1
|
Haripriya P, Vijayakrishna K. Synthesis of poly(ionic liquid-OH) mediated deacetylated chitin and its hydrogels: A study on their applications in controlled release of paracetamol and urea. Int J Biol Macromol 2024; 266:131230. [PMID: 38574909 DOI: 10.1016/j.ijbiomac.2024.131230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/14/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
Due to the biodegradable and biocompatible nature of chitin and chitosan, they are extensively used in the synthesis of hydrogels for various applications. In this work, deacetylation of chitin is carried out with alkaline poly(dimethyldiallylammonium-hydroxide) that gave a higher amount of water-soluble chitin (with 84 % of the degree of deacetylation = chitosan0.84) compared to deacetylation using NaOH. The water-soluble chitosan0.84 is used as intercalating chains for the preparation of acrylic acid and vinylimidazole-based hydrogels. The quaternization of imidazole groups is done with 1,ω-dibromoalkanes, which sets off the crosslinking in the above polymer network. A set of three chitosan0.84 intercalated hydrogels, namely Cs-C4-hydrogel, Cs-C5-hydrogel, and Cs-C10-hydrogel are prepared bearing butyl, pentyl, and decyl chains as respective crosslinkers. The swell ratios of these intercalated hydrogels are compared with those of non-intercalated hydrogels (C4-hydrogel, C5-hydrogel, and C10-hydrogel). Chitosan0.84 intercalated Cs-C10-hydrogel has excellent swelling properties (2330 % swelling ratio) among six synthesized hydrogels. SEM analysis reveals that decyl crosslinker-bearing hydrogels are highly porous. The multi-functionality of Cs-C10-hydrogel and C10-hydrogel is explored towards -the controlled release of paracetamol/urea, and methyleneblue dye absorption. These studies disclose that chitosan0.84 intercalated hydrogels are showing superior-swelling behavior, high paracetamol/urea loading capacities and better dye entrapment than their non-intercalated counterparts.
Collapse
Affiliation(s)
- Patra Haripriya
- School of Basic Sciences, Indian Institute of Technology, Bhubaneswar 752050, Odisha, India
| | - Kari Vijayakrishna
- School of Basic Sciences, Indian Institute of Technology, Bhubaneswar 752050, Odisha, India.
| |
Collapse
|
2
|
Elsewedy HS, Shehata TM, Alqahtani NK, Khalil HE, Soliman WE. Date Palm Extract ( Phoenix dactylifera) Encapsulated into Palm Oil Nanolipid Carrier for Prospective Antibacterial Influence. PLANTS (BASEL, SWITZERLAND) 2023; 12:3670. [PMID: 37960029 PMCID: PMC10648499 DOI: 10.3390/plants12213670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023]
Abstract
It is worthwhile to note that using natural products today has shown to be an effective strategy for attaining the therapeutic goal with the highest impact and the fewest drawbacks. In Saudi Arabia, date palm (Phoenix dactylifera) is considered the principal fruit owing to its abundance and incredible nutritional benefits in fighting various diseases. The main objective of the study is to exploit the natural products as well as the nanotechnology approach to obtain great benefits in managing disorders. The present investigation focused on using the powder form of date palm extract (DPE) of Khalas cultivar and incorporates it into a nanolipid formulation such as a nanostructured lipid carrier (NLC) prepared with palm oil. Using the quality by design (QbD) methodology, the most optimized formula was chosen based on the number of assigned parameters. For more appropriate topical application, the optimized DP-NLC was combined with a pre-formulated hydrogel base forming the DP-NLC-hydrogel. The developed DP-NLC-hydrogel was evaluated for various physical properties including pH, viscosity, spreadability, and extrudability. Additionally, the in vitro release of the formulation as well as its stability upon storage under two different conditions of room temperature and refrigerator were investigated. Eventually, different bacterial strains were utilized to test the antibacterial efficacy of the developed formulation. The optimized DP-NLC showed proper particle size (266.9 nm) and in vitro release 77.9%. The prepared DP-NLC-hydrogel showed acceptable physical properties for topical formulation, mainly, pH 6.05, viscosity 9410 cP, spreadability 57.6 mm, extrudability 84.5 (g/cm2), and in vitro release 42.4%. Following three months storage under two distinct conditions, the formula exhibited good stability. Finally, the antibacterial activity of the developed DP-NLC-hydrogel was evaluated and proved to be efficient against various bacterial strains.
