1
|
Lai Y, Xie B, Zhang W, He W. Pure drug nanomedicines - where we are? Chin J Nat Med 2025; 23:385-409. [PMID: 40274343 DOI: 10.1016/s1875-5364(25)60851-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/26/2024] [Accepted: 11/03/2024] [Indexed: 04/26/2025]
Abstract
Pure drug nanomedicines (PDNs) encompass active pharmaceutical ingredients (APIs), including macromolecules, biological compounds, and functional components. They overcome research barriers and conversion thresholds associated with nanocarriers, offering advantages such as high drug loading capacity, synergistic treatment effects, and environmentally friendly production methods. This review provides a comprehensive overview of the latest advancements in PDNs, focusing on their essential components, design theories, and manufacturing techniques. The physicochemical properties and in vivo behaviors of PDNs are thoroughly analyzed to gain an in-depth understanding of their systematic characteristics. The review introduces currently approved PDN products and further explores the opportunities and challenges in expanding their depth and breadth of application. Drug nanocrystals, drug-drug cocrystals (DDCs), antibody-drug conjugates (ADCs), and nanobodies represent the successful commercialization and widespread utilization of PDNs across various disease domains. Self-assembled pure drug nanoparticles (SAPDNPs), a next-generation product, still require extensive translational research. Challenges persist in transitioning from laboratory-scale production to mass manufacturing and overcoming the conversion threshold from laboratory findings to clinical applications.
Collapse
Affiliation(s)
- Yaoyao Lai
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Bing Xie
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Wanting Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China.
| |
Collapse
|
2
|
Zhao T, Gu C, Qi J, Liu J, Wang Y, Chen X, Guo F, Li Y. In vitro and in vivo performance of amorphous solid dispersions of ursolic acid as a function of polymer type and excipient addition. J Pharm Pharmacol 2024; 76:1584-1598. [PMID: 39393786 DOI: 10.1093/jpp/rgae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/14/2024] [Indexed: 10/13/2024]
Abstract
OBJECTIVES The objective of this research was to enhance the bioavailability of ursolic acid (UA) by preparing multielement amorphous solid dispersion (ASD) systems comprising excipients. METHODS The ASDs were prepared via the solvent evaporation method, characterized by a range of techniques, and investigated with respect to permeability of human colorectal adenocarcinoma cell line (Caco-2) cells monolayers and pharmacokinetics, with comparisons made to the physical mixture and the pure drug. KEY FINDINGS The (UA-choline)-Polyethylcaprolactam-polyvinyl acetate-polyethylene glycol grafted copolymer (Soluplus)-Vitamin E polyethylene glycol succinate (TPGS) ASD demonstrated superior dissolution properties compared to the corresponding binary solid dispersions and ternary solid dispersions (P< .05). The permeability studies of Caco-2 cell monolayers revealed that the ASD exhibited moderate permeability, with an efflux rate that was significantly lower than that of the UA raw material (P< .05). Pharmacokinetic studies in rats demonstrated that the oral bioavailability of the ASD was 19.0 times higher than that of UA (P< .01). CONCLUSIONS The research indicated that the multielement ASD could be employed as an efficacious drug delivery system for UA. Furthermore, the Soluplus/TPGS/choline combination represents a promising candidate for the fabrication of ASDs that can load weakly acidic and poorly soluble drugs.
Collapse
Affiliation(s)
- Tingting Zhao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, People's Republic of China
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, 369 Tianxiong Road, Shanghai 201318, People's Republic of China
| | - Chenming Gu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, People's Republic of China
| | - Jianbo Qi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, People's Republic of China
| | - Jingwen Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, People's Republic of China
| | - Yajun Wang
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, 369 Tianxiong Road, Shanghai 201318, People's Republic of China
| | - Xiaojing Chen
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, 369 Tianxiong Road, Shanghai 201318, People's Republic of China
| | - Fujiang Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, People's Republic of China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, People's Republic of China
| |
Collapse
|
3
|
Inam M, Yang Y, Hu J, Zheng J, Deng W, Zhou Y, Qi J, Xu C, Chai G, Dang Y, Chen W. Cocrystallization of Gefitinib Potentiate Single-Dose Oral Administration for Lung Tumor Eradication via Unbalancing the DNA Damage/Repair. Pharmaceutics 2023; 15:2713. [PMID: 38140054 PMCID: PMC10747925 DOI: 10.3390/pharmaceutics15122713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Gefitinib (GEF) is a clinical medication for the treatment of lung cancer targeting the epidermal growth factor receptor (EGFR). However, its efficacy is remarkably limited by low solubility and dissolution rates. In this study, two cocrystals of GEF with co-formers were successfully synthesized using the recrystallization method characterized via Powder X-ray Diffraction, Fourier Transform Infrared Spectroscopy, and 2D Nuclear Overhauser Effect Spectroscopy. The solubility and dissolution rates of cocrystals were found to be two times higher than those of free GEF. In vitro cytotoxicity studies revealed that the cocrystals enhanced the inhibition of cell proliferation and apoptosis in A549 and H1299 cells compared to free GEF. In mouse models, GEF@TSBO demonstrated targeted, safe, and effective antitumor activity with only one-dose administration. Mechanistically, the GEF cocrystals were shown to increase the cellular levels of damaged DNA, while potentially downregulating PARP, thereby impairing the DNA repair machinery and leading to an imbalance between DNA damage and restoration. These findings suggest that the cocrystallization of GEF could serve as a promising adjunct to significantly enhance the physicochemical and biopharmaceutical performance for lung cancer treatment, providing a facial strategy to improve GEF anticancer efficiency with high bioavailability that can be orally administrated with only one dose.
