1
|
Malik M, Steele SA, Mitra D, Long CJ, Hickman JJ. Trans-epithelial/endothelial electrical resistance (TEER): Current state of integrated TEER measurements in organ-on-a-chip devices. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2025; 34:100588. [PMID: 40276329 PMCID: PMC12017418 DOI: 10.1016/j.cobme.2025.100588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Trans-epithelial/endothelial electrical resistance (TEER) is a non-invasive and quick method of assessing the integrity of barrier tissues. Traditional TEER measurement methods such as chopstick electrode-based and chamber-based measurement work well with static, Transwell-based models; however, the same methods do not directly apply to human on a chip or organ-on-a-chip (OOC) platforms. With the wide variety of organ-on-a-chip devices, innovative designs to accurately measure TEER, without disturbing cells, are customized for various devices. Wire electrode integration, integrating a two-probe or four-probe technique, flexible printed circuit boards or multi-electrode glass substrate-based methods are some of the TEER measurement setups being utilized in conjunction with OOC systems. The variability in measurement setups associated with OOCs make standardization challenging; however, the field is working towards establishing guidelines on acceptable TEER values of different OOC constructs.
Collapse
Affiliation(s)
- Mridu Malik
- Hesperos Inc., 12501 Research Pkwy, Suite 100, Orlando, Florida 32826, USA
| | - Stecia A. Steele
- Hesperos Inc., 12501 Research Pkwy, Suite 100, Orlando, Florida 32826, USA
| | - Deepshikha Mitra
- Hesperos Inc., 12501 Research Pkwy, Suite 100, Orlando, Florida 32826, USA
| | | | - James J. Hickman
- Hesperos Inc., 12501 Research Pkwy, Suite 100, Orlando, Florida 32826, USA
- Nanoscience Technology Center, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| |
Collapse
|
2
|
Fisher D, Zabida O, Abdul-Rasool S, Willemse C. Cytotoxicity of methamphetamine exposure on Sertoli cells: a pilot study with implications for male infertility. Drug Chem Toxicol 2025:1-11. [PMID: 40034051 DOI: 10.1080/01480545.2025.2471383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/05/2025]
Abstract
Methamphetamine (Meth), a psychoactive drug, has been shown to reduce testicular weight and decrease sperm count, indicating its potential role in contributing to male infertility. We therefore assessed Meth's effects (0.1-100 μM) on TM4 Sertoli cell viability, toxicity, and proliferation (trypan blue exclusion assay), mitochondrial activity (MA) (XTT assay), while transepithelial electrical resistance (TEER) was used to examine monolayer permeability. The acute study (only 24-hour Meth exposure) mimics recreational users and the chronic study, the Meth addicts who require daily doses (24-96 hours). Acute Meth treatment had minimal impact on TM4 Sertoli cell viability and toxicity, while chronic exposure resulted in reduced cell viability and increased toxicity in a dose-related manner. Acute exposure suppressed cell division at 72 hours, while chronic exposure suppressed cell division at both 72 and 96 hours. Long-term suppression of MA was observed for both acute and chronic Meth exposure (20 µM and 100 µM). Both acute and chronic Meth exposure affected permeability across the blood-testis barrier (BTB), which persisted for up to 96 hours. Given the pivotal role of Sertoli cells in spermatogenesis, our findings provide a two-pronged mechanism for Meth-induced male infertility and indicate that short-term exposure may have long-term effects on the germinal epithelium.