Collapse
Affiliation(s)
- Heba S. Elsewedy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf 31982, Al-Ahsa, Saudi Arabia
- Department of Pharmaceutical Sciences, College of Pharmacy, Almaarefa University, Dariyah, Riyadh 13713, Saudi Arabia
| | - Tamer M. Shehata
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf 31982, Al-Ahsa, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Nashi K. Alqahtani
- Department of Food Science and Technology, College of Agriculture, King Faisal University, Alhofuf 31982, Al-Ahsa, Saudi Arabia
- Date Palm Research Center of Excellence, King Faisal University, Alhofuf 31982, Al-Ahsa, Saudi Arabia
| | - Hany Ezzat Khalil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf 31982, Al-Ahsa, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Wafaa E. Soliman
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf 36362, Al-Ahsa, Saudi Arabia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Mansoura 11152, Egypt
| |
Collapse
|
3
|
El-Kimary EI, Allam AN, Khafagy ES, Hegazy WAH. Analytical Methodologies for the Estimation of Oxazolidinone Antibiotics as Key Members of anti-MRSA Arsenal: A Decade in Review. Crit Rev Anal Chem 2023; 54:3141-3170. [PMID: 37378883 DOI: 10.1080/10408347.2023.2228902] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Gram-positive bacterial infections are among the most serious diseases related with high mortality rates and huge healthcare costs especially with the rise of antibiotic-resistant strains that limits treatment options. Thus, development of new antibiotics combating these multi-drug resistant bacteria is crucial. Oxazolidinone antibiotics are the only totally synthetic group of antibiotics that showed activity against multi-drug resistant Gram positive bacteria including MRSA because of their unique mechanism of action in targeting protein synthesis. This group include approved marketed members (tedizolid, linezolid and contezolid) or those under development (delpazlolid, radezolid and sutezolid). Due to the significant impact of this class, larger number of analytical methods were required to meet the needs of both clinical and industrial studies. Analyzing these drugs either alone or with other antimicrobial agents commonly used in ICU, in the presence of pharmaceutical or endogenous biological interferences, or in the presence of matrix impurities as metabolites and degradation products poses a big analytical challenge. This review highlights current analytical approaches published in the last decade (2012-2022) that dealt with the determination of these drugs in different matrices and discusses their advantages and disadvantages. Various techniques have been described for their determination including chromatographic, spectroscopic, capillary electrophoretic and electroanalytical methods. The review comprises six sections (one for each drug) with their related tables that depict critical figures of merit and some experimental conditions for the reviewed methods. Furthermore, future perspectives about the analytical methodologies that can be developed in the near future for determination of these drugs are suggested.
Collapse
Affiliation(s)
- Eman I El-Kimary
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, Alexandria University, Alexandria, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences (Chemistry), Oman College of Health Sciences, Muscat, Oman
| | - Ahmed N Allam
- Faculty of Pharmacy, Department of Pharmaceutics, Alexandria University, Alexandria, Egypt
- Pharmacy Program, Department of Pharmaceutics, Oman College of Health Sciences, Muscat, Oman
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Wael A H Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences (Microbiology and Immunology), Oman College of Health Sciences, Muscat, Oman
| |
Collapse
|
4
|
Toirac B, Aguilera-Correa JJ, Mediero A, Esteban J, Jiménez-Morales A. The Antimicrobial Activity of Micron-Thin Sol-Gel Films Loaded with Linezolid and Cefoxitin for Local Prevention of Orthopedic Prosthesis-Related Infections. Gels 2023; 9:gels9030176. [PMID: 36975625 PMCID: PMC10048042 DOI: 10.3390/gels9030176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 03/29/2023] Open
Abstract
Orthopedic prosthesis-related infections (OPRI) are an essential health concern. OPRI prevention is a priority and a preferred option over dealing with poor prognosis and high-cost treatments. Micron-thin sol-gel films have been noted for a continuous and effective local delivery system. This study aimed to perform a comprehensive in vitro evaluation of a novel hybrid organic-inorganic sol-gel coating developed from a mixture of organopolysiloxanes and organophosphite and loaded with different concentrations of linezolid and/or cefoxitin. The kinetics of degradation and antibiotics release from the coatings were measured. The inhibition of biofilm formation of the coatings against Staphylococcus aureus, S. epidermidis, and Escherichia coli strains was studied, as well as the cell viability and proliferation of MC3T3-E1 osteoblasts. The microbiological assays demonstrated that sol-gel coatings inhibited the biofilm formation of the evaluated Staphylococcus species; however, no inhibition of the E. coli strain was achieved. A synergistic effect of the coating loaded with both antibiotics was observed against S. aureus. The cell studies showed that the sol-gels did not compromise cell viability and proliferation. In conclusion, these coatings represent an innovative therapeutic strategy with potential clinical use to prevent staphylococcal OPRI.
