanoformulation prolonged blood circulation and improved tumor accumulation. The combination of CT, CDT, and PTT therapies enhanced the antitumor therapeutic activity, and light-triggered drug release reduced systematic toxicity and increased synergistic antitumor effects.
Collapse
Affiliation(s)
- Junhao Zhang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers, Hangzhou 310018, China
| | - Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Luping Ren
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers, Hangzhou 310018, China
| | - Lianxu Chen
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers, Hangzhou 310018, China
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Amin Shavandi
- École polytechnique de Bruxelles, Université libre de Bruxelles (ULB), 3BIO10 BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, Brussels 1050, Belgium
| | - Khaydar E Yunusov
- Institute of Polymer Chemistry and Physics, Uzbekistan Academy of Sciences, Tashkent 100128, Uzbekistan
| | - Uladzislau E Aharodnikau
- Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk 220030, Belarus
| | - Sergey O Solomevich
- Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk 220030, Belarus
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers, Hangzhou 310018, China
| |
Collapse
|
4
|
De Castro F, Stefàno E, De Luca E, Benedetti M, Fanizzi FP. Platinum-Nucleos(t)ide Compounds as Possible Antimetabolites for Antitumor/Antiviral Therapy: Properties and Perspectives. Pharmaceutics 2023; 15:941. [PMID: 36986802 PMCID: PMC10058173 DOI: 10.3390/pharmaceutics15030941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/12/2023] [Indexed: 03/16/2023] Open
Abstract
Nucleoside analogues (NAs) are a family of compounds which include a variety of purine and pyrimidine derivatives, widely used as anticancer and antiviral agents. For their ability to compete with physiological nucleosides, NAs act as antimetabolites exerting their activity by interfering with the synthesis of nucleic acids. Much progress in the comprehension of their molecular mechanisms has been made, including providing new strategies for potentiating anticancer/antiviral activity. Among these strategies, new platinum-NAs showing a good potential to improve the therapeutic indices of NAs have been synthesized and studied. This short review aims to describe the properties and future perspectives of platinum-NAs, proposing these complexes as a new class of antimetabolites.
Collapse
Affiliation(s)
| | | | | | - Michele Benedetti
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Prov.le Lecce-Monteroni, Centro Ecotekne, 73100 Lecce, Italy
| | | |
Collapse
|
5
|
D'Errico S, Falanga AP, Greco F, Piccialli G, Oliviero G, Borbone N. State of art in the chemistry of nucleoside-based Pt(II) complexes. Bioorg Chem 2023; 131:106325. [PMID: 36577221 DOI: 10.1016/j.bioorg.2022.106325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/22/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
After the fortuitous discovery of the anticancer properties of cisplatin, many Pt(II) complexes have been synthesized, to obtain less toxic leads which could overcome the resistance phenomena. Given the importance of nucleosides and nucleotides as antimetabolites, studying their coordinating properties towards Pt(II) ions is challenging for bioorganic and medicinal chemistry. This review aims to describe the results achieved so far in the aforementioned field, paying particular attention to the synthetic aspects, the chemical-physical characterization, and the biological activities of the nucleoside-based Pt(II) complexes.
Collapse
Affiliation(s)
- Stefano D'Errico
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano, 49, 80131 Naples, Italy.
| | - Andrea Patrizia Falanga
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano, 49, 80131 Naples, Italy.
| | - Francesca Greco
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano, 49, 80131 Naples, Italy.
| | - Gennaro Piccialli
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano, 49, 80131 Naples, Italy.
| | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, via Sergio Pansini, 5, 80131 Naples, Italy.
| | - Nicola Borbone
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano, 49, 80131 Naples, Italy.
