1
|
Maurya R, Sharma A, Naqvi S. Decoding NLRP3 Inflammasome Activation in Alzheimer's Disease: A Focus on Receptor Dynamics. Mol Neurobiol 2025:10.1007/s12035-025-04918-1. [PMID: 40232645 DOI: 10.1007/s12035-025-04918-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/03/2025] [Indexed: 04/16/2025]
Abstract
Alzheimer's disease (AD) is a leading neurodegenerative disorder marked by progressive cognitive decline and significant neuropsychiatric disturbances. Neuroinflammation, mediated by the NLRP3 inflammasome, is increasingly recognized as a critical factor in AD pathogenesis. The NLRP3 inflammasome, a crucial component of the innate immune system, is activated in response to both pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). In AD, amyloid-beta (Aβ) plaques and tau aggregates act as DAMPs, triggering NLRP3 inflammasome activation in microglia and astrocytes. This activation leads to the production of pro-inflammatory cytokines IL-1β and IL-18, contributing to chronic neuroinflammation and neuronal death. This review explores the intricate mechanisms involved in NLRP3 activation, with a particular focus on TREM-2, Msn Kinase MINK, NF-κB, Toll-like receptors, and P2X7 receptors. Understanding these mechanisms offers insight into the multifaceted regulation of the NLRP3 inflammasome and its impact on AD pathology. By elucidating the roles of TREM-2, MINK1, NF-κB, TLRs, and P2X7 receptors, this review highlights potential therapeutic targets for modulating NLRP3 activity. Targeting these pathways could offer novel strategies for mitigating neuroinflammation and slowing the progression of AD. The interplay between these receptors and signaling pathways underscores the complexity of NLRP3 inflammasome regulation and its significance in AD, providing a foundation for future research aimed at developing effective therapeutic interventions.
Collapse
Affiliation(s)
- Ranika Maurya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-R), Lucknow, UP, 226002, India
| | - Abha Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER-R), Lucknow, UP, 226002, India
| | - Saba Naqvi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-R), Lucknow, UP, 226002, India.
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-R), Lucknow, UP, 226002, India.
| |
Collapse
|
2
|
Yin S, Chi X, Wan F, Li Y, Zhou Q, Kou L, Sun Y, Wu J, Zou W, Wang Y, Jin Z, Huang J, Xiong N, Xia Y, Wang T. TREM2 signaling in Parkinson's disease: Regulation of microglial function and α-synuclein pathology. Int Immunopharmacol 2024; 143:113446. [PMID: 39490141 DOI: 10.1016/j.intimp.2024.113446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons, abnormal accumulation of α-synuclein (α-syn), and microglial activation. Triggering receptor expressed on myeloid cells 2 (TREM2) regulates multiple functions of microglia in the brain, and several studies have shown that TREM2 variant R47H is a risk factor for PD. However, the regulation of microglia by TREM2 in PD remains poorly understood. METHODS We constructed PD cell and animal models using α-syn preformed fibrils. siRNA knockdown and lentiviral overexpression were used to perturb TREM2 levels in cells, and TREM2 knockout mice and lentiviral overexpression was used in animal models to investigate the effects of TREM2 on microglial function, α-syn-related pathology, and dopaminergic neuron degeneration. RESULTS Microglia phagocytosed α-syn preformed fibrils in a concentration- and time-dependent manner, with some capacity to degrade α-syn aggregates. TREM2 expression increased in PD. In the context of PD, TREM2 knockout mice exhibited worsened pathological α-syn spread, decreased microglial reactivity, and increased loss of TH-positive neurons in the substantia nigra compared to wild-type mice. TREM2 overexpression enhanced reactive microglial aggregation towards the pathological site. Cellular experiments revealed that reduced TREM2 impaired microglial phagocytosis and proliferation, but enhanced autophagy via the PI3K/AKT/mTOR pathway. CONCLUSION TREM2 signaling in PD maintains microglial phagocytosis, proliferation, and reactivity, stabilizing autophagy and proliferation via the PI3K/AKT/mTOR pathway. Regulating TREM2 levels may be beneficial in PD treatment.
Collapse
Affiliation(s)
- Sijia Yin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Xiaosa Chi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Fang Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Yunna Li
- Department of Neurology, The Central Hospital of Wuhan, 26 Shengli Street, Wuhan 430014, China
| | - Qiulu Zhou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Liang Kou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Yadi Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Jiawei Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Wenkai Zou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Yiming Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Zongjie Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Yun Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
| |
Collapse
|
4
|
Li XX, Zhang F. Targeting TREM2 for Parkinson's Disease: Where to Go? Front Immunol 2022; 12:795036. [PMID: 35003116 PMCID: PMC8740229 DOI: 10.3389/fimmu.2021.795036] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/13/2021] [Indexed: 12/16/2022] Open
Abstract
Parkinson’s disease (PD) is one of most common neurodegenerative disorders caused by a combination of environmental and genetic risk factors. Currently, numerous population genetic studies have shown that polymorphisms in myeloid cell-triggered receptor II (TREM2) are associated with a variety of neurodegenerative disorders. Recently, TREM2 has been verified to represent a promising candidate gene for PD susceptibility and progression. For example, the expression of TREM2 was apparently increased in the prefrontal cortex of PD patients. Moreover, the rare missense mutations in TREM2 (rs75932628, p.R47H) was confirmed to be a risk factor of PD. In addition, overexpression of TREM2 reduced dopaminergic neurodegeneration in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine mouse model of PD. Due to the complex pathogenesis of PD, there is still no effective drug treatment. Thus, TREM2 has received increasing widespread attention as a potential therapeutic target. This review focused on the variation of TREM2 in PD and roles of TREM2 in PD pathogenesis, such as excessive-immune inflammatory response, α-Synuclein aggregation and oxidative stress, to further provide evidence for new immune-related biomarkers and therapies for PD.
Collapse
Affiliation(s)
- Xiao-Xian Li
- Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Feng Zhang
- Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China.,Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| |
Collapse
|