Collapse
Affiliation(s)
- Muhammad Inam
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Science, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (M.I.); (Y.Y.); (J.H.); (J.Z.); (W.D.); (Y.Z.); (C.X.)
| | - Yi Yang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Science, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (M.I.); (Y.Y.); (J.H.); (J.Z.); (W.D.); (Y.Z.); (C.X.)
| | - Jialin Hu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Science, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (M.I.); (Y.Y.); (J.H.); (J.Z.); (W.D.); (Y.Z.); (C.X.)
| | - Jiena Zheng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Science, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (M.I.); (Y.Y.); (J.H.); (J.Z.); (W.D.); (Y.Z.); (C.X.)
| | - Wenxia Deng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Science, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (M.I.); (Y.Y.); (J.H.); (J.Z.); (W.D.); (Y.Z.); (C.X.)
| | - You Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Science, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (M.I.); (Y.Y.); (J.H.); (J.Z.); (W.D.); (Y.Z.); (C.X.)
| | - Jialong Qi
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Kunming 650032, China;
| | - Chuanshan Xu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Science, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (M.I.); (Y.Y.); (J.H.); (J.Z.); (W.D.); (Y.Z.); (C.X.)
| | - Guihong Chai
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China;
| | - Yuanye Dang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Science, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (M.I.); (Y.Y.); (J.H.); (J.Z.); (W.D.); (Y.Z.); (C.X.)
| | - Wenjie Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Science, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (M.I.); (Y.Y.); (J.H.); (J.Z.); (W.D.); (Y.Z.); (C.X.)
- Sydney Vital Translational Cancer Research Centre, Westbourne St., Sydney, NSW 2065, Australia
| |
Collapse
|
4
|
Gao L, Zheng WY, Yang WL, Zhang XR. Drug-drug salt forms of vortioxetine with mefenamic acid and tolfenamic acid. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Pang X, Tao Y, Zhang J, Chen H, Sun A, Ren G, Yang W, Pan Q. New Chrysin-based co-crystals: synthesis, characterization and dissolution studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Co-crystals of ethenzamide with 2-nitrobenzoic acid - Conformational analysis, MD simulations and DFT investigations. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Crystal Structure, Solubility, and Pharmacokinetic Study on a Hesperetin Cocrystal with Piperine as Coformer. Pharmaceutics 2022; 14:pharmaceutics14010094. [PMID: 35056990 PMCID: PMC8778681 DOI: 10.3390/pharmaceutics14010094] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 02/06/2023] Open
Abstract
Hesperetin (HES) is a key biological active ingredient in citrus peels, and is one of the natural flavonoids that attract the attention of researchers due to its numerous therapeutic bioactivities that have been identified in vitro. As a bioenhancer, piperine (PIP) can effectively improve the absorption of insoluble drugs in vivo. In the present study, a cocrystal of HES and PIP was successfully obtained through solution crystallization. The single-crystal structure was illustrated and comprehensive characterization of the cocrystal was conducted. The cocrystal was formed by two drug molecules at a molar ratio of 1:1, which contained O–H–O hydrogen bonds between the carbonyl and ether oxygen of PIP and the phenolic hydroxyl group of HES. In addition, a solubility experiment was performed on powder cocrystal in simulated gastrointestinal fluid, and the result revealed that the cocrystal improves the dissolution behavior of HES compared with that of the pure substance. Furthermore, HES’s bioavailability in the cocrystal was six times higher than that of pristine drugs. These results may provide an efficient oral formulation for HES.
Collapse
|
8
|
Iyer R, Petrovska Jovanovska V, Berginc K, Jaklič M, Fabiani F, Harlacher C, Huzjak T, Sanchez-Felix MV. Amorphous Solid Dispersions (ASDs): The Influence of Material Properties, Manufacturing Processes and Analytical Technologies in Drug Product Development. Pharmaceutics 2021; 13:1682. [PMID: 34683975 PMCID: PMC8540358 DOI: 10.3390/pharmaceutics13101682] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022] Open
Abstract
Poorly water-soluble drugs pose a significant challenge to developability due to poor oral absorption leading to poor bioavailability. Several approaches exist that improve the oral absorption of such compounds by enhancing the aqueous solubility and/or dissolution rate of the drug. These include chemical modifications such as salts, co-crystals or prodrugs and physical modifications such as complexation, nanocrystals or conversion to amorphous form. Among these formulation strategies, the conversion to amorphous form has been successfully deployed across the pharmaceutical industry, accounting for approximately 30% of the marketed products that require solubility enhancement and making it the most frequently used technology from 2000 to 2020. This article discusses the underlying scientific theory and influence of the active compound, the material properties and manufacturing processes on the selection and design of amorphous solid dispersion (ASD) products as marketed products. Recent advances in the analytical tools to characterize ASDs stability and ability to be processed into suitable, patient-centric dosage forms are also described. The unmet need and regulatory path for the development of novel ASD polymers is finally discussed, including a description of the experimental data that can be used to establish if a new polymer offers sufficient differentiation from the established polymers to warrant advancement.
