1
|
Ong RR, Goh CF. Niacinamide: a review on dermal delivery strategies and clinical evidence. Drug Deliv Transl Res 2024; 14:3512-3548. [PMID: 38722460 DOI: 10.1007/s13346-024-01593-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2024] [Indexed: 10/24/2024]
Abstract
Niacinamide, an active form of vitamin B3, is recognised for its significant dermal benefits including skin brightening, anti-ageing properties and the protection of the skin barrier. Its widespread incorporation into cosmetic products, ranging from cleansers to serums, is attributed to its safety profile and proven efficacy. Recently, topical niacinamide has also been explored for other pharmaceutical applications, including skin cancers. Therefore, a fundamental understanding of the skin permeation behaviour of niacinamide becomes crucial for formulation design. Given the paucity of a comprehensive review on this aspect, we provide insights into the mechanisms of action of topically applied niacinamide and share the current strategies used to enhance its skin permeation. This review also consolidates clinical evidence of topical niacinamide for its cosmeceutical uses and as treatment for some skin disorders, including dermatitis, acne vulgaris and actinic keratosis. We also emphasise the current exploration and perspectives on the delivery designs of topical niacinamide, highlighting the potential development of formulations focused on enhancing skin permeation, particularly for clinical benefits.
Collapse
Affiliation(s)
- Rong Rong Ong
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang, 11800, Malaysia
| | - Choon Fu Goh
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang, 11800, Malaysia.
| |
Collapse
|
2
|
Wu D, Li M, Gong J, Huang W, Zeng W, Jiang Y. Analysis of pharmacological effects and mechanisms of compound essential oils via GC-MS and network pharmacology. Biomed Chromatogr 2024; 38:e6033. [PMID: 39439351 DOI: 10.1002/bmc.6033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/05/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024]
Abstract
Aromatherapy based on essential oil (EO) has been widely used for alleviating pain and intense where no compound EO reports its application on pharmacological effects. In order to explore the active pharmaceutical ingredients (API) and mechanism of a compound EO, a blend of Artemisia argyi, Boswellia carterii, Commiphora myrrha, Cinnamomum cassia, Zingiber oj-jicinale, and Ilex pubescens EO, in treating neck and shoulder pain (NSP). Network pharmacology hyphenated with mice model was employed to investigate. Gas chromatography-mass spectrometry (GC-MS) was applied for the identification of constituents in compound EO. Lastly, transdermal absorption of compound EO was studied before verifying analgesic and anti-inflammatory effects in mice. Totally, 75 compounds were tentatively identified through GC-MS, predicting 46 potential analgesic targets. Moreover, 11 core targets were obtained through network topology screening. Animal test resulted that the compound EO had significantly stronger anti-inflammatory and analgesic effects compared to single EO. Multiple API in compound EO affected on targets and exerted therapeutic effects on NSP through multiple pathways. Afterwards, eucalyptol, camphor, and borneol from compound EO exhibited a sustained-release effect, which provide scientific basis to illustrate the application of compound EO in clinical.
Collapse
Affiliation(s)
- Dong Wu
- The National Pharmaceutical Engineering Center (NPEC) for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Mengchu Li
- The National Pharmaceutical Engineering Center (NPEC) for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jianping Gong
- The National Pharmaceutical Engineering Center (NPEC) for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Wenping Huang
- The National Pharmaceutical Engineering Center (NPEC) for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Wenhui Zeng
- Jiangxi Drug Inspector Centre, Nanchang, China
| | - Ying Jiang
- Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
3
|
Migliozzi S, He Y, Parhizkar M, Lan Y, Angeli P. Pickering emulsions for stimuli-responsive transdermal drug delivery: effect of rheology and microstructure on performance. SOFT MATTER 2024; 20:8621-8637. [PMID: 39431994 DOI: 10.1039/d4sm00993b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
This work investigates the design of stimuli-responsive Pickering emulsions (PEs) for transdermal drug delivery applications, by exploring the impact of stabilising microgels size and interactions on their rheological and release properties. Temperature-responsive poly(N-isopropylacrylamide) microgels modified with 1-benzyl-3-vinylimidazolium bromide (pNIPAM-co-BVI) are synthesized in varying sizes and used to stabilise jojoba oil-in-water concentrated emulsions. The results reveals two distinct behaviours: for small microgels (∼300 nm), the PEs exhibit a smooth, uniform structure characterised by a mild yield stress, characteristic of soft glassy systems. Conversely, larger microgels (∼800 nm) induce droplet clustering, resulting in increased elasticity and a more complex yielding process. Interestingly, transdermal delivery tests demonstrate that microstructure, rather than bulk rheology, governs sustained drug release. The release process can be modelled as diffusion-controlled transport through a porous medium with random traps. At room temperature, the trap size corresponds to the droplet size, and the release time scales with the total dispersed phases volume fraction. However, at physiological temperature (37 °C), above the volume-phase transition temperature of the microgels, the release time increases significantly. The trap size approaches the microgel size, suggesting that microgel porosity becomes the dominant factor controlling drug release. Overall, the results highlight the critical role of microstructure design in optimising stimuli-responsive PEs for controlled transdermal drug delivery.
Collapse
Affiliation(s)
- Simona Migliozzi
- Department of Chemical Engineering, University College London, London, UK.
| | - Yiting He
- Department of Chemical Engineering, University College London, London, UK.
- Centre for Nature Inspired Engineering, University College London, London, UK
| | | | - Yang Lan
- Department of Chemical Engineering, University College London, London, UK.
- Centre for Nature Inspired Engineering, University College London, London, UK
| | - Panagiota Angeli
- Department of Chemical Engineering, University College London, London, UK.
| |
Collapse
|
4
|
Rahma A, Gu J, Lane ME. In vivo permeation of 2-phenoxyethanol in human skin. Eur J Pharm Sci 2024; 202:106889. [PMID: 39187094 DOI: 10.1016/j.ejps.2024.106889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/25/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
A number of baby wipe formulations contain 2-phenoxyethanol (PE) as a preservative and cetylpyridinium chloride (CPC) as a surfactant with antimicrobial activity. Previously, we reported the skin absorption of PE in porcine skin and human skin in vitro. In the present work, the permeation of PE from preparations with CPC and without CPC was investigated in human skin in vivo. The studies were conducted using Confocal Raman Spectroscopy (CRS) and tape stripping (TS) methods. The CRS studies showed that the area under the curve (AUC) of PE for the formulation with and without CPC were not significantly different (p > 0.05). The TS data indicated no significant difference in the amounts of PE recovered from tapes 1-6 for the preparation with and without CPC (p > 0.05). When comparing the in vitro and in vivo data, a correlation was observed between the cumulative amount of PE permeated through human skin in vitro at 24 h and the AUC as measured by CRS (r2 = 0.97). In addition, the cumulative amount of PE permeated through human skin in vitro at 24 h was found to correlate with the amount of PE recovered from tape 1 to 6 in vivo (r2 = 0.95). Both CRS and TS techniques demonstrated limitations in assessing the distribution of PE and CPC in the skin in vivo, primarily attributed to the Raman signal intensities of compounds under investigation and the variability in the amount of SC collected by TS. Despite the limitations of CRS and TS, the results from the present study add further insights to the in vitro permeation data. Additionally, the findings of the present study encourage the further development and application of CRS for non-invasive evaluation of topical skin formulations in vivo.
