1
|
Verdú-Expósito C, Martín-Pérez T, Pérez-Serrano J, Sanchez-Nieves J, de la Mata FJ, Heredero-Bermejo I. Amoebicidal and cysticidal in vitro activity of cationic dendritic molecules against Acanthamoeba polyphaga and Acanthamoeba griffini. Parasitol Res 2024; 123:401. [PMID: 39614890 DOI: 10.1007/s00436-024-08413-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/11/2024] [Indexed: 01/11/2025]
Abstract
Acanthamoeba species are responsible for serious human infections, including Acanthamoeba keratitis (AK) and granulomatous amoebic encephalitis (GAE). These pathogens have a simple life cycle consisting of an infective trophozoite stage and a resistant cyst stage, with cysts posing significant treatment challenges due to their resilience against harsh conditions and chemical agents. Current treatments for AK often involve combining diamines, such as propamidine, and biguanides, such as chlorhexidine (CLX), which exhibit limited efficacy and significant toxicity. Thus, the effect of new therapeutic molecules, such as multifunctional systems (e.g., carbosilane dendritic molecules), should be studied as potential alternatives due to their biocidal properties and lower toxicity. This study evaluates various dendritic compounds against trophozoites and cysts of two Acanthamoeba clinical isolates, both alone and in combination with CLX, and assesses their cytotoxicity on HeLa cells. The results indicated that certain dendritic compounds, especially BDSQ024, were effective against both trophozoites and cysts. Additionally, combinations of dendritic molecules and CLX showed enhanced efficacy in eliminating trophozoites and cysts, suggesting potential for synergistic treatments. The study underscores the promise of dendritic molecules in developing more effective and less toxic therapies for Acanthamoeba infections.
Collapse
Affiliation(s)
| | - Tania Martín-Pérez
- University of Alcala, Department of Biomedicine and Biotechnology, 28805, Madrid, Spain
| | - Jorge Pérez-Serrano
- University of Alcala, Department of Biomedicine and Biotechnology, 28805, Madrid, Spain
| | - Javier Sanchez-Nieves
- University of Alcala, Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. del Río" (IQAR), 28805, Madrid, Spain
- Institute for Health Research Ramon y Cajal (IRYCIS), 28034, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029, Madrid, Spain
| | - Francisco Javier de la Mata
- University of Alcala, Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. del Río" (IQAR), 28805, Madrid, Spain
- Institute for Health Research Ramon y Cajal (IRYCIS), 28034, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029, Madrid, Spain
| | | |
Collapse
|
2
|
Liu F, Chen Y, Huang Y, Jin Q, Ji J. Nanomaterial-based therapeutics for enhanced antifungal therapy. J Mater Chem B 2024; 12:9173-9198. [PMID: 39192670 DOI: 10.1039/d4tb01484g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The application of nanotechnology in antifungal therapy is gaining increasing attention. Current antifungal drugs have significant limitations, such as severe side effects, low bioavailability, and the rapid development of resistance. Nanotechnology offers an innovative solution to address these issues. This review discusses three key strategies of nanotechnology to enhance antifungal efficacy. Firstly, nanomaterials can enhance their interaction with fungal cells via ingenious surface tailoring of nanomaterials. Effective adhesion of nanoparticles to fungal cells can be achieved by electrostatic interaction or specific targeting to the fungal cell wall and cell membrane. Secondly, stimuli-responsive nanomaterials are developed to realize smart release of drugs in the specific microenvironment of pathological tissues, such as the fungal biofilm microenvironment and inflammatory microenvironment. Thirdly, nanomaterials can be designed to cross different physiological barriers, effectively addressing challenges posed by skin, corneal, and blood-brain barriers. Additionally, some new nanomaterial-based strategies in treating fungal infections are discussed, including the development of fungal vaccines, modulation of macrophage activity, phage therapy, the application of high-throughput screening in drug discovery, and so on. Despite the challenges faced in applying nanotechnology to antifungal therapy, its significant potential and innovation open new possibilities for future clinical antifungal applications.