| |
Collapse
|
6
|
D'Errico S, Greco F, Patrizia Falanga A, Tedeschi V, Piccialli I, Marzano M, Terracciano M, Secondo A, Roviello GN, Oliviero G, Borbone N. Probing the Ca 2+ mobilizing properties on primary cortical neurons of a new stable cADPR mimic. Bioorg Chem 2021; 117:105401. [PMID: 34662754 DOI: 10.1016/j.bioorg.2021.105401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 01/06/2023]
Abstract
Cyclic adenosine diphosphate ribose (cADPR) is a second messenger involved in the Ca2+ homeostasis. Its chemical instability prompted researchers to tune point by point its structure, obtaining stable analogues featuring interesting biological properties. One of the most challenging derivatives is the cyclic inosine diphosphate ribose (cIDPR), in which the hypoxanthine isosterically replaces the adenine. As our research focuses on the synthesis of N1 substituted inosines, in the last few years we have produced new flexible cIDPR analogues, where the northern ribose has been replaced by alkyl chains. Interestingly, some of them mobilized Ca2+ ions in PC12 cells. To extend our SAR studies, herein we report on the synthesis of a new stable cIDPR derivative which contains the 2″S,3″R dihydroxypentyl chain instead of the northern ribose. Interestingly, the new cyclic derivative and its open precursor induced an increase in intracellular calcium concentration ([Ca2+]i) with the same efficacy of the endogenous cADPR in rat primary cortical neurons.
Collapse
Affiliation(s)
- Stefano D'Errico
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via Domenico Montesano, 49-80131 Napoli, Italy
| | - Francesca Greco
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via Domenico Montesano, 49-80131 Napoli, Italy
| | - Andrea Patrizia Falanga
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via Domenico Montesano, 49-80131 Napoli, Italy
| | - Valentina Tedeschi
- Dipartimento di Neuroscienze, Scienze Riproduttive e Odontostomatologiche, Divisione di Farmacologia, Università degli Studi di Napoli Federico II, Via Sergio Pansini, 5-80131 Napoli, Italy
| | - Ilaria Piccialli
- Dipartimento di Neuroscienze, Scienze Riproduttive e Odontostomatologiche, Divisione di Farmacologia, Università degli Studi di Napoli Federico II, Via Sergio Pansini, 5-80131 Napoli, Italy
| | - Maria Marzano
- Istituto di Cristallografia (IC) CNR, Via Amendola 122/O-70126, Bari, Italy
| | - Monica Terracciano
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via Domenico Montesano, 49-80131 Napoli, Italy
| | - Agnese Secondo
- Dipartimento di Neuroscienze, Scienze Riproduttive e Odontostomatologiche, Divisione di Farmacologia, Università degli Studi di Napoli Federico II, Via Sergio Pansini, 5-80131 Napoli, Italy
| | | | - Giorgia Oliviero
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, via Sergio Pansini, 5-80131 Napoli, Italy.
| | - Nicola Borbone
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via Domenico Montesano, 49-80131 Napoli, Italy
| |
Collapse
|
7
|
Synthesis, Antiproliferative Activity, and DNA Binding Studies of Nucleoamino Acid-Containing Pt(II) Complexes. Pharmaceuticals (Basel) 2020; 13:ph13100284. [PMID: 33007911 PMCID: PMC7600948 DOI: 10.3390/ph13100284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 11/17/2022] Open
Abstract
We here report our studies on the reaction with the platinum(II) ion of a nucleoamino acid constituted by the l-2,3-diaminopropanoic acid linked to the thymine nucleobase through a methylenecarbonyl linker. The obtained new platinum complexes, characterized by spectroscopic and mass spectrometric techniques, were envisaged to exploit synergistic effects due to the presence of both the platinum center and the nucleoamino acid moiety. The latter can be potentially useful to protect the complexes from early deactivation, as well as to facilitate their cell internalization. The biological activity of the complexes in terms of antiproliferative effects was evaluated in vitro on different cancer cell lines and healthy cells, showing the best results on human cervical adenocarcinoma (HeLa) cells along with good selectivity for cancer over normal cells. In contrast, the metal-free nucleoamino acid did not show any cytotoxicity on both normal and cancer cell lines. Finally, the ability of the novel Pt(II) complexes to bind various DNA model systems was investigated by circular dichroism (CD) spectroscopy and polyacrylamide gel electrophoresis analyses proving that the newly obtained compounds can potentially target DNA, similarly to other well-known anticancer Pt complexes, with a peculiar G-quadruplex vs. duplex selectivity.
Collapse
|