Collapse
Affiliation(s)
- Annisa Rahma
- School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, United Kingdom; School of Pharmacy, Institut Teknologi Bandung, Ganesa 10, Bandung 40132, Indonesia.
| | - Jingyi Gu
- School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, United Kingdom.
| | - Majella E Lane
- School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, United Kingdom.
| |
Collapse
|
5
|
Wang Y, Zhang Q, Wei Y, Cai X, Li Z, Wu Q, Zhang X, Deng C, Shu P, Xiang Q. Retinol semisolid preparations in cosmetics: transcutaneous permeation mechanism and behaviour. Sci Rep 2024; 14:22793. [PMID: 39354022 PMCID: PMC11445495 DOI: 10.1038/s41598-024-73240-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/16/2024] [Indexed: 10/03/2024] Open
Abstract
Retinol is widely used to treat skin ageing because of its effect on cell differentiation, proliferation and apoptosis. However, its potential benefits appear to be limited by its skin permeability. Herein, we investigated the transcutaneous behavior of retinol in semisolid cosmetics, in both in vitro and in vivo experiments. In vitro experiments used the modified Franz diffusion cell combined with Raman spectroscopy. In in vivo experiments, the content of retinol in rat skin and plasma was detected with HPLC. Retinol in semisolid cosmetics was mainly concentrated in the stratum corneum in the skin of the three animal models tested, and in any case did not cross the skin barrier after a 24 h dermatologic topical treatment in Franz diffusion cells tests. Similar results were obtained in live mice and rats, where retinol did not cross the skin barrier and did not enter the blood circulation. Raman spectroscopy was used to test the penetration depth of retinol in skin, which reached 16 μm out of 34 μm in pig skin, whereas the skin of mouse and rat showed too strong bakground interference. To explore epidermal transport mechanism and intradermal residence, skin transcriptomics was performed in rats, which identified 126 genes upregulated related to retinol transport and metabolism, relevant to the search terms "retinoid metabolic process" and "transporter activity". The identity of these upregulated genes suggests that the mechanism of retinol action is linked to epidermis, skin, tissue and epithelium development.
Collapse
Affiliation(s)
- Yuan Wang
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd, Shenzhen, 518000, Guangdong, People's Republic of China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
| | - Qirong Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Biopharmaceutical R&D Center of Jinan University, Guangzhou, 510000, China
- Guangzhou Jike Meichuang Co., Ltd, Guangzhou, 510000, China
| | - Yongsheng Wei
- Biopharmaceutical R&D Center of Jinan University, Guangzhou, 510000, China
| | - Xiang Cai
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Biopharmaceutical R&D Center of Jinan University, Guangzhou, 510000, China
| | - Zhiwei Li
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd, Shenzhen, 518000, Guangdong, People's Republic of China
| | - Qingyun Wu
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd, Shenzhen, 518000, Guangdong, People's Republic of China
| | - Xinyi Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Biopharmaceutical R&D Center of Jinan University, Guangzhou, 510000, China
| | - Chaoqing Deng
- Guangzhou Jike Meichuang Co., Ltd, Guangzhou, 510000, China
| | - Peng Shu
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd, Shenzhen, 518000, Guangdong, People's Republic of China.
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China.
| | - Qi Xiang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China.
- Biopharmaceutical R&D Center of Jinan University, Guangzhou, 510000, China.
- Guangzhou Jike Meichuang Co., Ltd, Guangzhou, 510000, China.
| |
Collapse
|
6
|
Lourenço D, Miranda M, Sousa JJ, Vitorino C. Therapeutic-driven framework for bioequivalence assessment of complex topical generic drug products. Int J Pharm 2024; 661:124398. [PMID: 38964491 DOI: 10.1016/j.ijpharm.2024.124398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
Despite the continuous research on understanding how topical drugs and the skin interact, the development of a topical generic product remains a challenge. Due to their local action effect rather than systemic, establishing suitable frameworks for documenting bioequivalence between reference and test formulations is anything but straightforward. In previous years, clinical endpoint trials were considered the gold standard method to demonstrate bioequivalence between topical products. Nevertheless, significant financial and time resources were required to be allocated owing to the inherent complexity of these studies. To address this problem, regulatory authorities have begun to accept alternative approaches that could lead to a biowaiver, avoiding the need for clinical endpoint trials. These alternatives encompass various in vitro and/or in vivo techniques that have been analysed and the benefits and drawbacks of each method have been considered. Furthermore, other factors like the integration of a quality by design framework to ensure a comprehensive understanding of the product and process quality attributes have also been taken into account. This review delves into international regulatory recommendations for semisolid topical products, with a focus on those established by the European Medicines Agency, as well as the Food and Drug Administration. Both approaches were carefully examined, discussing aspects such as acceptance criteria, sample size, and microstructure evaluation. Additionally, novel and innovative therapeutic-driven approaches based on in vitro disease models for the rapid and effective development of topical generic products are presented.
Collapse
Affiliation(s)
- Diogo Lourenço
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Margarida Miranda
- Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - João José Sousa
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| |
Collapse
|
7
|
Lunter D, Klang V, Eichner A, Savic SM, Savic S, Lian G, Erdő F. Progress in Topical and Transdermal Drug Delivery Research-Focus on Nanoformulations. Pharmaceutics 2024; 16:817. [PMID: 38931938 PMCID: PMC11207871 DOI: 10.3390/pharmaceutics16060817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Skin is the largest organ and a multifunctional interface between the body and its environment. It acts as a barrier against cold, heat, injuries, infections, chemicals, radiations or other exogeneous factors, and it is also known as the mirror of the soul. The skin is involved in body temperature regulation by the storage of fat and water. It is an interesting tissue in regard to the local and transdermal application of active ingredients for prevention or treatment of pathological conditions. Topical and transdermal delivery is an emerging route of drug and cosmetic administration. It is beneficial for avoiding side effects and rapid metabolism. Many pharmaceutical, technological and cosmetic innovations have been described and patented recently in the field. In this review, the main features of skin morphology and physiology are presented and are being followed by the description of classical and novel nanoparticulate dermal and transdermal drug formulations. The biophysical aspects of the penetration of drugs and cosmetics into or across the dermal barrier and their investigation in diffusion chambers, skin-on-a-chip devices, high-throughput measuring systems or with advanced analytical techniques are also shown. The current knowledge about mathematical modeling of skin penetration and the future perspectives are briefly discussed in the end, all also involving nanoparticulated systems.