Collapse
Affiliation(s)
- Fang Liu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Yongcheng Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Yue Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 310009, China
| |
Collapse
|
3
|
Gómez-Casanova N, Martín-Serrano Ortiz Á, Heredero-Bermejo I, Sánchez-Nieves J, Luis Copa-Patiño J, Javier de la Mata F. Potential anti-adhesion activity of novel carbosilane zwitterionic dendrimers against eukaryotic and prokaryotic pathogenic microorganisms. Eur J Pharm Biopharm 2023; 191:158-165. [PMID: 37536578 DOI: 10.1016/j.ejpb.2023.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
The development of biofilms on different surfaces continues to be a major public health problem. The antimicrobial resistance and the difficulty of finding drugs capable of combating these established biofilms generates the urgent need to find compounds that prevent cells from settling and establishing of these complex communities of microorganisms. Zwitterionic modification of nanomaterials allows the formation of a hydration layer, and this highly hydrophilic surface provides antifouling properties as well as a good biocompatibility by preventing non-specific interactions. Thus, they are appropriate candidates to prevent microbial adhesion to different surfaces and, in consequence, avoid biofilm formation. For this reason, we have incorporated zwitterionic moieties in multivalent systems, as are carbosilane dendrimers. Characterization of these systems was performed using nuclear magnetic resonance and mass spectrometry. It has been analysed if the new molecules have capacity to inhibit the biofilm formation in Candida albicans, Staphylococcus aureus and Pseudomonas aeruginosa. The results showed that they were more effective against S. aureus, observing a biofilm reduction of 81.5% treating with 32 mg/L of G2SiZWsf dendrimer and by 72.5% using 32 mg/L of the G3SiZWsf dendrimer. Finally, the absence of cytotoxicity was verified by haemolysis and cytotoxicity studies in human cells lines.
Collapse
Affiliation(s)
- Natalia Gómez-Casanova
- University of Alcalá, Department of Biomedicine and Biotechnology, Faculty of Pharmacy, Madrid, Spain
| | - Ángela Martín-Serrano Ortiz
- University of Alcalá, Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. del Río" (IQAR), Madrid, Spain
| | - Irene Heredero-Bermejo
- University of Alcalá, Department of Biomedicine and Biotechnology, Faculty of Pharmacy, Madrid, Spain
| | - Javier Sánchez-Nieves
- University of Alcalá, Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. del Río" (IQAR), Madrid, Spain; Institute "Ramón y Cajal" for Health Research (IRYCIS), Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - José Luis Copa-Patiño
- University of Alcalá, Department of Biomedicine and Biotechnology, Faculty of Pharmacy, Madrid, Spain.
| | - F Javier de la Mata
- University of Alcalá, Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. del Río" (IQAR), Madrid, Spain; Institute "Ramón y Cajal" for Health Research (IRYCIS), Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain.
| |
Collapse
|
4
|
Wu S, Song R, Liu T, Li C. Antifungal therapy: Novel drug delivery strategies driven by new targets. Adv Drug Deliv Rev 2023; 199:114967. [PMID: 37336246 DOI: 10.1016/j.addr.2023.114967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/22/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
In patients with compromised immunity, invasive fungal infections represent a significant cause of mortality. Given the limited availability and drawbacks of existing first-line antifungal drugs, there is a growing interest in exploring novel targets that could facilitate the development of new antifungal agents or enhance the effectiveness of conventional ones. While previous studies have extensively summarized new antifungal targets inherent in fungi for drug development purposes, the exploration of potential targets for novel antifungal drug delivery strategies has received less attention. In this review, we provide an overview of recent advancements in new antifungal drug delivery strategies that leverage novel targets, including those located in the physio-pathological barrier at the site of infection, the infection microenvironment, fungal-host interactions, and the fungal pathogen itself. The objective is to enhance therapeutic efficacy and mitigate toxic effects in fungal infections, particularly in challenging cases such as refractory, recurrent, and drug-resistant invasive fungal infections. We also discuss the current challenges and future prospects associated with target-driven antifungal drug delivery strategies, offering important insights into the clinical implementation of these innovative approaches.
