1
|
Geng Y, Williams GR. Developing and scaling up captopril-loaded electrospun ethyl cellulose fibers for sustained-release floating drug delivery. Int J Pharm 2023; 648:123557. [PMID: 39491226 DOI: 10.1016/j.ijpharm.2023.123557] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/05/2024]
Abstract
In this work ethyl cellulose (EC) was used as the matrix polymer and loaded with captopril, with the goal to fabricate electrospun fibers as potential sustained-release floating gastro-retentive drug delivery systems. Fibers were prepared with monoaxial and coaxial electrospinning, and both bench-top and scaled-up (needle-based) methods were explored. With monoaxial electrospinning, EC-based fibers in the shape of cylinders and with smooth surfaces were obtained both at 1 and 20 mL/h. For coaxial electrospinning, the drug was encapsulated in the core end fibers generated with core/shell feeding rates of 0.5/1 and 5/10 mL/h. The fibers were cylindrical in shape with a wrinkled surface, and confocal microscopy suggested them to have a core/shell structure. X-ray diffraction and differential scanning calorimetry results showed that all the fibers were amorphous. The encapsulation efficiency of all the formulations was almost 100%. Release studies in simulated gastric fluid indicated that the monoaxial electrospun fibers gave slower release profiles compared with a physical mixture of captopril and EC, but there was still an initial "burst" of release at the start of the experiment. Fibers with low drug-loading (9.09% w/w) showed a slower release than fibers with high loading (23.08% w/w). The coaxial fibers exhibited sustained release profiles with reduced initial burst release. Both monoaxial and coaxial fibers could float on the surface of simulated gastric fluid for over 24 hours at 37 °C. After storage under ambient conditions (19-21°C, relative humidity 30-40%) for 8 weeks, all the fibers remained amorphous and the release profiles had no significant changes compared with fresh fibers. This work thus highlights the potential of coaxial electrospinning for fabricating a sustained-release floating gastro-retentive drug delivery system for captopril.
Collapse
Affiliation(s)
- Yuhao Geng
- UCL School of Pharmacy, 29 - 39 Brunswick Square, London, WC1N 1AX
| | | |
Collapse
|
2
|
Zhou J, Wang P, Yu DG, Zhu Y. Biphasic drug release from electrospun structures. Expert Opin Drug Deliv 2023; 20:621-640. [PMID: 37140041 DOI: 10.1080/17425247.2023.2210834] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/02/2023] [Indexed: 05/05/2023]
Abstract
INTRODUCTION Biphasic release, as a special drug-modified release profile that combines immediate and sustained release, allows fast therapeutic action and retains blood drug concentration for long periods. Electrospun nanofibers, particularly those with complex nanostructures produced by multi-fluid electrospinning processes, are potential novel biphasic drug delivery systems (DDSs). AREAS COVERED This review summarizes the most recent developments in electrospinning and related structures. In this review, the role of electrospun nanostructures in biphasic drug release was comprehensively explored. These electrospun nanostructures include monolithic nanofibers obtained through single-fluid blending electrospinning, core-shell and Janus nanostructures prepared via bifluid electrospinning, three-compartment nanostructures obtained via trifluid electrospinning, nanofibrous assemblies obtained through the layer-by-layer deposition of nanofibers, and the combined structure of electrospun nanofiber mats with casting films. The strategies and mechanisms through which complex structures facilitate biphasic release were analyzed. EXPERT OPINION Electrospun structures can provide many strategies for the development of biphasic drug release DDSs. However, many issues such as the scale-up productions of complex nanostructures, the in vivo verification of the biphasic release effects, keeping pace with the developments of multi-fluid electrospinning, drawing support from the state-of-the-art pharmaceutical excipients, and the combination with traditional pharmaceutical methods need to be addressed for real applications.