Collapse
Affiliation(s)
- Dominique Lunter
- Department of Pharmaceutical Technology, Eberhard-Karls-Universität Tübingen, 72074 Tübingen, Germany;
| | - Victoria Klang
- Department of Pharmaceutical Sciences, University of Vienna, 1010 Vienna, Austria;
| | - Adina Eichner
- Department of Dermatology and Venereology, Martin Luther University Halle-Wittenberg, 06108 Halle, Germany;
- Institute of Applied Dermatopharmacy, Martin Luther University Halle-Wittenberg (IADP) e.V., 06108 Halle, Germany
| | - Sanela M. Savic
- Faculty of Technology in Leskovac, University of Niš, 16000 Leskovac, Serbia;
- R&D Sector, DCP Hemigal, 16000 Leskovac, Serbia
| | - Snezana Savic
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia;
| | - Guoping Lian
- Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK;
- Unilever R&D Colworth, Sharnbrook, Bedford MK44 1LQ, UK
| | - Franciska Erdő
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1083 Budapest, Hungary
| |
Collapse
|
8
|
Kim HY, Kim YJ, Lee JD, Kim HR, Seo DW. Analytical Method Development and Dermal Absorption of 4-Amino-3-Nitrophenol (4A3NP), a Hair Dye Ingredient under the Oxidative or Non-Oxidative Condition. TOXICS 2024; 12:340. [PMID: 38787119 PMCID: PMC11125934 DOI: 10.3390/toxics12050340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
The chemical 4-amino-3-nitrophenol (4A3NP) is classified as an amino nitrophenol and is primarily utilized as an ingredient in hair dye colorants. In Korea and Europe, it is exclusively used in non-oxidative or oxidative hair dye formulations, with maximum allowable concentrations of 1% and 1.5%, respectively. Despite this widespread use, risk assessment of 4A3NP has not been completed due to the lack of proper dermal absorption data. Therefore, in this study, both the analytical method validation and in vitro dermal absorption study of 4A3NP were conducted following the guidelines provided by the Korea Ministry of Food and Drug Safety (MFDS). Before proceeding with the dermal absorption study, analytical methods were developed for the quantitation of 4A3NP through multiple reaction monitoring (MRM) via liquid chromatography-mass spectrometry (LC-MS) in various matrices, including swab wash (WASH), stratum corneum (SC), skin (SKIN, comprising the dermis and epidermis), and receptor fluid (RF). These developed methods demonstrated excellent linearity (R2 = 0.9962-0.9993), accuracy (93.5-111.73%), and precision (1.7-14.46%) in accordance with the validation guidelines.The dermal absorption of 4A3NP was determined using Franz diffusion cells with mini-pig skin as the barrier. Under both non-oxidative and oxidative (6% hydrogen peroxide (H2O2): water, 1:1) hair dye conditions, 1% and 1.5% concentrations of 4A3NP were applied to the skin at a rate of 10 μL/cm2, respectively. The total dermal absorption rates of 4A3NP under non-oxidative (1%) and oxidative (1.5%) conditions were determined to be 5.62 ± 2.19% (5.62 ± 2.19 μg/cm2) and 2.83 ± 1.48% (4.24 ± 2.21 μg/cm2), respectively.
Collapse
Affiliation(s)
- Hyang Yeon Kim
- College of Pharmacy and Center for Human Risk Assessment, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungnam, Republic of Korea; (Y.J.K.); (J.D.L.); (D.-W.S.)
- Center for Human Risk Assessment, Dankook University, Cheonan 31116, Chungnam, Republic of Korea;
| | - Yu Jin Kim
- College of Pharmacy and Center for Human Risk Assessment, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungnam, Republic of Korea; (Y.J.K.); (J.D.L.); (D.-W.S.)
| | - Jung Dae Lee
- College of Pharmacy and Center for Human Risk Assessment, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungnam, Republic of Korea; (Y.J.K.); (J.D.L.); (D.-W.S.)
- Center for Human Risk Assessment, Dankook University, Cheonan 31116, Chungnam, Republic of Korea;
| | - Hak Rim Kim
- Center for Human Risk Assessment, Dankook University, Cheonan 31116, Chungnam, Republic of Korea;
- College of Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungnam, Republic of Korea
| | - Dong-Wan Seo
- College of Pharmacy and Center for Human Risk Assessment, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungnam, Republic of Korea; (Y.J.K.); (J.D.L.); (D.-W.S.)
| |
Collapse
|
9
|
Iliopoulos F, Tu D, Pence IJ, Li X, Ghosh P, Luke MC, Raney SG, Rantou E, Evans CL. Determining topical product bioequivalence with stimulated Raman scattering microscopy. J Control Release 2024; 367:864-876. [PMID: 38346503 DOI: 10.1016/j.jconrel.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
Generic drugs are essential for affordable medicine and improving accessibility to treatments. Bioequivalence (BE) is typically demonstrated by assessing a generic product's pharmacokinetics (PK) relative to a reference-listed drug (RLD). Accurately estimating cutaneous PK (cPK) at or near the site of action can be challenging for locally acting topical products. Certain cPK approaches are available for assessing local bioavailability (BA) in the skin. Stimulated Raman scattering (SRS) microscopy has unique capabilities enabling continuous, high spatial and temporal resolution and quantitative imaging of drugs within the skin. In this paper, we developed an approach based on SRS and a polymer-based standard reference for the evaluation of topical product BA and BE in human skin ex vivo. BE assessment of tazarotene-containing formulations was achieved using cPK parameters obtained within different skin microstructures. The establishment of BE between the RLD and an approved generic product was successfully demonstrated. Interestingly, within the constraints of the current study design the results suggest similar BA between the tested gel formulation and the reference cream formulation, despite the differences in the formulation/dosage form. Another formulation containing polyethylene glycol as the vehicle was demonstrated to be not bioequivalent to the RLD. Compared to using the SRS approach without a standard reference, the developed approach enabled more consistent and reproducible results, which is crucial in BE assessment. The abundant information from the developed approach can help to systematically identify key areas of study design that will enable a better comparison of topical products and support an assessment of BE.