Collapse
Affiliation(s)
- Raman Iyer
- Technical Research and Development, c/o Global Drug Development, Novartis Pharmaceuticals Corp., One Health Plaza, East Hanover, NJ 07936, USA
| | - Vesna Petrovska Jovanovska
- Product Development, Lek Pharmaceuticals d.d., Verovškova 57, 1526 Ljubljana, Slovenia; (V.P.J.); (K.B.); (M.J.); (T.H.)
| | - Katja Berginc
- Product Development, Lek Pharmaceuticals d.d., Verovškova 57, 1526 Ljubljana, Slovenia; (V.P.J.); (K.B.); (M.J.); (T.H.)
| | - Miha Jaklič
- Product Development, Lek Pharmaceuticals d.d., Verovškova 57, 1526 Ljubljana, Slovenia; (V.P.J.); (K.B.); (M.J.); (T.H.)
| | - Flavio Fabiani
- Technical Research and Development, c/o Global Drug Development, Novartis Pharma AG, Lichtstrasse 35, CH-4056 Basel, Switzerland; (F.F.); (C.H.)
| | - Cornelius Harlacher
- Technical Research and Development, c/o Global Drug Development, Novartis Pharma AG, Lichtstrasse 35, CH-4056 Basel, Switzerland; (F.F.); (C.H.)
| | - Tilen Huzjak
- Product Development, Lek Pharmaceuticals d.d., Verovškova 57, 1526 Ljubljana, Slovenia; (V.P.J.); (K.B.); (M.J.); (T.H.)
| | | |
Collapse
|
9
|
Nugrahani I, Parwati RD. Challenges and Progress in Nonsteroidal Anti-Inflammatory Drugs Co-Crystal Development. Molecules 2021; 26:molecules26144185. [PMID: 34299458 PMCID: PMC8303568 DOI: 10.3390/molecules26144185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 11/16/2022] Open
Abstract
Co-crystal innovation is an opportunity in drug development for both scientists and industry. In line with the “green pharmacy” concept for obtaining safer methods and advanced pharmaceutical products, co-crystallization is one of the most promising approaches to find novel patent drugs, including non-steroidal anti-inflammatory drugs (NSAID). This kind of multi-component system improves previously poor physicochemical and mechanical properties through non-covalent interactions. Practically, there are many challenges to find commercially viable co-crystal drugs. The difficulty in selecting co-formers becomes the primary problem, followed by unexpected results, such as decreased solubility and dissolution, spring and parachute effect, microenvironment pH effects, changes in instability, and polymorphisms, which can occur during the co-crystal development. However, over time, NSAID co-crystals have been continuously updated regarding co-formers selection and methods development.
Collapse
|
10
|
Thiazolidine-2,4-dione derivative in 2-hydroxypropyl-β-cyclodextrin solutions: Complexation/solubilization, distribution and permeability. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115931] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Obtaining Cocrystals by Reaction Crystallization Method: Pharmaceutical Applications. Pharmaceutics 2021; 13:pharmaceutics13060898. [PMID: 34204318 PMCID: PMC8234160 DOI: 10.3390/pharmaceutics13060898] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/08/2021] [Accepted: 06/13/2021] [Indexed: 11/17/2022] Open
Abstract
Cocrystals have gained attention in the pharmaceutical industry due to their ability to improve solubility, stability, in vitro dissolution rate, and bioavailability of poorly soluble drugs. Conceptually, cocrystals are multicomponent solids that contain two or more neutral molecules in stoichiometric amounts within the same crystal lattice. There are several techniques for obtaining cocrystals described in the literature; however, the focus of this article is the Reaction Crystallization Method (RCM). This method is based on the generation of a supersaturated solution with respect to the cocrystal, while this same solution is saturated or unsaturated with respect to the components of the cocrystal individually. The advantages of the RCM compared with other cocrystallization techniques include the ability to form cocrystals without crystallization of individual components, applicability to the development of in situ techniques for the screening of high quality cocrystals, possibility of large-scale production, and lower cost in both time and materials. An increasing number of scientific studies have demonstrated the use of RCM to synthesize cocrystals, mainly for drugs belonging to class II of the Biopharmaceutics Classification System. The promising results obtained by RCM have demonstrated the applicability of the method for obtaining pharmaceutical cocrystals that improve the biopharmaceutical characteristics of drugs.
Collapse
|