Collapse
Affiliation(s)
- Jianfeng Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Pu Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Yuanjie Zhu
- Department of Dermatology, Naval Medical Center, Naval Medical University, Shanghai, China
| |
Collapse
|
3
|
Verma V, Patel P, Ryan KM, Hudson S, Padrela L. Production of hydrochlorothiazide nanoparticles with increased permeability using top-spray coating process. J Supercrit Fluids 2023. [DOI: 10.1016/j.supflu.2022.105788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Shikha S, Lee YW, Doyle PS, Khan SA. Microfluidic Particle Engineering of Hydrophobic Drug with Eudragit E100─Bridging the Amorphous and Crystalline Gap. Mol Pharm 2022; 19:4345-4356. [PMID: 36268657 DOI: 10.1021/acs.molpharmaceut.2c00714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Co-processing active pharmaceutical ingredients (APIs) with excipients is a promising particle engineering technique to improve the API physical properties, which can lead to more robust downstream drug product manufacturing and improved drug product attributes. Excipients provide control over critical API attributes like particle size and solid-state outcomes. Eudragit E100 is a widely used polymeric excipient to modulate drug release. Being cationic, it is primarily employed as a precipitation inhibitor to stabilize amorphous solid dispersions. In this work, we demonstrate how co-processing of E100 with naproxen (NPX) (a model hydrophobic API) into monodisperse emulsions via droplet microfluidics followed by solidification via solvent evaporation allows the facile fabrication of compact, monodisperse, and spherical particles with an expanded range of solid-state outcomes spanning from amorphous to crystalline forms. Low E100 concentrations (≤26% w/w) yield crystalline microparticles with a stable NPX polymorph distributed uniformly across the matrix at a high drug loading (∼89% w/w). Structurally, E100 incorporation reduces the size of primary particles comprising the co-processed microparticles in comparison to neat API microparticles made using the same technique and the as-received API powder. This reduction in primary particle size translates into an increased internal porosity of the co-processed microparticles, with specific surface area and pore volume ∼9 times higher than the neat API microparticles. These E100-enabled structural modifications result in faster drug release in acidic media compared to neat API microparticles. Additionally, E100-NPX microparticles have a significantly improved flowability compared to neat API microparticles and as-received API powder. Overall, this study demonstrates a facile microfluidics-based co-processing method that broadly expands the range of solid-state outcomes obtainable with E100 as an excipient, with multiscale control over the key attributes and performance of hydrophobic API-laden microparticles.
Collapse
Affiliation(s)
- Swati Shikha
- Critical Analytics for Manufacturing Personalized-Medicine, Singapore-MIT Alliance for Research and Technology, Singapore138602, Singapore
| | - Yi Wei Lee
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore117576, Singapore.,NUS Graduate School for Integrative Sciences & Engineering, National University of Singapore, Singapore119077, Singapore
| | - Patrick S Doyle
- Critical Analytics for Manufacturing Personalized-Medicine, Singapore-MIT Alliance for Research and Technology, Singapore138602, Singapore.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States.,Harvard Medical School Initiative for RNA Medicine, Boston, Massachusetts02215, United States
| | - Saif A Khan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore117576, Singapore
| |
Collapse
|
5
|
Synthesis, Characterization, and Biological Evaluation of Novel N-{4-[(4-Bromophenyl)sulfonyl]benzoyl}-L-valine Derivatives. Processes (Basel) 2022. [DOI: 10.3390/pr10091800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this article, we present the design and synthesis of novel compounds, containing in their molecules an L-valine residue and a 4-[(4-bromophenyl)sulfonyl]phenyl moiety, which belong to N-acyl-α-amino acids, 4H-1,3-oxazol-5-ones, 2-acylamino ketones, and 1,3-oxazoles chemotypes. The synthesized compounds were characterized through elemental analysis, MS, NMR, UV/VIS, and FTIR spectroscopic techniques, the data obtained are in accordance with the assigned structures. Their purities were verified by reversed-phase HPLC. The new compounds were tested for antimicrobial action against bacterial and fungal strains for antioxidant activity by DPPH, ABTS, and ferric reducing power assays, and for toxicity on freshwater cladoceran Daphnia magna Straus. Furthermore, in silico studies were performed concerning the potential antimicrobial effect and toxicity. The results of antimicrobial activity, antioxidant effect, and toxicity assays, as well as of in silico analysis revealed a promising potential of N-{4-[(4-bromophenyl)sulfonyl]benzoyl}-L-valine and 2-{4-[(4-bromophenyl)sulfonyl]phenyl}-4-isopropyl-4H-1,3-oxazol-5-one for developing novel antimicrobial agents to fight Gram-positive pathogens, and particularly Enterococcus faecium biofilm-associated infections.
Collapse
|
6
|
Witika BA, Makoni PA, Matafwali SK, Mweetwa LL, Shandele GC, Walker RB. Enhancement of Biological and Pharmacological Properties of an Encapsulated Polyphenol: Curcumin. Molecules 2021; 26:4244. [PMID: 34299519 PMCID: PMC8303961 DOI: 10.3390/molecules26144244] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
There is a dearth of natural remedies available for the treatment of an increasing number of diseases facing mankind. Natural products may provide an opportunity to produce formulations and therapeutic solutions to address this shortage. Curcumin (CUR), diferuloylmethane; I,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione is the major pigment in turmeric powder which has been reported to exhibit a number of health benefits including, antibacterial, antiviral, anti-cancer, anti-inflammatory and anti-oxidant properties. In this review, the authors attempt to highlight the biological and pharmacological properties of CUR in addition to emphasizing aspects relating to the biosynthesis, encapsulation and therapeutic effects of the compound. The information contained in this review was generated by considering published information in which evidence of enhanced biological and pharmacological properties of nano-encapsulated CUR was reported. CUR has contributed to a significant improvement in melanoma, breast, lung, gastro-intestinal, and genito-urinary cancer therapy. We highlight the impact of nano-encapsulated CUR for efficient inhibition of cell proliferation, even at low concentrations compared to the free CUR when considering anti-proliferation. Furthermore nano-encapsulated CUR exhibited bioactive properties, exerted cytotoxic and anti-oxidant effects by acting on endogenous and cholinergic anti-oxidant systems. CUR was reported to block Hepatitis C virus (HCV) entry into hepatic cells, inhibit MRSA proliferation, enhance wound healing and reduce bacterial load. Nano-encapsulated CUR has also shown bioactive properties when acting on antioxidant systems (endogenous and cholinergic). Future research is necessary and must focus on investigation of encapsulated CUR nano-particles in different models of human pathology.