Collapse
Affiliation(s)
- Fotis Iliopoulos
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown 02129, MA, USA
| | - Dandan Tu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown 02129, MA, USA
| | - Isaac J Pence
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown 02129, MA, USA
| | - Xiaolei Li
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown 02129, MA, USA
| | - Priyanka Ghosh
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring 20993, MD, USA
| | - Markham C Luke
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring 20993, MD, USA
| | - Sam G Raney
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring 20993, MD, USA
| | - Elena Rantou
- Office of Biostatistics, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring 20993, MD, USA
| | - Conor L Evans
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown 02129, MA, USA.
| |
Collapse
|
10
|
Darvin ME. Optical Methods for Non-Invasive Determination of Skin Penetration: Current Trends, Advances, Possibilities, Prospects, and Translation into In Vivo Human Studies. Pharmaceutics 2023; 15:2272. [PMID: 37765241 PMCID: PMC10538180 DOI: 10.3390/pharmaceutics15092272] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Information on the penetration depth, pathways, metabolization, storage of vehicles, active pharmaceutical ingredients (APIs), and functional cosmetic ingredients (FCIs) of topically applied formulations or contaminants (substances) in skin is of great importance for understanding their interaction with skin targets, treatment efficacy, and risk assessment-a challenging task in dermatology, cosmetology, and pharmacy. Non-invasive methods for the qualitative and quantitative visualization of substances in skin in vivo are favored and limited to optical imaging and spectroscopic methods such as fluorescence/reflectance confocal laser scanning microscopy (CLSM); two-photon tomography (2PT) combined with autofluorescence (2PT-AF), fluorescence lifetime imaging (2PT-FLIM), second-harmonic generation (SHG), coherent anti-Stokes Raman scattering (CARS), and reflectance confocal microscopy (2PT-RCM); three-photon tomography (3PT); confocal Raman micro-spectroscopy (CRM); surface-enhanced Raman scattering (SERS) micro-spectroscopy; stimulated Raman scattering (SRS) microscopy; and optical coherence tomography (OCT). This review summarizes the state of the art in the use of the CLSM, 2PT, 3PT, CRM, SERS, SRS, and OCT optical methods to study skin penetration in vivo non-invasively (302 references). The advantages, limitations, possibilities, and prospects of the reviewed optical methods are comprehensively discussed. The ex vivo studies discussed are potentially translatable into in vivo measurements. The requirements for the optical properties of substances to determine their penetration into skin by certain methods are highlighted.
Collapse
|
11
|
Hossain ML, Nguyen M, Benington L, Lim LY, Hammer K, Hettiarachchi D, Locher C. Application of a Customised Franz-Type Cell Coupled with HPTLC to Monitor the Timed Release of Bioactive Components in Complex Honey Matrices. Methods Protoc 2023; 6:70. [PMID: 37623921 PMCID: PMC10459218 DOI: 10.3390/mps6040070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023] Open
Abstract
The aim of this study was to assess the release profile of components in five different honeys (a New Zealand Manuka and two Western Australian honeys, a Jarrah honey and a Coastal Peppermint honey) and their corresponding honey-loaded gel formulations using a custom-designed Franz-type diffusion cell in combination with High-Performance Thin-Layer Chromatography (HPTLC). To validate the suitability of the customised setup, release data using this new approach were compared with data obtained using a commercial Franz cell apparatus, which is an established analytical tool to monitor the release of active ingredients from topical semisolid products. The release profiles of active compounds from pure honey and honey-loaded formulations were found to be comparable in both types of Franz cells. For example, when released either from pure honey or its corresponding pre-gel formulation, the percentage release of two Jarrah honey constituents, represented by distinct bands at RF 0.21 and 0.53 and as analysed by HPTLC, was not significantly different (p = 0.9986) at 12 h with over 99% of these honey constituents being released in both apparatus. Compared to the commercial Franz diffusion cell, the customised Franz cell offers several advantages, including easy and convenient sample application, the requirement of only small sample quantities, a large diffusion surface area, an ability to analyse 20 samples in a single experiment, and lower cost compared to purchasing a commercial Franz cell. Thus, the newly developed approach coupled with HPTLC is conducive to monitor the release profile of minor honey constituents from pure honeys and honey-loaded semisolid formulations and might also be applicable to other complex natural-product-based products.
Collapse
Affiliation(s)
- Md Lokman Hossain
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley 6009, Australia; (M.L.H.); (M.N.); (L.B.); (L.Y.L.); (D.H.)
| | - Minh Nguyen
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley 6009, Australia; (M.L.H.); (M.N.); (L.B.); (L.Y.L.); (D.H.)
| | - Leah Benington
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley 6009, Australia; (M.L.H.); (M.N.); (L.B.); (L.Y.L.); (D.H.)
| | - Lee Yong Lim
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley 6009, Australia; (M.L.H.); (M.N.); (L.B.); (L.Y.L.); (D.H.)
| | - Katherine Hammer
- School of Biomedical Sciences, University of Western Australia, Crawley 6009, Australia;
- Cooperative Research Centre for Honey Bee Products Limited, 128 Yanchep Beach Road, Perth 6035, Australia
| | - Dhanushka Hettiarachchi
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley 6009, Australia; (M.L.H.); (M.N.); (L.B.); (L.Y.L.); (D.H.)
| | - Cornelia Locher
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley 6009, Australia; (M.L.H.); (M.N.); (L.B.); (L.Y.L.); (D.H.)
- Cooperative Research Centre for Honey Bee Products Limited, 128 Yanchep Beach Road, Perth 6035, Australia
| |
Collapse
|
12
|
Yu CC, Shah A, Amiri N, Marcus C, Nayeem MOG, Bhayadia AK, Karami A, Dagdeviren C. A Conformable Ultrasound Patch for Cavitation-Enhanced Transdermal Cosmeceutical Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300066. [PMID: 36934314 DOI: 10.1002/adma.202300066] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/06/2023] [Indexed: 06/09/2023]
Abstract
Increased consumer interest in healthy-looking skin demands a safe and effective method to increase transdermal absorption of innovative therapeutic cosmeceuticals. However, permeation of small-molecule drugs is limited by the innate barrier function of the stratum corneum. Here, a conformable ultrasound patch (cUSP) that enhances transdermal transport of niacinamide by inducing intermediate-frequency sonophoresis in the fluid coupling medium between the patch and the skin is reported. The cUSP consists of piezoelectric transducers embedded in a soft elastomer to create localized cavitation pockets (0.8 cm2 , 1 mm deep) over larger areas of conformal contact (20 cm2 ). Multiphysics simulation models, acoustic spectrum analysis, and high-speed videography are used to characterize transducer deflection, acoustic pressure fields, and resulting cavitation bubble dynamics in the coupling medium. The final system demonstrates a 26.2-fold enhancement in niacinamide transport in a porcine model in vitro with a 10 min ultrasound application, demonstrating the suitability of the device for short-exposure, large-area application of sonophoresis for patients and consumers suffering from skin conditions and premature skin aging.