Collapse
Affiliation(s)
- David Fisher
- Department of Medical Bioscience, Faculty of Natural Science, University of the Western Cape, Bellville, South Africa
- School of Health Professions, University of Missouri, Columbia, MO, USA
| | - Omar Zabida
- Department of Medical Bioscience, Faculty of Natural Science, University of the Western Cape, Bellville, South Africa
| | - Sahar Abdul-Rasool
- Department of Medical Bioscience, Faculty of Natural Science, University of the Western Cape, Bellville, South Africa
| | - Chontrelle Willemse
- Department of Medical Bioscience, Faculty of Natural Science, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
3
|
Hau RK, Wright SH, Cherrington NJ. Addressing the Clinical Importance of Equilibrative Nucleoside Transporters in Drug Discovery and Development. Clin Pharmacol Ther 2023; 114:780-794. [PMID: 37404197 PMCID: PMC11347013 DOI: 10.1002/cpt.2984] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023]
Abstract
The US Food and Drug Administration (FDA), European Medicines Agency (EMA), and Pharmaceuticals and Medical Devices Agency (PMDA) guidances on small-molecule drug-drug interactions (DDIs), with input from the International Transporter Consortium (ITC), recommend the evaluation of nine drug transporters. Although other clinically relevant drug uptake and efflux transporters have been discussed in ITC white papers, they have been excluded from further recommendation by the ITC and are not included in current regulatory guidances. These include the ubiquitously expressed equilibrative nucleoside transporters (ENT) 1 and ENT2, which have been recognized by the ITC for their potential role in clinically relevant nucleoside analog drug interactions for patients with cancer. Although there is comparatively limited clinical evidence supporting their role in DDI risk or other adverse drug reactions (ADRs) compared with the nine highlighted transporters, several in vitro and in vivo studies have identified ENT interactions with non-nucleoside/non-nucleotide drugs, in addition to nucleoside/nucleotide analogs. Some noteworthy examples of compounds that interact with ENTs include cannabidiol and selected protein kinase inhibitors, as well as the nucleoside analogs remdesivir, EIDD-1931, gemcitabine, and fialuridine. Consequently, DDIs involving the ENTs may be responsible for therapeutic inefficacy or off-target toxicity. Evidence suggests that ENT1 and ENT2 should be considered as transporters potentially involved in clinically relevant DDIs and ADRs, thereby warranting further investigation and regulatory consideration.
Collapse
Affiliation(s)
- Raymond K Hau
- Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona, USA
| | - Stephen H Wright
- Department of Physiology, College of Medicine, The University of Arizona, Tucson, Arizona, USA
| | - Nathan J Cherrington
- Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
4
|
Hau RK, Wright SH, Cherrington NJ. In Vitro and In Vivo Models for Drug Transport Across the Blood-Testis Barrier. Drug Metab Dispos 2023; 51:1157-1168. [PMID: 37258305 PMCID: PMC10449102 DOI: 10.1124/dmd.123.001288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/10/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023] Open
Abstract
The blood-testis barrier (BTB) is a selectively permeable membrane barrier formed by adjacent Sertoli cells (SCs) in the seminiferous tubules of the testes that develops intercellular junctional complexes to protect developing germ cells from external pressures. However, due to this inherent defense mechanism, the seminiferous tubule lumen can act as a pharmacological sanctuary site for latent viruses (e.g., Ebola, Zika) and cancers (e.g., leukemia). Therefore, it is critical to identify and evaluate BTB carrier-mediated drug delivery pathways to successfully treat these viruses and cancers. Many drugs are unable to effectively cross cell membranes without assistance from carrier proteins like transporters because they are large, polar, and often carry a charge at physiologic pH. SCs express transporters that selectively permit endogenous compounds, such as carnitine or nucleosides, across the BTB to support normal physiologic activity, although reproductive toxicants can also use these pathways, thereby circumventing the BTB. Certain xenobiotics, including select cancer therapeutics, antivirals, contraceptives, and environmental toxicants, are known to accumulate within the male genital tract and cause testicular toxicity; however, the transport pathways by which these compounds circumvent the BTB are largely unknown. Consequently, there is a need to identify the clinically relevant BTB transport pathways in in vitro and in vivo BTB models that recapitulate human pharmacokinetics and pharmacodynamics for these xenobiotics. This review summarizes the various in vitro and in vivo models of the BTB reported in the literature and highlights the strengths and weaknesses of certain models for drug disposition studies. SIGNIFICANCE STATEMENT: Drug disposition to the testes is influenced by the physical, physiological, and immunological components of the blood-testis barrier (BTB). But many compounds are known to cross the BTB by transporters, resulting in pharmacological and/or toxicological effects in the testes. Therefore, models that assess drug transport across the human BTB must adequately account for these confounding factors. This review identifies and discusses the benefits and limitations of various in vitro and in vivo BTB models for preclinical drug disposition studies.