Collapse
Affiliation(s)
- Shuang Wu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400716, PR China
| | - Ruiqi Song
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400716, PR China
| | - Tongbao Liu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400716, PR China.
| | - Chong Li
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400716, PR China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
5
|
Popp PF, Lozano-Cruz T, Dürr F, Londaitsbehere A, Hartig J, de la Mata FJ, Gómez R, Mascher T, Revilla-Guarinos A. The Novel Synthetic Antibiotic BDTL049 Based on a Dendritic System Induces Lipid Domain Formation while Escaping the Cell Envelope Stress Resistance Determinants. Pharmaceutics 2023; 15:297. [PMID: 36678925 PMCID: PMC9866484 DOI: 10.3390/pharmaceutics15010297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
The threat of antimicrobial-resistant bacteria is ever increasing and over the past-decades development of novel therapeutic counter measurements have virtually come to a halt. This circumstance calls for interdisciplinary approaches to design, evaluate and validate the mode of action of novel antibacterial compounds. Hereby, carbosilane dendritic systems that exhibit antimicrobial properties have the potential to serve as synthetic and rationally designed molecules for therapeutic use. The bow-tie type topology of BDTL049 was recently investigated against the Gram-positive model organism Bacillus subtilis, revealing strong bactericidal properties. In this study, we follow up on open questions concerning the usability of BDTL049. For this, we synthesized a fluorescent-labeled version of BDTL049 that maintained all antimicrobial features to unravel the interaction of the compound and bacterial membrane. Subsequently, we highlight the bacterial sensitivity against BDTL049 by performing a mutational study of known resistance determinants. Finally, we address the cytotoxicity of the compound in human cells, unexpectedly revealing a high sensitivity of the eukaryotic cells upon BDTL049 exposure. The insights presented here further elaborate on the unique features of BDTL049 as a promising candidate as an antimicrobial agent while not precluding that further rounds of rational designing are needed to decrease cytotoxicity to ultimately pave the way for synthetic antibiotics toward clinical applicability.
Collapse
Affiliation(s)
- Philipp F. Popp
- Department of General Microbiology, Institut Für Mikrobiologie, Technische Universität Dresden, 01217 Dresden, Germany
| | - Tania Lozano-Cruz
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry “Andrés M. Del Río” (IQAR), University de Alcalá, 28805 Madrid, Spain
- Ramón y Cajal Health Research Institute (IRYCIS), 28805 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28805 Madrid, Spain
| | - Franziska Dürr
- Department of General Microbiology, Institut Für Mikrobiologie, Technische Universität Dresden, 01217 Dresden, Germany
| | - Addis Londaitsbehere
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry “Andrés M. Del Río” (IQAR), University de Alcalá, 28805 Madrid, Spain
| | - Johanna Hartig
- Department of General Microbiology, Institut Für Mikrobiologie, Technische Universität Dresden, 01217 Dresden, Germany
| | - Francisco Javier de la Mata
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry “Andrés M. Del Río” (IQAR), University de Alcalá, 28805 Madrid, Spain
- Ramón y Cajal Health Research Institute (IRYCIS), 28805 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28805 Madrid, Spain
| | - Rafael Gómez
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry “Andrés M. Del Río” (IQAR), University de Alcalá, 28805 Madrid, Spain
- Ramón y Cajal Health Research Institute (IRYCIS), 28805 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28805 Madrid, Spain
| | - Thorsten Mascher
- Department of General Microbiology, Institut Für Mikrobiologie, Technische Universität Dresden, 01217 Dresden, Germany
| | - Ainhoa Revilla-Guarinos
- Department of General Microbiology, Institut Für Mikrobiologie, Technische Universität Dresden, 01217 Dresden, Germany