Collapse
Affiliation(s)
- Beatriz Toirac
- Materials Science and Engineering and Chemical Engineering Department, Carlos III University of Madrid, 28911 Madrid, Spain
| | - John Jairo Aguilera-Correa
- Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, UAM, 28040 Madrid, Spain
- CIBERINFEC-Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, 28029 Madrid, Spain
| | - Aranzazu Mediero
- Bone and Joint Unit, IIS-Fundación Jiménez Díaz, UAM, 28040 Madrid, Spain
| | - Jaime Esteban
- Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, UAM, 28040 Madrid, Spain
- CIBERINFEC-Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, 28029 Madrid, Spain
| | - Antonia Jiménez-Morales
- Materials Science and Engineering and Chemical Engineering Department, Carlos III University of Madrid, 28911 Madrid, Spain
- CIBERINFEC-Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, 28029 Madrid, Spain
- Alvaro Alonso Barba Technological Institute of Chemistry and Materials, Carlos III University of Madrid, 28911 Madrid, Spain
| |
Collapse
|
5
|
Green Synthesis of Highly Fluorescent Carbon Dots from Bovine Serum Albumin for Linezolid Drug Delivery as Potential Wound Healing Biomaterial: Bio-Synergistic Approach, Antibacterial Activity, and In Vitro and Ex Vivo Evaluation. Pharmaceutics 2023; 15:pharmaceutics15010234. [PMID: 36678866 PMCID: PMC9862409 DOI: 10.3390/pharmaceutics15010234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
A simple and green approach was developed to produce novel highly fluorescent bovine serum albumin carbon dots (BCDs) via facile one-step hydrothermal treatment, using bovine serum albumin as a precursor carbon source. Inherent blue photoluminescence of the synthesized BCDs provided a maximum photostability of 90.5 ± 1.2% and was characterized via TEM, FT-IR, XPS, XRD, UV-visible, and zeta potential analyses. By virtue of their extremely small size, intrinsic optical and photoluminescence properties, superior photostability, and useful non-covalent interactions with the synthetic oxazolidinone antibiotic linezolid (LNZ), BCDs were investigated as fluorescent nano-biocarriers for LNZ drug delivery. The release profile of LNZ from the drug delivery system (LNZ-BCDs) revealed a distinct biphasic release, which is beneficial for mollifying the lethal incidents associated with wound infection. The effective wound healing performance of the developed LNZ-BCDs were evaluated through various in vitro and ex vivo assays such as MTT, ex vivo hemolysis, in vitro antibacterial activity, in vitro skin-related enzyme inhibition, and scratch wound healing assays. The examination of LNZ-BCDs as an efficient wound healing biomaterial illustrated excellent biocompatibility and low cytotoxicity against normal human skin fibroblast (HSF) cell line, indicating distinct antibacterial activity against the most common wound infectious pathogens including Staphylococcus aureus (ATCC® 25922) and methicillin-resistant Staphylococcus aureus, robust anti-elastase, anti-collagenase, and anti-tyrosinase activities, and enhanced cell proliferation and migration effect. The obtained results confirmed the feasibility of using the newly designed fluorescent LNZ-BCDs nano-bioconjugate as a unique antibacterial biomaterial for effective wound healing and tissue regeneration. Besides, the greenly synthesized BCDs could be considered as a great potential substitute for toxic nanoparticles in biomedical applications due to their biocompatibility and intense fluorescence characteristics and in pharmaceutical industries as promising drug delivery nano-biocarriers for effective wound healing applications.
