1
|
Hernández Rodríguez G, Fratschko M, Stendardo L, Antonini C, Resel R, Coclite AM. Icephobic Gradient Polymer Coatings Deposited via iCVD: A Novel Approach for Icing Control and Mitigation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11901-11913. [PMID: 38400877 PMCID: PMC10921382 DOI: 10.1021/acsami.3c18630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/26/2024]
Abstract
Materials against ice formation and accretion are highly desirable for different industrial applications and daily activities affected by icing. Although several concepts have been proposed, no material has so far shown wide-ranging icephobic features, enabling durability and manufacturing on large scales. Herein, we present gradient polymers made of 1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane (V4D4) and 1H,1H,2H,2H-perfluorodecyl acrylate (PFDA) deposited in one step via initiated chemical vapor deposition (iCVD) as an effective coating to mitigate ice accretion and reduce ice adhesion. The gradient structures easily overcome adhesion, stability, and durability issues of traditional fluorinated coatings. The coatings show promising icephobic performance by reducing ice adhesion, depressing the freezing point, delaying drop freezing, and inhibiting ice nucleation and frost propagation. Icephobicity correlates with surface energy discontinuities at the surface plane resulting from the random orientation of the fluorinated groups of PFDA, as confirmed by grazing-incidence X-ray diffraction measurements. The icephobicity could be further improved by tuning the surface crystallinity rather than surface wetting, as samples with random crystal orientation show the lowest ice adhesion despite high contact angle hysteresis. The iCVD-manufactured coatings show promising results, indicating the potential for ice control on larger scales and various applications.
Collapse
Affiliation(s)
| | - Mario Fratschko
- Institute of Solid State Physics, NAWI Graz, Graz University of Technology, 8010 Graz, Austria
| | - Luca Stendardo
- Department of Materials Science, University of Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| | - Carlo Antonini
- Department of Materials Science, University of Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| | - Roland Resel
- Institute of Solid State Physics, NAWI Graz, Graz University of Technology, 8010 Graz, Austria
| | - Anna Maria Coclite
- Institute of Solid State Physics, NAWI Graz, Graz University of Technology, 8010 Graz, Austria
| |
Collapse
|
2
|
Unger K, Coclite AM. Glucose-Responsive Boronic Acid Hydrogel Thin Films Obtained via Initiated Chemical Vapor Deposition. Biomacromolecules 2022; 23:4289-4295. [PMID: 36053563 PMCID: PMC9554909 DOI: 10.1021/acs.biomac.2c00762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Glucose-responsive materials are of great importance
in the field
of monitoring the physiological glucose level or smart insulin management.
This study presents the first vacuum-based deposition of a glucose-responsive
hydrogel thin film. The successful vacuum-based synthesis of a glucose-responsive
hydrogel may open the door to a vast variety of new applications,
where, for example, the hydrogel thin film is applied on new possible
substrates. In addition, vacuum-deposited films are free of leachables
(e.g., plasticizers and residual solvents). Therefore, they are, in
principle, safe for in-body applications. A hydrogel made of but-3-enylboronic
acid units, a boronic acid compound, was synthesized via initiated
chemical vapor deposition. The thin film was characterized in terms
of chemical composition, surface morphology, and swelling response
toward pH and sucrose, a glucose–fructose compound. The film
was stable in aqueous solutions, consisting of polymerized boronic
acid and the initiator unit, and had an undulating texture appearance
(rms 2.1 nm). The hydrogel was in its shrunken state at pH 4–7
and swelled by increasing the pH to 9. The pKa was 8.2 ± 0.2. The response to glucose was observed
at pH 10 and resulted in thickness shrinking.
Collapse
Affiliation(s)
- Katrin Unger
- Institute of Solid State Physics, NAWI Graz, Graz University of Technology, 8010 Graz, Austria
| | - Anna Maria Coclite
- Institute of Solid State Physics, NAWI Graz, Graz University of Technology, 8010 Graz, Austria
| |
Collapse
|
3
|
La Zara D, Sun F, Zhang F, Franek F, Balogh Sivars K, Horndahl J, Bates S, Brännström M, Ewing P, Quayle MJ, Petersson G, Folestad S, van Ommen JR. Controlled Pulmonary Delivery of Carrier-Free Budesonide Dry Powder by Atomic Layer Deposition. ACS NANO 2021; 15:6684-6698. [PMID: 33769805 PMCID: PMC8155342 DOI: 10.1021/acsnano.0c10040] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Ideal controlled pulmonary drug delivery systems provide sustained release by retarding lung clearance mechanisms and efficient lung deposition to maintain therapeutic concentrations over prolonged time. Here, we use atomic layer deposition (ALD) to simultaneously tailor the release and aerosolization properties of inhaled drug particles without the need for lactose carrier. In particular, we deposit uniform nanoscale oxide ceramic films, such as Al2O3, TiO2, and SiO2, on micronized budesonide particles, a common active pharmaceutical ingredient for the treatment of respiratory diseases. In vitro dissolution and ex vivo isolated perfused rat lung tests demonstrate dramatically slowed release with increasing nanofilm thickness, regardless of the nature of the material. Ex situ transmission electron microscopy at various stages during dissolution unravels mostly intact nanofilms, suggesting that the release mechanism mainly involves the transport of dissolution media through the ALD films. Furthermore, in vitro aerosolization testing by fast screening impactor shows a ∼2-fold increase in fine particle fraction (FPF) for each ALD-coated budesonide formulation after 10 ALD process cycles, also applying very low patient inspiratory pressures. The higher FPFs after the ALD process are attributed to the reduction in the interparticle force arising from the ceramic surfaces, as evidenced by atomic force microscopy measurements. Finally, cell viability, cytokine release, and tissue morphology analyses verify a safe and efficacious use of ALD-coated budesonide particles at the cellular level. Therefore, surface nanoengineering by ALD is highly promising in providing the next generation of inhaled formulations with tailored characteristics of drug release and lung deposition, thereby enhancing controlled pulmonary delivery opportunities.
Collapse
Affiliation(s)
- Damiano La Zara
- Department
of Chemical Engineering, Delft University
of Technology, Van der Maasweg 9, Delft, 2629HZ, The Netherlands
| | - Feilong Sun
- Department
of Chemical Engineering, Delft University
of Technology, Van der Maasweg 9, Delft, 2629HZ, The Netherlands
| | - Fuweng Zhang
- Department
of Chemical Engineering, Delft University
of Technology, Van der Maasweg 9, Delft, 2629HZ, The Netherlands
| | - Frans Franek
- Advanced
Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Kinga Balogh Sivars
- Clinical
Testing and Precision Medicine, Global Procurement, Operations, AstraZeneca, Gothenburg, Sweden
| | - Jenny Horndahl
- Bioscience
COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Stephanie Bates
- Functional
and Mechanistic Safety, Clinical Pharmacology
and Safety Sciences, R&D, AstraZeneca, Cambridge U.K.
| | - Marie Brännström
- Drug
Metabolism and Pharmacokinetics, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D,
AstraZeneca, Gothenburg, Sweden
| | - Pär Ewing
- Drug
Metabolism and Pharmacokinetics, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D,
AstraZeneca, Gothenburg, Sweden
| | - Michael J. Quayle
- New Modalities
and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Gunilla Petersson
- Innovation
Strategy and External Liaison, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Staffan Folestad
- Innovation
Strategy and External Liaison, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - J. Ruud van Ommen
- Department
of Chemical Engineering, Delft University
of Technology, Van der Maasweg 9, Delft, 2629HZ, The Netherlands
| |
Collapse
|