| |
Collapse
|
6
|
Immobilization of Alcalase on Silica Supports Modified with Carbosilane and PAMAM Dendrimers. Int J Mol Sci 2022; 23:ijms232416102. [PMID: 36555742 PMCID: PMC9783553 DOI: 10.3390/ijms232416102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Enzyme immobilization is a powerful strategy for enzyme stabilization and recyclability. Materials covered with multipoint molecules are very attractive for this goal, since the number of active moieties to attach the enzyme increases with respect to monofunctional linkers. This work evaluates different dendrimers supported on silica to immobilize a protease enzyme, Alcalase. Five different dendrimers were employed: two carbosilane (CBS) dendrimers of different generations (SiO2-G0Si-NH2 and SiO2-G1Si-NH2), a CBS dendrimer with a polyphenoxo core (SiO2-G1O3-NH2), and two commercial polyamidoamine (PAMAM) dendrimers of different generations (SiO2-G0PAMAM-NH2 and SiO2-G1PAMAM-NH2). The results were compared with a silica support modified with a monofunctional molecule (2-aminoethanethiol). The effect of the dendrimer generation, the immobilization conditions (immobilization time, Alcalase/SiO2 ratio, and presence of Ca2+ ions), and the digestion conditions (temperature, time, amount of support, and stirring speed) on Alcalase activity has been evaluated. Enzyme immobilization and its activity were highly affected by the kind of dendrimer and its generation, observing the most favorable behavior with SiO2-G0PAMAM-NH2. The enzyme immobilized on this support was used in two consecutive digestions and, unlike CBS supports, it did not retain peptides released in the digestion.
Collapse
|
7
|
Benziane MY, Bendahou M, Benbelaïd F, Khadir A, Belhadef H, Benaissa A, Ouslimani S, Mahdi F, Muselli A. Efficacy of endemic Algerian essential oils against single and mixed biofilms of Candida albicans and Candida glabrata. Arch Oral Biol 2022; 145:105584. [DOI: 10.1016/j.archoralbio.2022.105584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
|
8
|
Preparation and optimization of medicated cold cream using Caralluma adscendens var. attenuata for the treatment of Candida skin infection. BIOTECHNOLOGIA 2022; 103:249-260. [PMID: 36605824 PMCID: PMC9642957 DOI: 10.5114/bta.2022.118668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/01/2022] [Accepted: 05/04/2022] [Indexed: 11/05/2022] Open
Abstract
Fungal skin infection is a major skin health issue worldwide. For the treatment of fungal infections, systematic antifungal therapies are frequently prescribed. The aim of this study is to prepare an antifungal cold cream from Caralluma adscendens var. attenuata to treat deep dermal fungal infection in the skin layer. To achieve this, different concentrations of plant extract-based cold cream were prepared, and their in vitro characteristic features such as color, texture, pH, viscosity, spreadability, stability, permeation, were analyzed together with ex vivo evaluation to identify their applicability in the treatment of acute rat skin irritation. After 72 h of induction of Candida albicans infection in rats (7 days, two times/day), C. adscendens var. attenuata cold cream was applied topically. In rats with C. albicans induction without any treatment, adverse skin damages were visible in the form of red rashes, whereas in those with the formulated cold cream application, significantly less skin damage and inflammation were observed on a dose-dependent basis. Moreover, the reduced microbial colonization and histopathology of the rat skin without any treatment indicated the successful invasion of C. albicans and showed the morphological changes caused by candidal infection. However, treatment with the C. adscendens var. attenuata cream significantly inhibited candida colonization and reversed the morphological changes. In addition, the formulated C. adscendens var. attenuata cold cream showed good spreadability, permeation, and viscosity. Hence, it can act as a potent antifungal topical agent for the treatment of C. albicans skin infection without any irritation, thus safeguarding the skin tissue.