Collapse
|
6
|
Ghataty DS, Amer RI, Wasfi R, Shamma RN. Novel linezolid loaded bio-composite films as dressings for effective wound healing: experimental design, development, optimization, and antimicrobial activity. Drug Deliv 2022; 29:3168-3185. [PMID: 36184799 PMCID: PMC9543119 DOI: 10.1080/10717544.2022.2127974] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Biphasic release bio-composite films of the low water-soluble drug, linezolid (LNZ), were formulated using the solvent casting technique. Different polymers and plasticizers (gelatin, Tween 80, polyethylene glycol 400, and glycerol) were assessed for the preparation of bio-composite films. An I-optimal design was applied for the optimization and to study the impact of polymer concentration (X1), plasticizer concentration (X2), polymer type (X3), and plasticizer type (X4) on different LNZ-loaded bio-composite films. The film thickness, moisture content, mechanical properties, swelling index, and percentage of drug release at fixed times opted as dependent variables. Results demonstrated a significant effect of all independent variables on the drug release from the prepared bio-composite films. The plasticizer concentration significantly increased the thickness, moisture content, elongation at break, swelling index, and in vitro drug release and significantly reduced the tensile strength. The optimized LNZ-loaded bio-composite film comprised of 15% Tween 80 and 30% PEG 400 was highly swellable, elastic, acceptable tensile properties, safe, maintained a moist environment, and indicated great antimicrobial activity against both Staphylococcus aureus (ATCC® 25922) and methicillin-resistant Staphylococcus aureus (MRSA), which are common wound infectious bacteria. The present study concludes that the optimized LNZ-loaded bio-composite film was successfully designed with fast drug release kinetics and it could be regarded as a promising novel antimicrobial wound dressing formulation.
Collapse
Affiliation(s)
- Dina Saeed Ghataty
- Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Reham Ibrahim Amer
- Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt,Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Reham Wasfi
- Department of Microbiology and Immunology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Rehab Nabil Shamma
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt,CONTACT Rehab Nabil Shamma
| |
Collapse
|
7
|
Shaikh A, Kesharwani P, Gajbhiye V. Dendrimer as a momentous tool in tissue engineering and regenerative medicine. J Control Release 2022; 346:328-354. [PMID: 35452764 DOI: 10.1016/j.jconrel.2022.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 12/12/2022]
Abstract
Dendrimers have been comprehensively used for cargo delivery, nucleic acid delivery (genes, miRNA/siRNAs), delivery of macromolecules, and other various biomedical applications. Dendrimers are highly versatile in function and can be engineered as multifunctional biomacromolecules by modifying the surface for fulfilling different applications. Dendrimers are being used for crosslinking of existing synthetic and natural polymeric scaffolds to regulate their binding efficiency, stiffness, biocompatibility, transfection, and many other properties to mimic the in vivo extracellular matrix in tissue engineering and regenerative medicine (TERM). Dendritic inter-cellular linkers can enhance the linkages between cells and result in scaffold-independent tissue constructs. Effectively engineered dendrimers are the ideal molecules for delivering bioactive molecules such as cytokines, chemokines, growth factors, etc., and other metabolites for efficaciously regulating cell behavior. Dendrimeric nanostructures have shown tremendous results in various TERM fields like stem cells survival, osteogenesis, increased crosslinking for eye and corneal repair, and proliferation in cartilage. This review highlights the role and various aspects of dendritic polymers for TERM in general and with respect to specific tissues. This review also covers novel explorations and insights into the use of dendrimers in TERM, focusing on the developments in the past decade and perspective of the future.
Collapse
Affiliation(s)
- Aazam Shaikh
- Nanobioscience, Agharkar Research Institute, Pune 411004, India; Savitribai Phule Pune University, Pune 411007, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Virendra Gajbhiye
- Nanobioscience, Agharkar Research Institute, Pune 411004, India; Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
8
|
Spizzirri UG. Functional Polymers as Innovative Tools in the Delivery of Antimicrobial Agents. Pharmaceutics 2022; 14:pharmaceutics14030487. [PMID: 35335864 PMCID: PMC8950419 DOI: 10.3390/pharmaceutics14030487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
|
9
|
Abstract
The food packaging sector generates large volumes of plastic waste due to the high demand for packaged products with a short shelf-life. Biopolymers such as starch-based materials are a promising alternative to non-renewable resins, offering a sustainable and environmentally friendly food packaging alternative for single-use products. This article provides a chronology of the development of starch-based materials for food packaging. Particular emphasis is placed on the challenges faced in processing these materials using conventional processing techniques for thermoplastics and other emerging techniques such as electrospinning and 3D printing. The improvement of the performance of starch-based materials by blending with other biopolymers, use of micro- and nano-sized reinforcements, and chemical modification of starch is discussed. Finally, an overview of recent developments of these materials in smart food packaging is given.