Collapse
Affiliation(s)
- Raymond K Hau
- College of Pharmacy, Department of Pharmacology & Toxicology, (R.K.H., N.J.C.) and College of Medicine, Department of Physiology, The University of Arizona, Tucson, Arizona (S.H.W.)
| | - Stephen H Wright
- College of Pharmacy, Department of Pharmacology & Toxicology, (R.K.H., N.J.C.) and College of Medicine, Department of Physiology, The University of Arizona, Tucson, Arizona (S.H.W.)
| | - Nathan J Cherrington
- College of Pharmacy, Department of Pharmacology & Toxicology, (R.K.H., N.J.C.) and College of Medicine, Department of Physiology, The University of Arizona, Tucson, Arizona (S.H.W.)
| |
Collapse
|
5
|
Omolaoye TS, Cyril AC, Radhakrishnan R, Rawat SS, Karuvantevida N, du Plessis SS. The Effect of Statins on Male Reproductive Parameters: A Mechanism Involving Dysregulation of Gonadal Hormone Receptors and TRPV1. Int J Mol Sci 2023; 24:ijms24119221. [PMID: 37298172 DOI: 10.3390/ijms24119221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 06/12/2023] Open
Abstract
Statins have been shown to cause diverse male reproductive function impairment, and in some cases, orchialgia. Therefore, the current study investigated the possible mechanisms through which statins may alter male reproductive parameters. Thirty adult male Wistar rats (200-250 g) were divided into three groups. The animals were orally administered rosuvastatin (50 mg/kg), simvastatin (50 mg/kg), or 0.5% carboxy methyl cellulose (control), for a 30-day period. Spermatozoa were retrieved from the caudal epididymis for sperm analysis. The testis was used for all biochemical assays and immunofluorescent localization of biomarkers of interest. Rosuvastatin-treated animals presented with a significant decrease in sperm concentration when compared to both the control and simvastatin groups (p < 0.005). While no significant difference was observed between the simvastatin and the control group. The Sertoli cells, Leydig cells and whole testicular tissue homogenate expressed transcripts of solute carrier organic anion transporters (SLCO1B1 and SLCO1B3). There was a significant decrease in the testicular protein expression of the luteinizing hormone receptor, follicle stimulating hormone receptor, and transient receptor potential vanilloid 1 in the rosuvastatin and simvastatin-treated animals compared to the control. The expression of SLCO1B1, SLCO1B2, and SLCO1B3 in the different spermatogenic cells portray that un-bio transformed statin can be transported into the testicular microenvironment, which can subsequently alter the regulation of the gonadal hormone receptors, dysregulate pain-inflammatory biomarkers, and consequently impair sperm concentration.
Collapse
Affiliation(s)
- Temidayo S Omolaoye
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Asha C Cyril
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Rajan Radhakrishnan
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Surendra Singh Rawat
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Noushad Karuvantevida
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Stefan S du Plessis
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa
| |
Collapse
|
6
|
Hau RK, Wright SH, Cherrington NJ. Drug Transporters at the Human Blood-Testis Barrier. Drug Metab Dispos 2023; 51:560-571. [PMID: 36732077 PMCID: PMC10158500 DOI: 10.1124/dmd.122.001186] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/06/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Transporters are involved in the movement of many physiologically important molecules across cell membranes and have a substantial impact on the pharmacological and toxicological effect of xenobiotics. Many transporters have been studied in the context of disposition to, or toxicity in, organs such as the kidney and liver; however, transporters in the testes are increasingly gaining recognition for their role in drug transport across the blood-testis barrier (BTB). The BTB is an epithelial membrane barrier formed by adjacent Sertoli cells (SCs) in the seminiferous tubules that form intercellular junctional complexes to protect developing germ cells from the external environment. Consequently, many charged or large polar molecules cannot cross this barrier without assistance from a transporter. SCs express a variety of drug uptake and efflux transporters to control the flux of endogenous and exogenous molecules across the BTB. Recent studies have identified several transport pathways in SCs that allow certain drugs to circumvent the human BTB. These pathways may exist in other species, such as rodents and nonhuman primates; however, there is (1) a lack of information on their expression and/or localization in these species, and (2) conflicting reports on localization of some transporters that have been evaluated in rodents compared with humans. This review outlines the current knowledge on the expression and localization of pharmacologically relevant drug transporters in human testes and calls attention to the insufficient and contradictory understanding of testicular transporters in other species that are commonly used in drug disposition and toxicity studies. SIGNIFICANCE STATEMENT: While the expression, localization, and function of many xenobiotic transporters have been studied in organs such as the kidney and liver, the characterization of transporters in the testes is scarce. This review summarizes the expression and localization of common pharmacologically-relevant transporters in human testes that have significant implications for the development of drugs that can cross the blood-testis barrier. Potential expression differences between humans and rodents highlighted here suggest rodents may be inappropriate for some testicular disposition and toxicity studies.