Collapse
Affiliation(s)
- Bwalya Angel Witika
- ApotheCom|A MEDiSTRAVA Company (Medical Division of Huntsworth), London WC2A 1AN, UK;
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa
| | - Pedzisai Anotida Makoni
- Division of Pharmacology, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa;
| | - Scott Kaba Matafwali
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, LSHTM, London WC1E 7HT, UK;
| | - Larry Lawrence Mweetwa
- Department of Chemistry, Marine Biodiscovery Centre, University of Aberdeen, Aberdeen AB24 3FX, UK;
| | - Ginnethon Chaamba Shandele
- Department of Biochemistry, Institute of Basic and Biomedical Sciences, Levy Mwanawasa Medical University, P.O. Box 33991, Lusaka 10101, Zambia;
| | - Roderick Bryan Walker
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|
7
|
Development and Validation of an Automated Zone Fluidics-Based Sensor for In Vitro Dissolution Studies of Captopril Using Total Error Concept. Molecules 2021; 26:molecules26040824. [PMID: 33562585 PMCID: PMC7914990 DOI: 10.3390/molecules26040824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 11/16/2022] Open
Abstract
In the present research, a zone fluidics-based automated sensor for the analysis of captopril in in vitro dissolution samples is reported. Captopril is reacted under flow conditions with Ni(II) (10 mmol L-1) in alkaline medium (0.15% v/v NH3) to form a stable derivate, which is monitored spectrophotometrically at 340 nm. The chemical and instrumental parameters were carefully investigated and optimized. The validation of the developed method was performed in the range of 5 to 120% of the expected maximum concentration using the accuracy profiles as a graphical decision-making tool. The β-expectation tolerance intervals did not exceed the acceptance criteria of ±10%, which means that 95% of future results will be encompassed in the defined bias limits. The variation of the relative bias ranged between -2.3% and 3.5% and the RSD values for repeatability and intermediate precision were lower than 2.3% in all cases. The limit of detection (LOD), and the lower and the upper limit of quantification (LLOQ, ULOQ) were satisfactory and found to be 1%, 5% and 120% (corresponding to 0.6, 2.78 and 66.67 μg mL-1 in dissolution medium). The developed method was successfully applied for the analysis of captopril in dissolution tests of two commercially available batches.
Collapse
|
8
|
Formulation and Characterisation of a Combination Captopril and Hydrochlorothiazide Microparticulate Dosage Form. Pharmaceutics 2020; 12:pharmaceutics12080712. [PMID: 32751409 PMCID: PMC7465965 DOI: 10.3390/pharmaceutics12080712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases such as hypertension and cardiac failure in South African children and adolescents are effectively managed long term, using a combination treatment of captopril and hydrochlorothiazide. The majority of commercially available pharmaceutical products are designed for adult patients and require extemporaneous manipulation, prior to administration to paediatric patients. There is a need to develop an age appropriate microparticulate dosing technology that is easy to swallow, dose and alter doses whilst overcoming the pharmacokinetic challenges of short half-life and biphasic pharmacokinetic disposition exhibited by hydrochlorothiazide and captopril. An emulsion solvent evaporation approach using different combinations of polymers was used to manufacture captopril and hydrochlorothiazide microparticles. Design of experiments was used to develop and analyse experimental data, and identifyoptimum formulation and process conditions for the preparation of the microparticles. Characterisation studies to establish encapsulation efficiency, in vitro release, shape, size and morphology of the microparticles were undertaken. The microparticles produced were in the micrometre size range, with an encapsulation efficiency >75% for both hydrochlorothiazide and captopril. The microparticulate technology is able to offer potential resolution to the half-life mediated dosing frequency of captopril as sustained release of the molecule was observed over a 12-h period. The release of hydrochlorothiazide of >80% suggests an improvement in solubility limited dissolution.
Collapse
|