Collapse
|
9
|
Gómez-Casanova N, Torres-Cano A, Elias-Rodriguez AX, Lozano T, Ortega P, Gómez R, Pérez-Serrano J, Copa-Patiño JL, Heredero-Bermejo I. Inhibition of Candida glabrata Biofilm by Combined Effect of Dendritic Compounds and Amphotericin. Pharmaceutics 2022; 14:pharmaceutics14081604. [PMID: 36015230 PMCID: PMC9416558 DOI: 10.3390/pharmaceutics14081604] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/11/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
In the last decade, Candida glabrata has become an important emerging opportunistic pathogen not only because of the increase in nosocomial infections frequency but also because of its ability to form biofilms and its innate resistance to commercial antifungals. These characteristics make this pathogen a major problem in hospital settings, including problems regarding equipment, and in immunosuppressed patients, who are at high risk for candidemia. Therefore, there is an urgent need for the development of and search for new antifungal drugs. In this study, the efficacy of two dendritic wedges with 4-phenyl butyric acid (PBA) at the focal point and cationic charges on the surface ArCO2G2(SNMe3I)4 (1) and ArCO2G3(SNMe3I)8 (2) was studied against C. glabrata strain to inhibit the formation of biofilms and eliminate established biofilm. For this, MBIC (minimum biofilm inhibitory concentration), MBDC (minimum biofilm damaging concentrations), as well as MFCB (minimum fungicidal concentration in biofilm) and MBEC (minimum biofilm eradicating concentration) were determined. In addition, different combinations of dendrons and amphotericin B were tested to study possible synergistic effects. On the other hand, cytotoxicity studies were performed. C. glabrata cells and biofilm structure were visualized by confocal microscopy. ArCO2G2(SNMe3I)4 (1) and ArCO2G3(SNMe3I)8 (2) dendrons showed both an MBIC of 8 mg/L and a MBDC of 32 mg/L and 64 mg/L, respectively. These dendrons managed to eradicate the entirety of an established biofilm. In combination with the antifungal amphotericin, it was possible to prevent the generation of biofilms and eradicate established biofilms at lower concentrations than those required individually for each compound at these conditions.
Collapse
Affiliation(s)
- Natalia Gómez-Casanova
- Department of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcalá, 28871 Alcalá de Henares, Spain; (N.G.-C.); (A.T.-C.); (A.X.E.-R.); (J.P.-S.); (J.L.C.-P.)
| | - Alba Torres-Cano
- Department of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcalá, 28871 Alcalá de Henares, Spain; (N.G.-C.); (A.T.-C.); (A.X.E.-R.); (J.P.-S.); (J.L.C.-P.)
| | - Alba Xiaohe Elias-Rodriguez
- Department of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcalá, 28871 Alcalá de Henares, Spain; (N.G.-C.); (A.T.-C.); (A.X.E.-R.); (J.P.-S.); (J.L.C.-P.)
| | - Tania Lozano
- Department of Organic and Inorganic Chemistry, Faculty of Pharmacy, Research Institute in Chemistry “Andrés M. del Río” (IQAR), University of Alcalá, 28871 Alcalá de Henares, Spain; (T.L.); (P.O.); (R.G.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain and Institute “Ramón y Cajal” for Health Research (IRYCIS), 28029 Madrid, Spain
| | - Paula Ortega
- Department of Organic and Inorganic Chemistry, Faculty of Pharmacy, Research Institute in Chemistry “Andrés M. del Río” (IQAR), University of Alcalá, 28871 Alcalá de Henares, Spain; (T.L.); (P.O.); (R.G.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain and Institute “Ramón y Cajal” for Health Research (IRYCIS), 28029 Madrid, Spain
| | - Rafael Gómez
- Department of Organic and Inorganic Chemistry, Faculty of Pharmacy, Research Institute in Chemistry “Andrés M. del Río” (IQAR), University of Alcalá, 28871 Alcalá de Henares, Spain; (T.L.); (P.O.); (R.G.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain and Institute “Ramón y Cajal” for Health Research (IRYCIS), 28029 Madrid, Spain
| | - Jorge Pérez-Serrano
- Department of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcalá, 28871 Alcalá de Henares, Spain; (N.G.-C.); (A.T.-C.); (A.X.E.-R.); (J.P.-S.); (J.L.C.-P.)