Collapse
Affiliation(s)
- Raymond K Hau
- College of Pharmacy, Department of Pharmacology & Toxicology (R.K.H., N.J.C.) and College of Medicine, Department of Physiology (S.H.W.), The University of Arizona, Tucson, Arizona
| | - Stephen H Wright
- College of Pharmacy, Department of Pharmacology & Toxicology (R.K.H., N.J.C.) and College of Medicine, Department of Physiology (S.H.W.), The University of Arizona, Tucson, Arizona
| | - Nathan J Cherrington
- College of Pharmacy, Department of Pharmacology & Toxicology (R.K.H., N.J.C.) and College of Medicine, Department of Physiology (S.H.W.), The University of Arizona, Tucson, Arizona
| |
Collapse
|
7
|
Hau RK, Tash JS, Georg GI, Wright SH, Cherrington NJ. Physiological Characterization of the Transporter-Mediated Uptake of the Reversible Male Contraceptive H2-Gamendazole Across the Blood-Testis Barrier. J Pharmacol Exp Ther 2022; 382:299-312. [PMID: 35779861 PMCID: PMC9426764 DOI: 10.1124/jpet.122.001195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/14/2022] [Indexed: 11/22/2022] Open
Abstract
The blood-testis barrier (BTB) is formed by a tight network of Sertoli cells (SCs) to limit the movement of reproductive toxicants from the blood into the male genital tract. Transporters expressed at the basal membranes of SCs also influence the disposition of drugs across the BTB. The reversible, nonhormonal contraceptive, H2-gamendazole (H2-GMZ), is an indazole carboxylic acid analog that accumulates over 10 times more in the testes compared with other organs. However, the mechanism(s) by which H2-GMZ circumvents the BTB are unknown. This study describes the physiologic characteristics of the carrier-mediated process(es) that permit H2-GMZ and other analogs to penetrate SCs. Uptake studies were performed using an immortalized human SC line (hT-SerC) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Uptake of H2-GMZ and four analogs followed Michaelis-Menten transport kinetics (one analog exhibited poor penetration). H2-GMZ uptake was strongly inhibited by indomethacin, diclofenac, MK-571, and several analogs. Moreover, H2-GMZ uptake was stimulated by an acidic extracellular pH, reduced at basic pHs, and independent of extracellular Na+, K+, or Cl- levels, which are intrinsic characteristics of OATP-mediated transport. Therefore, the characteristics of H2-GMZ transport suggest that one or more OATPs may be involved. However, endogenous transporter expression in wild-type Chinese hamster ovary (CHO), Madin-Darby canine kidney (MDCK), and human embryonic kidney-293 (HEK-293) cells limited the utility of heterologous transporter expression to identify a specific OATP transporter. Altogether, characterization of the transporters involved in the flux of H2-GMZ provides insight into the selectivity of drug disposition across the human BTB to understand and overcome the pharmacokinetic and pharmacodynamic difficulties presented by this barrier. SIGNIFICANCE STATEMENT: Despite major advancements in female contraceptives, male alternatives, including vasectomy, condom usage, and physical withdrawal, are antiquated and the widespread availability of nonhormonal, reversible chemical contraceptives is nonexistent. Indazole carboxylic acid analogs such as H2-GMZ are promising new reversible, antispermatogenic drugs that are highly effective in rodents. This study characterizes the carrier-mediated processes that permit H2-GMZ and other drugs to enter Sertoli cells and the observations made here will guide the development of drugs that effectively circumvent the BTB.