Collapse
Affiliation(s)
- Chia-Chen Yu
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Aastha Shah
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Nikta Amiri
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY, 14260, USA
| | - Colin Marcus
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | | - Amit Kumar Bhayadia
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY, 14260, USA
| | - Amin Karami
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY, 14260, USA
| | - Canan Dagdeviren
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
13
|
Iliopoulos F, Tang CF, Li Z, Rahma A, Lane ME. Confocal Raman Spectroscopy for Assessing Bioequivalence of Topical Formulations. Pharmaceutics 2023; 15:1075. [PMID: 37111561 PMCID: PMC10142145 DOI: 10.3390/pharmaceutics15041075] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
The evaluation of bioequivalence (BE) for topical dermatological drug products is challenging, and there has been significant interest from regulatory authorities in developing new BE methodologies in recent years. Currently, BE is demonstrated by comparative clinical endpoint studies; these are costly and time-consuming and often lack sensitivity and reproducibility. Previously, we reported excellent correlations between in vivo Confocal Raman Spectroscopy in human subjects and in vitro skin permeation testing (IVPT) with the human epidermis for skin delivery of ibuprofen and a number of excipients. The aim of the present proof-of-concept study was to evaluate CRS as a method to assess BE of topical products. Two commercially available formulations, Nurofen Max Strength 10% Gel and Ibuleve Speed Relief Max Strength 10% Gel, were selected for evaluation. Delivery of ibuprofen (IBU) to the skin was determined in vitro and in vivo by IVPT and CRS, respectively. The formulations examined were found to deliver comparable amounts of IBU across the skin over 24 h in vitro (p > 0.05). Additionally, the formulations resulted in similar skin uptake values measured with CRS in vivo, either at 1 h or 2 h after application (p > 0.05). This is the first study to report the capability of CRS for the demonstration of BE of dermal products. Future studies will focus on the standardisation of the CRS methodology for a robust and reproducible pharmacokinetic (PK)-based evaluation of topical BE.
Collapse
Affiliation(s)
- Fotis Iliopoulos
- Department of Pharmaceutics, UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK
| | - Chun Fung Tang
- Department of Pharmaceutics, UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK
| | - Ziyue Li
- Department of Pharmaceutics, UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK
| | - Annisa Rahma
- Department of Pharmaceutics, UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK
- Pharmaceutics Department, School of Pharmacy, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Majella E. Lane
- Department of Pharmaceutics, UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK
| |
Collapse
|
14
|
Bielfeldt S, Bonnier F, Byrne H, Chourpa I, Dancik Y, Lane M, Lunter D, Munnier E, Puppels G, Tfayli A, Ziemons E. Monitoring dermal penetration and permeation kinetics of topical products; the role of Raman microspectroscopy. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Iliopoulos F, Goh CF, Haque T, Rahma A, Lane ME. Dermal Delivery of Diclofenac Sodium-In Vitro and In Vivo Studies. Pharmaceutics 2022; 14:2106. [PMID: 36297542 PMCID: PMC9607602 DOI: 10.3390/pharmaceutics14102106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Previously, we reported the use of confocal Raman spectroscopy (CRS) as a novel non-invasive approach to determine drug disposition in the skin in vivo. Results obtained by CRS were found to correlate with data from the well-established in vitro permeation test (IVPT) model using human epidermis. However, these studies used simple vehicles comprising single solvents and binary or ternary solvent mixtures; to date, the utility of CRS for monitoring dermal absorption following application of complex marketed formulations has not been examined. In the present work, skin delivery of diclofenac sodium (DFNa) from two topical dermatological drug products, namely Diclac® Lipogel 10 mg/g and Primofenac® Emulsion gel 1%, was determined by IVPT and in vivo by both CRS and tape stripping (TS) methodologies under similar experimental conditions. The in vivo data were evaluated against the in vitro findings, and a direct comparison between CRS and TS was performed. Results from all methodologies showed that Diclac promoted significantly greater DFNa delivery to the skin (p < 0.05). The cumulative amounts of DFNa which permeated at 24 h in vitro for Diclac (86.5 ± 9.4 µg/cm2) were 3.6-fold greater than the corresponding amounts found for Primofenac (24.4 ± 2.7 µg/cm2). Additionally, total skin uptake of DFNa in vivo, estimated by the area under the depth profiles curves (AUC), or the signal intensity of the drug detected in the upper stratum corneum (SC) (4 µm) ranged from 3.5 to 3.6-fold greater for Diclac than for Primofenac. The shape of the distribution profiles and the depth of DFNa penetration to the SC estimated by CRS and TS were similar for the two methods. However, TS data indicated a 4.7-fold greater efficacy of Diclac relative to Primofenac, with corresponding total amounts of drug penetrated, 94.1 ± 22.6 µg and 20.2 ± 7.0 µg. The findings demonstrate that CRS is a methodology that is capable of distinguishing skin delivery of DFNa from different formulations. The results support the use of this approach for non-invasive evaluation of topical products in vivo. Future studies will examine additional formulations with more complex compositions and will use a wider range of drugs with different physicochemical properties. The non-invasive nature of CRS coupled with the ability to monitor drug permeation in real time offer significant advantages for testing and development of topical dermatological products.
Collapse
Affiliation(s)
- Fotis Iliopoulos
- Department of Pharmaceutics, UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK
| | - Choon Fu Goh
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
| | - Tasnuva Haque
- Department of Pharmaceutics, UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK
| | - Annisa Rahma
- Department of Pharmaceutics, UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK
- Pharmaceutics Department, School of Pharmacy, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Majella E. Lane
- Department of Pharmaceutics, UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK
| |
Collapse
|
16
|
Formulation and Evaluation of the In Vitro Performance of Topical Dermatological Products Containing Diclofenac Sodium. Pharmaceutics 2022; 14:pharmaceutics14091892. [PMID: 36145640 PMCID: PMC9502351 DOI: 10.3390/pharmaceutics14091892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 02/05/2023] Open
Abstract
The selection of an appropriate vehicle in a semi-solid topical product is of utmost importance since the vehicle composition and microstructure can potentially cause changes in drug-vehicle or vehicle-skin interactions and affect drug release and subsequent permeation into and across skin. Hence, the aim of this study was to evaluate different semi-solid formulations containing diclofenac sodium for the physicochemical and structural performance of excipients used and various physiological factors governing permeation of drugs applied to skin. The formulations (emulsion, emulgel, gel, and ointment) were prepared using conventional excipients and were found to be homogenous and stable. Rheological analysis demonstrated characteristic shear-thinning and viscoelastic behavior of formulations. The mean release rate of the gel formulation (380.42 ± 3.05 µg/cm2/h0.5) was statistically higher compared to all other formulations. In vitro permeation using human skin showed a significantly greater extent of drug permeation and retention for the emulgel formulation (23.61 ± 1.03 µg/cm2 and 47.95 ± 2.47 µg/cm2, respectively). The results demonstrated that the different formulations influenced product performance due to their inherent properties. The findings of this study demonstrated that a comprehensive physicochemical and structural evaluation is required to optimize the in vitro performance for dermatological formulations depending on the intended therapeutic effect.