Collapse
|
10
|
Carreño G, Pereira A, Ávila-Salas F, Marican A, Andrade F, Roca-Melendres MM, Valdés O, Vijayakumar S, Schwartz S, Abasolo I, Rafael D, Durán-Lara EF. Development of "on-demand" thermo-responsive hydrogels for anti-cancer drugs sustained release: Rational design, in silico prediction and in vitro validation in colon cancer models. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112483. [PMID: 34857269 DOI: 10.1016/j.msec.2021.112483] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/22/2021] [Accepted: 10/08/2021] [Indexed: 12/01/2022]
Abstract
A rational design accurate based on the use of Statistical Design of the Experiments (DoE) and Molecular Dynamics Simulations Studies allows the prediction and the understanding of thermo-responsive hydrogels prepared regarding their gelation temperature and anti-cancer drug release rate. N-isopropylacrilamide (NIPAM) modified with specific co-monomers and crosslinkers, can be used to prepare "on-demand" thermo-responsive hydrogels with the ideal properties for clinical applications in which local sustained release of drugs is crucial. Two preferential formulations resulting from the predictive studies of DoE and In Silico methods were synthesized by radical polymerization, fully characterized, and loaded with the anticancer drug Doxorubicin (Dox). The hydrogel formulations were characterized by swelling rate, turbidity, FTIR, 1H NMR, SEM, gelation time, rheology, and biocompatibility assays. Both formulations demonstrated adequate morphologic, rheological, and biocompatibility properties; however, important differences in terms of drug retention were detected. As demonstrated by a Dox cumulative release study and posteriorly confirmed by an efficacy assay in an in vitro colorectal cancer model, the formulation composed by NIPAM and 4-penten-1-ol crosslinked with poly(ethylene glycol) diacrylate (PEGDA) (PNiPenPH) present a slow release over the time, presenting ideal properties to become and ideal depot system for the local sustained release of anticancer drugs as adjuvant therapy or in the case of non-resectable tumors.
Collapse
Affiliation(s)
- Gustavo Carreño
- Bio and NanoMaterials Lab, Drug Delivery and Controlled Release, Universidad de Talca, Talca, Maule, Chile; Instituto de Química de Recursos Naturales, Universidad de Talca, Talca, Maule, Chile
| | - Alfredo Pereira
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca, Maule, Chile
| | - Fabián Ávila-Salas
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Universidad Mayor, Huechuraba 8580000, Región Metropolitana, Chile
| | - Adolfo Marican
- Bio and NanoMaterials Lab, Drug Delivery and Controlled Release, Universidad de Talca, Talca, Maule, Chile; Instituto de Química de Recursos Naturales, Universidad de Talca, Talca, Maule, Chile
| | - Fernanda Andrade
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; School of Pharmacy, Barcelona University, Barcelona, Spain
| | - Maria Mercé Roca-Melendres
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Oscar Valdés
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3460000, Maule, Chile
| | | | - Simó Schwartz
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Ibane Abasolo
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain; Functional Validation & Preclinical Research (FVPR), CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Diana Rafael
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain.
| | - Esteban F Durán-Lara
- Bio and NanoMaterials Lab, Drug Delivery and Controlled Release, Universidad de Talca, Talca, Maule, Chile; Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Maule, Chile.
| |
Collapse
|
11
|
Heteroaryl-Ethylenes as New Lead Compounds in the Fight against High Priority Bacterial Strains. Antibiotics (Basel) 2021; 10:antibiotics10091034. [PMID: 34572616 PMCID: PMC8466554 DOI: 10.3390/antibiotics10091034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 11/20/2022] Open
Abstract
The widespread use of antibiotics has led to a gradual increase in drug-resistant bacterial infections, which severely weakens the clinical efficacy of antibacterial therapies. In recent decades, stilbenes aroused great interest because of their high bioavailability, as well as their manifold biological activity. Our research efforts are focused on synthetic heteroaromatic stilbene derivatives as they represent a potentially new type of antibiotic with a wide antibacterial spectrum. Herein, a preliminary molecular modeling study and a versatile synthetic scheme allowed us to define eight heteroaromatic stilbene derivatives with potential antimicrobial activity. In order to evaluate our compound’s activity spectrum and antibacterial ability, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) tests have been performed on Gram-positive and Gram-negative ATCC strains. Compounds PB4, PB5, PB7, and PB8 showed the best values in terms of MIC and were also evaluated for MBC, which was found to be greater than MIC, confirming a bacteriostatic activity. For all compounds, we evaluated toxicity on colon-rectal adenocarcinoma cells tumor cells (CaCo2), once it was established that the whole selected set was more active than 5-Fluorouracil in reducing CaCo-2 cells viability. To the best of our knowledge, the biological assays have shown for these derivatives an excellent bacteriostatic activity, compared to similar molecular structures previously reported, thus paving the way for a new class of antibiotic compounds.
Collapse
|