Collapse
Affiliation(s)
- Raymond K Hau
- Department of Pharmacology and Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Department of Physiology, College of Medicine (S.H.W.), The University of Arizona, Tucson, Arizona; Department of Molecular and Integrative Physiology, KU School of Medicine, The University of Kansas Medical Center, Kansas City, Kansas (J.S.T.); Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, The University of Minnesota, Minneapolis, Minnesota (G.I.G.)
| | - Joseph S Tash
- Department of Pharmacology and Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Department of Physiology, College of Medicine (S.H.W.), The University of Arizona, Tucson, Arizona; Department of Molecular and Integrative Physiology, KU School of Medicine, The University of Kansas Medical Center, Kansas City, Kansas (J.S.T.); Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, The University of Minnesota, Minneapolis, Minnesota (G.I.G.)
| | - Gunda I Georg
- Department of Pharmacology and Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Department of Physiology, College of Medicine (S.H.W.), The University of Arizona, Tucson, Arizona; Department of Molecular and Integrative Physiology, KU School of Medicine, The University of Kansas Medical Center, Kansas City, Kansas (J.S.T.); Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, The University of Minnesota, Minneapolis, Minnesota (G.I.G.)
| | - Stephen H Wright
- Department of Pharmacology and Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Department of Physiology, College of Medicine (S.H.W.), The University of Arizona, Tucson, Arizona; Department of Molecular and Integrative Physiology, KU School of Medicine, The University of Kansas Medical Center, Kansas City, Kansas (J.S.T.); Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, The University of Minnesota, Minneapolis, Minnesota (G.I.G.)
| | - Nathan J Cherrington
- Department of Pharmacology and Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Department of Physiology, College of Medicine (S.H.W.), The University of Arizona, Tucson, Arizona; Department of Molecular and Integrative Physiology, KU School of Medicine, The University of Kansas Medical Center, Kansas City, Kansas (J.S.T.); Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, The University of Minnesota, Minneapolis, Minnesota (G.I.G.)
| |
Collapse
|
8
|
Maaroufi HO, Pauchova L, Lin YH, Wu BCH, Rouhova L, Kucerova L, Vieira LC, Renner M, Sehadova H, Hradilova M, Zurovec M. Mutation in Drosophila concentrative nucleoside transporter 1 alters spermatid maturation and mating behavior. Front Cell Dev Biol 2022; 10:945572. [PMID: 36105362 PMCID: PMC9467524 DOI: 10.3389/fcell.2022.945572] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/27/2022] [Indexed: 12/05/2022] Open
Abstract
Concentrative nucleoside transporters (Cnts) are unidirectional carriers that mediate the energy-costly influx of nucleosides driven by the transmembrane sodium gradient. Cnts are transmembrane proteins that share a common structural organization and are found in all phyla. Although there have been studies on Cnts from a biochemical perspective, no deep research has examined their role at the organismal level. Here, we investigated the role of the Drosophila melanogaster cnt1 gene, which is specifically expressed in the testes. We used the CRISPR/Cas9 system to generate a mutation in the cnt1 gene. The cnt1 mutants exhibited defects in the duration of copulation and spermatid maturation, which significantly impaired male fertility. The most striking effect of the cnt1 mutation in spermatid maturation was an abnormal structure of the sperm tail, in which the formation of major and minor mitochondrial derivatives was disrupted. Our results demonstrate the importance of cnt1 in male fertility and suggest that the observed defects in mating behavior and spermatogenesis are due to alterations in nucleoside transport and associated metabolic pathways.