| | - José Luis Copa-Patiño
- Department of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcalá, 28871 Alcalá de Henares, Spain; (N.G.-C.); (A.T.-C.); (A.X.E.-R.); (J.P.-S.); (J.L.C.-P.)
| | - Irene Heredero-Bermejo
- Department of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcalá, 28871 Alcalá de Henares, Spain; (N.G.-C.); (A.T.-C.); (A.X.E.-R.); (J.P.-S.); (J.L.C.-P.)
- Correspondence:
| |
Collapse
|
10
|
Bharti S, Zakir F, Mirza MA, Aggarwal G. Antifungal biofilm strategies: a less explored area in wound management. Curr Pharm Biotechnol 2022; 23:1497-1513. [PMID: 35410595 DOI: 10.2174/1389201023666220411100214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/03/2021] [Accepted: 01/03/2022] [Indexed: 11/22/2022]
Abstract
Background- The treatment of wound associated infections has always remained a challenge for clinicians with the major deterring factor being microbial biofilms, majorly bacterial or fungal. Biofilm infections are becoming a global concern owing to resistance against antimicrobials. Fungal biofilms are formed by a wide variety of fungal pathogens namely Candida sp., Aspergillus fumigates, Trichosporon sp., Saccharomyces cerevisiae, Cryptococcus neoformans, among others. The rising cases of fungal biofilm resistance add to the burden of wound care. Additionally, with increase in the number of surgical procedures, transplantation and the exponential use of medical devices, fungal bioburden is on the rise. Objectives- The review discusses the methods of biofilm formation and the resistance mechanisms against conventional treatments. The potential of novel delivery strategies and the mechanisms involved therein are highlighted. Further, the prospects of nanotechnology based medical devices to combat fungal biofilm resistance have also been explored. Some of the clinical trials and up-to-date patent technologies to eradicate the biofilms are also mentioned. Conclusion- Due to the many challenges faced in preventing/eradicating biofilms, only a handful of approaches have been able to make it to the market. Fungal biofilms are a fragmentary area which needs further exploration.
Collapse
Affiliation(s)
- Shilpa Bharti
- Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi
| | - Foziyah Zakir
- Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi
| | - Mohd Aamir Mirza
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Geeta Aggarwal
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| |
Collapse
|
11
|
The Antibacterial Effect of PEGylated Carbosilane Dendrimers on P. aeruginosa Alone and in Combination with Phage-Derived Endolysin. Int J Mol Sci 2022; 23:ijms23031873. [PMID: 35163794 PMCID: PMC8836974 DOI: 10.3390/ijms23031873] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 12/12/2022] Open
Abstract
The search for new microbicide compounds is of an urgent need, especially against difficult-to-eradicate biofilm-forming bacteria. One attractive option is the application of cationic multivalent dendrimers as antibacterials and also as carriers of active molecules. These compounds require an adequate hydrophilic/hydrophobic structural balance to maximize the effect. Herein, we evaluated the antimicrobial activity of cationic carbosilane (CBS) dendrimers unmodified or modified with polyethylene glycol (PEG) units, against planktonic and biofilm-forming P. aeruginosa culture. Our study revealed that the presence of PEG destabilized the hydrophilic/hydrophobic balance but reduced the antibacterial activity measured by microbiological cultivation methods, laser interferometry and fluorescence microscopy. On the other hand, the activity can be improved by the combination of the CBS dendrimers with endolysin, a bacteriophage-encoded peptidoglycan hydrolase. This enzyme applied in the absence of the cationic CBS dendrimers is ineffective against Gram-negative bacteria because of the protective outer membrane shield. However, the endolysin-CBS dendrimer mixture enables the penetration through the membrane and then deterioration of the peptidoglycan layer, providing a synergic antimicrobial effect.