Collapse
|
17
|
Garvie-Cook H, Hoppel M, Guy RH. Raman Spectroscopic Tools to Probe the Skin-(Trans)dermal Formulation Interface. Mol Pharm 2022; 19:4010-4016. [PMID: 36066005 DOI: 10.1021/acs.molpharmaceut.2c00480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Medicines designed to deliver the active pharmaceutical ingredient either into or through the skin─often referred to as topicals and transdermals, respectively─are generally considered to be complex drug products. A particular challenge faced by these formulations is identifying a suitable method (ideally, in terms of specificity, accuracy, precision, and robustness) or combination of methods with which to assess the amount and rate of drug delivery to the target site. Significant research currently aims to identify and validate relevant and minimally invasive techniques that can be used to quantify both the levels of the drug attained within different parts of the skin and the kinetics with which the drug is taken up into the skin and cleared therefrom into the systemic circulation. Here, the application of confocal Raman microspectroscopy and imaging to interrogate events integral to the performance of topical and transdermal drug products at the formulation-skin interface is illustrated. Visualization, depth slicing, and profiling are used (a) to elucidate key chemical properties of both the delivery system and the skin that have impact on their interaction and the manner in which drug transfer from one to the other may occur, (b) for the transformation of a drug product from that manufactured into a residual phase post-application and inunction into the skin (including the potential for important changes in solubility of the active compound), and (c) for drug absorption into the skin and its subsequent '"clearance" into deeper layers and beyond. Overall, the Raman tools described offer both qualitative and potentially semi-quantitative insights into topical and transdermal drug product performance and provide information useful for formulation improvement and optimization.
Collapse
Affiliation(s)
- Hazel Garvie-Cook
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Magdalena Hoppel
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Richard H Guy
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| |
Collapse
|
18
|
Lunter D, Klang V, Kocsis D, Varga-Medveczky Z, Berkó S, Erdő F. Novel aspects of Raman spectroscopy in skin research. Exp Dermatol 2022; 31:1311-1329. [PMID: 35837832 PMCID: PMC9545633 DOI: 10.1111/exd.14645] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/07/2022] [Accepted: 07/12/2022] [Indexed: 11/27/2022]
Abstract
The analytical technology of Raman spectroscopy has an almost 100‐year history. During this period, many modifications and developments happened in the method like discovery of laser, improvements in optical elements and sensitivity of spectrometer and also more advanced light detection systems. Many types of the innovative techniques appeared (e.g. Transmittance Raman spectroscopy, Coherent Raman Scattering microscopy, Surface‐Enhanced Raman scattering and Confocal Raman spectroscopy/microscopy). This review article gives a short description about these different Raman techniques and their possible applications. Then, a short statistical part is coming about the appearance of Raman spectroscopy in the scientific literature from the beginnings to these days. The third part of the paper shows the main application options of the technique (especially confocal Raman spectroscopy) in skin research, including skin composition analysis, drug penetration monitoring and analysis, diagnostic utilizations in dermatology and cosmeto‐scientific applications. At the end, the possible role of artificial intelligence in Raman data analysis and the regulatory aspect of these techniques in dermatology are briefly summarized. For the future of Raman Spectroscopy, increasing clinical relevance and in vivo applications can be predicted with spreading of non‐destructive methods and appearance with the most advanced instruments with rapid analysis time.
Collapse
Affiliation(s)
- Dominique Lunter
- University of Tübingen, Department of Pharmaceutical Technology, Institute of Pharmacy and Biochemistry, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Victoria Klang
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, Faculty of Life Sciences, Vienna, Austria
| | - Dorottya Kocsis
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary
| | - Zsófia Varga-Medveczky
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary
| | - Szilvia Berkó
- University of Szeged, Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, Szeged, Hungary
| | - Franciska Erdő
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary.,University of Tours EA 6295 Nanomédicaments et Nanosondes, Tours, France
| |
Collapse
|
19
|
Estimating the Analytical Performance of Raman Spectroscopy for Quantification of Active Ingredients in Human Stratum Corneum. Molecules 2022; 27:molecules27092843. [PMID: 35566190 PMCID: PMC9105701 DOI: 10.3390/molecules27092843] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 01/16/2023] Open
Abstract
Confocal Raman microscopy (CRM) has become a versatile technique that can be applied routinely to monitor skin penetration of active molecules. In the present study, CRM coupled to multivariate analysis (namely PLSR—partial least squares regression) is used for the quantitative measurement of an active ingredient (AI) applied to isolated (ex vivo) human stratum corneum (SC), using systematically varied doses of resorcinol, as model compound, and the performance is quantified according to key figures of merit defined by regulatory bodies (ICH, FDA, and EMA). A methodology is thus demonstrated to establish the limit of detection (LOD), precision, accuracy, sensitivity (SEN), and selectivity (SEL) of the technique, and the performance according to these key figures of merit is compared to that of similar established methodologies, based on studies available in literature. First, principal components analysis (PCA) was used to examine the variability within the spectral data set collected. Second, ratios calculated from the area under the curve (AUC) of characteristic resorcinol and proteins/lipids bands (1400–1500 cm−1) were used to perform linear regression analysis of the Raman spectra. Third, cross-validated PLSR analysis was applied to perform quantitative analysis in the fingerprint region. The AUC results show clearly that the intensities of Raman features in the spectra collected are linearly correlated to resorcinol concentrations in the SC (R2 = 0.999) despite a heterogeneity in the distribution of the active molecule in the samples. The Root Mean Square Error of Cross-Validation (RMSECV) (0.017 mg resorcinol/mg SC), The Root Mean Square of Prediction (RMSEP) (0.015 mg resorcinol/mg SC), and R2 (0.971) demonstrate the reliability of the linear regression constructed, enabling accurate quantification of resorcinol. Furthermore, the results have enabled the determination, for the first time, of numerical criteria to estimate analytical performances of CRM, including LOD, precision using bias corrected mean square error prediction (BCMSEP), sensitivity, and selectivity, for quantification of the performance of the analytical technique. This is one step further towards demonstrating that Raman spectroscopy complies with international guidelines and to establishing the technique as a reference and approved tool for permeation studies.