Collapse
|
12
|
Dendrimers and Dendritic Materials against Infectious Diseases. Pharmaceutics 2022; 14:pharmaceutics14010154. [PMID: 35057050 PMCID: PMC8779515 DOI: 10.3390/pharmaceutics14010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 11/17/2022] Open
Abstract
The COVID-19 pandemic showed more deeply the need of our society to provide new therapeutic strategies to fight infectious diseases, not only against currently known illnesses, where common antibiotics and drugs appear to be not fully effective, but also against new infectious threats that may arise [...].
Collapse
|
13
|
Eradication of Candida albicans Biofilm Viability: In Vitro Combination Therapy of Cationic Carbosilane Dendrons Derived from 4-Phenylbutyric Acid with AgNO 3 and EDTA. J Fungi (Basel) 2021; 7:jof7070574. [PMID: 34356953 PMCID: PMC8305162 DOI: 10.3390/jof7070574] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 01/18/2023] Open
Abstract
Candida albicans is a human pathogen of significant clinical relevance. This pathogen is resistant to different drugs, and most clinical antifungals are not effective against the prevention and treatment of C. albicans infections. As with other microorganisms, it can produce biofilms that serve as a barrier against antifungal agents and other substances, contributing to infection in humans and environmental tolerance of this microorganism. Thus, resistances and biofilm formation make treatment difficult. In addition, the complete eradication of biofilms in implants, catheters and other medical devices, is challenging and necessary to prevent relapses of candidemia. Therefore, it is a priority to find new molecules or combinations of compounds with anti-Candida biofilm activity. Due to the difficulty of treating and removing biofilms, the aim of this study was to evaluate the in vitro ability of different generation of cationic carbosilane dendrons derived from 4-phenylbutyric acid, ArCO2Gn(SNMe3I)m, to eradicate C. albicans biofilms. Here, we assessed the antifungal activity of the second generation dendron ArCO2G2(SNMe3I)4 against C. albicans cells and established biofilms since it managed to seriously damage the membrane. In addition, the combinations of the second generation dendron with AgNO3 or EDTA eradicated the viability of biofilm cells. Alterations were observed by scanning electron microscopy and cytotoxicity was assessed on HeLa cells. Our data suggest that the dendritic compound ArCO2G2(SNMe3I)4 could represent an alternative to control the infections caused by this pathogen.
Collapse
|
14
|
Effect of the Combination of Levofloxacin with Cationic Carbosilane Dendron and Peptide in the Prevention and Treatment of Staphylococcus aureus Biofilms. Polymers (Basel) 2021; 13:polym13132127. [PMID: 34209475 PMCID: PMC8271537 DOI: 10.3390/polym13132127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022] Open
Abstract
Antibiotic resistance and biofilm-related infections, persistent in conventional antimicrobial treatment, are continuously increasing and represent a major health problem worldwide. Therefore, the development of new effective treatments to prevent and treat biofilm-related infections represents a crucial challenge. Unfortunately, the extensive use of antibiotics has led to an increase of resistant bacteria with the subsequent loss of effectivity of commercial antibiotics, mainly due to antibiotic resistance and the ability of some bacteria to form microbial communities in biotic or abiotic surfaces (biofilms). In some cases, these biofilms are resistant to high concentrations of antibiotics that lead to treatment failure and recurrence of the associated infections. In the fight against microbial resistance, the combination of traditional antibiotics with new compounds (combination therapy) is an alternative that is becoming more extensive in the medical field. In this work, we studied the cooperative effects between levofloxacin, an approved antibiotic, and peptides or cationic dendritic molecules, compounds that are emerging as a feasible solution to overcome the problem of microbial resistance caused by pathogenic biofilms. We studied a new therapeutic approach that involves the use of levofloxacin in combination with a cationic carbosilane dendron, called MalG2(SNHMe2Cl)4, or a synthetic cell-penetrating peptide, called gH625, conjugated to the aforementioned dendron. To carry out the study, we used two combinations (1) levofloxacin/dendron and (2) levofloxacin/dendron-peptide nanoconjugate. The results showed the synergistic effect of the combination therapy to treat Staphylococcus aureus biofilms. In addition, we generated a fluorescein labeled peptide that allowed us to observe the conjugate (dendron-peptide) localization throughout the bacterial biofilm by confocal laser scanning microscopy.
Collapse
|
15
|
Benavent C, Torrado-Salmerón C, Torrado-Santiago S. Development of a Solid Dispersion of Nystatin with Maltodextrin as a Carrier Agent: Improvements in Antifungal Efficacy against Candida spp. Biofilm Infections. Pharmaceuticals (Basel) 2021; 14:ph14050397. [PMID: 33922089 PMCID: PMC8143483 DOI: 10.3390/ph14050397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to improve the treatment of Candida albicans biofilms through the use of nystatin solid dispersions developed using maltodextrins as a hyperosmotic carrier. Characterization studies by differential scanning calorimetry, X-ray diffraction, dissolution studies, and particle size analysis were performed to evaluate changes in nystatin crystallinity. Antifungal activity and anti-biofilm efficacy were assessed by microbiological techniques. The results for nystatin solid dispersions showed that the enhancement of antifungal activity may be related to the high proportions of maltodextrins. Anti-biofilm assays showed a significant reduction (more than 80%) on biofilm formation with SD-N:MD [1:6] compared to the nystatin reference suspension. The elaboration process and physicochemical properties of SD-N:MD [1:6] could be a promising strategy for treatment of Candida biofilms.
Collapse
Affiliation(s)
- Carlos Benavent
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (C.B.); (C.T.-S.)
| | - Carlos Torrado-Salmerón
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (C.B.); (C.T.-S.)
| | - Santiago Torrado-Santiago
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (C.B.); (C.T.-S.)
- Instituto Universitario de Farmacia Industrial, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-091-394-1620
| |
Collapse
|
16
|
Kowalewska K, Rodriguez-Prieto T, Skrzypek S, Cano J, Ramírez RG, Poltorak L. Electroanalytical study of five carbosilane dendrimers at the interface between two immiscible electrolyte solutions. Analyst 2021; 146:1376-1385. [PMID: 33403382 DOI: 10.1039/d0an02101f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This work is focused on the electroanalytical study of a family of five imidazolium-terminated carbosilane dendrimers (from generation G1 to G3) at the polarized liquid-liquid interface formed between water and 1,2-dichloroethane solutions. All dendrimers with permanently and positively charged imidazolium groups located at the periphery within the branched carbosilane core were found to be electrochemically active. Based on the concentration and scan rate dependencies we have concluded that these molecules undergo interfacial ion transfer processes accompanied by interfacial adsorption/desorption rather than the electrochemically induced interfacial formation of the macromolecule-anion (tetrakis(4-chlorophenyl)borate) from the organic phase complex. Also, we report several physicochemical and electroanalytical parameters (e.g. diffusion coefficients, LODs, and detection sensitivities) for the studied family of dendrimers. Our work aims to contribute to the understating of the interaction between branched macromolecules and biomimetic interfaces.
Collapse
Affiliation(s)
- Karolina Kowalewska
- Department of Inorganic and Analytical Chemistry, Electroanalysis and Electrochemistry Group, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland.
| | | | | | | | | | | |
Collapse
|