Collapse
|
20
|
Rahma A, Lane ME. Skin Barrier Function in Infants: Update and Outlook. Pharmaceutics 2022; 14:433. [PMID: 35214165 PMCID: PMC8880311 DOI: 10.3390/pharmaceutics14020433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 12/10/2022] Open
Abstract
A good understanding of infant skin should provide a rationale for optimum management of the health of this integument. In this review, we discuss the skin barrier function of infants, particularly with reference to the use of diapers and baby wipes. The skin barrier of newborns continues to develop with age. Two years after birth, the barrier properties of infant skin closely resemble those of adult skin. However, several risk factors may contribute to impaired skin barrier and altered skin permeability in infants. Problems may arise from the use of diapers and baby wipes. The skin covered by a diaper is effectively an occluded environment, and thus is vulnerable to over-hydration. To date there has been no published information regarding dermal absorption of ingredients contained in baby wipes. Similarly, dermal absorption of topical ingredients in infants with underlying skin conditions has not been widely explored. Clearly, there are serious ethical concerns related to conducting skin permeation studies on infant skin. However, the increasing availability of non-invasive methods for in vivo studies is encouraging and offers new directions for studying this important patient group.
Collapse
Affiliation(s)
- Annisa Rahma
- Pharmaceutics Department, School of Pharmacy, Institut Teknologi Bandung, Bandung 40132, Indonesia
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK;
| | - Majella E. Lane
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK;
| |
Collapse
|
21
|
Iguchi R, Nishi Y, Ogihara T, Ito T, Matsuoka F, Misawa K. Time-course quantitative mapping of caffeine within the epidermis, using high-contrast pump-probe stimulated Raman scattering microscopy. Skin Res Technol 2021; 28:47-53. [PMID: 34618986 PMCID: PMC9291957 DOI: 10.1111/srt.13088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/13/2021] [Accepted: 07/31/2021] [Indexed: 11/30/2022]
Abstract
Background An assessment of the drug penetration and distribution profiles within the skin is essential in dermatology and cosmetology. Recent advances in label‐free imaging technologies have facilitated the direct detection of unlabeled compounds in tissues, with high resolution. However, it remains challenging to provide quantitative time‐course distribution maps of drugs within the complex skin tissue. The present study aims at acquiring the real‐time quantitative skin penetration profiles of topically applied caffeine, by means of a combination of pump–probe phase‐modulated stimulated Raman scattering (PM‐SRS) and confocal reflection microscopy. The recently developed PM‐SRS microscopy is a unique imaging tool that can minimize strong background signals through a pulse‐shaping technique, while providing high‐contrast images of small molecules in tissues. Materials and methods Reconstructed human skin epidermis models were used in order to analyze caffeine penetration in tissues. The penetration profiles of caffeine in an aqueous solution, an oil‐in‐water gel, and a water‐in‐oil gel were examined by combining PM‐SRS and confocal reflection microscopy. Results The characteristic Raman signal of caffeine was directly detected in the skin model using PM‐SRS. Integrating PM‐SRS and confocal reflection microscopy allowed real‐time concentration maps of caffeine to be obtained from formulation samples, within the skin model. Compared with the conventional Raman detection method, PM‐SRS lowered the background tissue‐oriented signals and supplied high‐contrast images of caffeine. Conclusion We successfully established real‐time skin penetration profiles of caffeine from different formulations. PM‐SRS microscopy proved to be a powerful, non‐invasive, and real‐time depth‐profile imaging technique for use in quantitative studies of topically applied drugs.
Collapse
Affiliation(s)
- Risa Iguchi
- R&D Department, Matsumoto Trading Co., Ltd., Tokyo, Japan
| | - Yoji Nishi
- R&D Department, Matsumoto Trading Co., Ltd., Tokyo, Japan
| | | | - Terumasa Ito
- Department of Applied Physics, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Fumiaki Matsuoka
- Department of Applied Physics, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kazuhiko Misawa
- Department of Applied Physics, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
22
|
Liu Y, Krombholz R, Lunter DJ. Critical parameters for accurate monitoring of caffeine penetration in porcine skin using confocal Raman spectroscopy. Int J Pharm 2021; 607:121055. [PMID: 34461169 DOI: 10.1016/j.ijpharm.2021.121055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 01/01/2023]
Abstract
In this research, we addressed a challenge while measuring the penetration performance of caffeine (CAF) using confocal Raman spectroscopy (CRS). Normally in the process of CRS analysis, skin sample was moved from an incubation setup to a specified CRS-measuring sample holder. Accurate data collection may be questioned due to the variation of the environment the skin placed in. Therefore, two critical parameters including the CRS measuring temperature and proper skin hydration were focused; accordingly, four different conditions were designed. First, the skin was incubated in a real-time device with the skin placing onto PBS-filled chamber where the temperature was adjusted to 32℃. This device can be fixed under the CRS microscope, enabling simultaneous skin incubation and dynamic CRS measurements (condition i, reference). The other conditions referred to skins incubated in Franz diffusion cells for simulating the common experimental procedures. In order to control variables of CRS measuring condition, skins were transferred from cells to real-time device and open device. In real-time device, proper skin hydration was maintained and the skin temperature was adjusted to 32℃ (condition ii) and room temperature (condition iii). In open device, the skin was in a less hydrated state by moving onto a PBS-soaked filter paper and wrapped with aluminum foil at room temperature (condition iv). The skin penetration performances measured in these conditions were compared with reference. Caffeine solution and gel formulation were separately applied to the skin. The results showed in both cases that the decrease of skin temperature and hydration in condition iii and iv would apparently induce the decrease of detected caffeine signal, resulting in the inaccurate data collection. To this point, it indicates the reduction of solubilized caffeine in skin layer. We suggest the forming of caffeine crystallization at varied skin conditions to be the factor. Achieved video image, CRS spectrum collection and surface scan demonstrated the caffeine crystallization process on superficial skin layer. Polarized microscopic images exemplified the crystalline drug on tape stripped skin layers. It can be a potential support of caffeine crystallization inside skin. In short, we suggest the consideration of these parameters during CRS measurements for accurate monitoring of topical drug delivery. Meanwhile, the use of real-time device for dynamic skin incubation and data collection provides advantages in saving time and efforts in this study.
Collapse
Affiliation(s)
- Yali Liu
- Department of Pharmaceutical Technology, Faculty of Science, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Richard Krombholz
- Department of Pharmaceutical Technology, Faculty of Science, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Dominique Jasmin Lunter
- Department of Pharmaceutical Technology, Faculty of Science, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany.
| |
Collapse
|
23
|
Zhang Y, Kung CP, Iliopoulos F, Sil BC, Hadgraft J, Lane ME. Dermal Delivery of Niacinamide-In Vivo Studies. Pharmaceutics 2021; 13:pharmaceutics13050726. [PMID: 34069268 PMCID: PMC8156363 DOI: 10.3390/pharmaceutics13050726] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/30/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022] Open
Abstract
In vivo human studies are considered to be the “gold standard” when investigating (trans)dermal delivery of actives. Previously, we reported the effects of a range of vehicles on the delivery of niacinamide (NIA) using conventional Franz cell studies. In the present work, dermal delivery of NIA was investigated in vivo in human subjects using confocal Raman spectroscopy (CRS) and tape stripping (TS). The vehicles investigated included propylene glycol (PG), Transcutol® P (TC), binary combinations of PG with oleic acid (OA) or linolenic acid (LA) and a ternary system comprising of TC, caprylic/capric triglyceride (CCT) and dimethyl isosorbide (DMI). For the CRS studies, higher area under curve (AUC) values for NIA were observed for the PG:LA binary system compared with PG, TC and TC:CCT:DMI (p < 0.05). A very good correlation was found between the in vitro cumulative permeation of NIA and the AUC values from Raman intensity depth profiles, with a Pearson correlation coefficient (R2) of 0.84. In addition, an excellent correlation (R2 = 0.97) was evident for the signal of the solvent PG and the active. CRS was also shown to discriminate between NIA in solution versus crystalline NIA. The findings confirm that CRS is emerging as a powerful approach for dermatopharmacokinetic studies of both actives and excipients in human.
Collapse
Affiliation(s)
- Yanling Zhang
- Department of Pharmaceutics, University College London School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK; (C.-P.K.); (F.I.); (J.H.); (M.E.L.)
- Correspondence:
| | - Chin-Ping Kung
- Department of Pharmaceutics, University College London School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK; (C.-P.K.); (F.I.); (J.H.); (M.E.L.)
| | - Fotis Iliopoulos
- Department of Pharmaceutics, University College London School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK; (C.-P.K.); (F.I.); (J.H.); (M.E.L.)
| | - Bruno C. Sil
- School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK;
| | - Jonathan Hadgraft
- Department of Pharmaceutics, University College London School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK; (C.-P.K.); (F.I.); (J.H.); (M.E.L.)
| | - Majella E. Lane
- Department of Pharmaceutics, University College London School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK; (C.-P.K.); (F.I.); (J.H.); (M.E.L.)
| |
Collapse
|
24
|
In Vitro-In Vivo Correlation in Dermal Delivery: The Role of Excipients. Pharmaceutics 2021; 13:pharmaceutics13040542. [PMID: 33924434 PMCID: PMC8069833 DOI: 10.3390/pharmaceutics13040542] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/30/2021] [Accepted: 04/10/2021] [Indexed: 11/30/2022] Open
Abstract
The composition of topical and transdermal formulations is known to determine the rate and the extent of drug delivery to and through the skin. However, to date, the role of excipients in these formulations on skin delivery of actives has received little attention from scientists in the field. Monitoring skin absorption of both drug and vehicle may provide insights into the mechanism by which excipients promote permeation and may facilitate the design of effective and safer products. Previously, we have investigated the use of quantitative Confocal Raman Spectroscopy (CRS) to investigate the delivery of an active to the skin, and we also reported the first fully quantitative study that compared this method with the well-established in vitro permeation test (IVPT) model. To further explore the potential of quantitative CRS in assessing topical delivery, the present work investigated the effects of commonly used excipients on the percutaneous absorption of a model drug, ibuprofen (IBU). Permeation of IBU and selected solvents following finite dose applications to human skin was determined in vitro and in vivo by Franz diffusion studies and quantitative CRS, respectively. The solvents used were propylene glycol (PG), dipropylene glycol (DPG), tripropylene glycol (TPG), and polyethylene glycol 300 (PEG 300). Overall, the cumulative amounts of IBU that permeated at 24 h in vitro were similar for PG, DPG, and TPG (p > 0.05). These three vehicles outperformed PEG 300 (p < 0.05) in terms of drug delivery. Concerning the vehicles, the rank order for in vitro skin permeation was DPG ≥ PG > TPG, while PEG 300 did not permeate the skin. A linear relationship between maximum vehicle and IBU flux in vitro was found, with a correlation coefficient (R2) of 0.95. When comparing in vitro with in vivo data, a positive in vitro–in vivo (IVIV) correlation between the cumulative permeation of IBU in vitro and the total amount of IBU that penetrated the stratum corneum (SC) in vivo was observed, with a Pearson correlation coefficient (R2) of 0.90. A strong IVIV correlation, R2 = 0.82, was found following the linear regression of the cumulative number of solvents permeated in vitro and the corresponding skin uptake in vivo measured with CRS. This is the first study to correlate in vivo permeation of solvents measured by CRS with data obtained by in vitro diffusion studies. The IVIV correlations suggest that CRS is a powerful tool for profiling drug and vehicle delivery from dermal formulations. Future studies will examine additional excipients with varying physicochemical properties. Ultimately, these findings are expected to lead to new approaches for the design, evaluation, and optimization of formulations that target actives to and through the skin.
Collapse
|
25
|
Leite MN, Viegas JSR, Praça FSG, de Paula NA, Ramalho LNZ, Bentley MVLB, Frade MAC. Ex vivo model of human skin (hOSEC) for assessing the dermatokinetics of the anti-melanoma drug Dacarbazine. Eur J Pharm Sci 2021; 160:105769. [PMID: 33610737 DOI: 10.1016/j.ejps.2021.105769] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/05/2021] [Accepted: 02/15/2021] [Indexed: 12/20/2022]
Abstract
Alternative models to replace animals in experimental studies remain a challenge in testing the effectiveness of dermatologic and cosmetic drugs. We proposed a model of human organotypic skin explant culture (hOSEC) to assess the profile of cutaneous drug skin distribution, adopting dacarbazine as a model, and respective new methodologies for dermatokinetic analysis. The viability tests were evaluated in primary keratinocytes and fibroblasts, and skin by MTT and TTC assays, respectively. Then, dacarbazine was applied to the culture medium, and the hOSEC method was applied to verify the dynamics of skin distribution of dacarbazine and determine its dermatokinetic profile. The results of cell and tissue viability showed that both were considered viable. The dermatokinetic results indicated that dacarbazine can be absorbed through the skin, reaching a concentration of 36.36 µg/mL (18,18%) of the initial dose (200 µg/mL) after 12 h in culture. Histological data showed that the skin maintained its structure throughout the tested time that the hOSEC method was applied. No apoptotic cells were observed in the epidermal and dermal layers. No visible changes in the dermo-epidermal junction and no inflammatory processes with the recruitment of defense cells were observed. Hence, these findings suggest that the hOSEC concept as an alternative ex vivo model for assessing the dynamics of skin distribution of drugs, such as dacarbazine, and determining their respective dermatokinetic profiles.
Collapse
Affiliation(s)
- Marcel Nani Leite
- Division of Dermatology - Wound Healing & Hansen's Disease Lab, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Juliana Santos Rosa Viegas
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Fabíola Silva Garcia Praça
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Natália Aparecida de Paula
- Division of Dermatology - Wound Healing & Hansen's Disease Lab, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Leandra Náira Zambelli Ramalho
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | | | - Marco Andrey Cipriani Frade
- Division of Dermatology - Wound Healing & Hansen's Disease Lab, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|