Collapse
Affiliation(s)
- Houda Ouns Maaroufi
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Lucie Pauchova
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Yu-Hsien Lin
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Bulah Chia-Hsiang Wu
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Lenka Rouhova
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Lucie Kucerova
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia
| | - Ligia Cota Vieira
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia
| | - Marek Renner
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Hana Sehadova
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Miluse Hradilova
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Michal Zurovec
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
- *Correspondence: Michal Zurovec,
| |
Collapse
|
9
|
Hau RK, Klein RR, Wright SH, Cherrington NJ. Localization of Xenobiotic Transporters Expressed at the Human Blood-Testis Barrier. Drug Metab Dispos 2022; 50:770-780. [PMID: 35307651 PMCID: PMC9190233 DOI: 10.1124/dmd.121.000748] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/07/2022] [Indexed: 10/21/2023] Open
Abstract
The blood-testis barrier (BTB) is formed by basal tight junctions between adjacent Sertoli cells (SCs) of the seminiferous tubules and acts as a physical barrier to protect developing germ cells in the adluminal compartment from reproductive toxicants. Xenobiotics, including antivirals, male contraceptives, and cancer chemotherapeutics, are known to cross the BTB, although the mechanisms that permit barrier circumvention are generally unknown. This study used immunohistological staining of human testicular tissue to determine the site of expression for xenobiotic transporters that facilitate transport across the BTB. Organic anion transporter (OAT) 1, OAT2, and organic cation transporter, novel (OCTN) 1 primarily localized to the basal membrane of SCs, whereas OCTN2, multidrug resistance protein (MRP) 3, MRP6, and MRP7 localized to SC basal membranes and peritubular myoid cells (PMCs) surrounding the seminiferous tubules. Concentrative nucleoside transporter (CNT) 2 localized to Leydig cells (LCs), PMCs, and SC apicolateral membranes. Organic cation transporter (OCT) 1, OCT2, and OCT3 mostly localized to PMCs and LCs, although there was minor staining in developing germ cells for OCT3. Organic anion transporting polypeptide (OATP) 1A2, OATP1B1, OATP1B3, OATP2A1, OATP2B1, and OATP3A1-v2 localized to SC basal membranes with diffuse staining for some transporters. Notably, OATP1C1 and OATP4A1 primarily localized to LCs. Positive staining for multidrug and toxin extrusion protein (MATE) 1 was only observed throughout the adluminal compartment. Definitive staining for CNT1, OAT3, MATE2, and OATP6A1 was not observed. The location of these transporters is consistent with their involvement in the movement of xenobiotics across the BTB. Altogether, the localization of these transporters provides insight into the mechanisms of drug disposition across the BTB and will be useful in developing tools to overcome the pharmacokinetic and pharmacodynamic difficulties presented by the BTB. SIGNIFICANCE STATEMENT: Although the total mRNA and protein expression of drug transporters in the testes has been explored, the localization of many transporters at the blood-testis barrier (BTB) has not been determined. This study applied immunohistological staining in human testicular tissues to identify the cellular localization of drug transporters in the testes. The observations made in this study have implications for the development of drugs that can effectively use transporters expressed at the basal membranes of Sertoli cells to bypass the BTB.
Collapse
Affiliation(s)
- Raymond K Hau
- Department of Pharmacology & Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Departments of Pathology (R.R.K.) and Physiology (S.H.W.), College of Medicine, University of Arizona, Tucson, Arizona
| | - Robert R Klein
- Department of Pharmacology & Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Departments of Pathology (R.R.K.) and Physiology (S.H.W.), College of Medicine, University of Arizona, Tucson, Arizona
| | - Stephen H Wright
- Department of Pharmacology & Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Departments of Pathology (R.R.K.) and Physiology (S.H.W.), College of Medicine, University of Arizona, Tucson, Arizona
| | - Nathan J Cherrington
- Department of Pharmacology & Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Departments of Pathology (R.R.K.) and Physiology (S.H.W.), College of Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
10
|
Pochini L, Galluccio M, Scalise M, Console L, Pappacoda G, Indiveri C. OCTN1: A Widely Studied but Still Enigmatic Organic Cation Transporter Linked to Human Pathology and Drug Interactions. Int J Mol Sci 2022; 23:ijms23020914. [PMID: 35055100 PMCID: PMC8776198 DOI: 10.3390/ijms23020914] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 01/27/2023] Open
Abstract
The Novel Organic Cation Transporter, OCTN1, is the first member of the OCTN subfamily; it belongs to the wider Solute Carrier family SLC22, which counts many members including cation and anion organic transporters. The tertiary structure has not been resolved for any cation organic transporter. The functional role of OCNT1 is still not well assessed despite the many functional studies so far conducted. The lack of a definitive identification of OCTN1 function can be attributed to the different experimental systems and methodologies adopted for studying each of the proposed ligands. Apart from the contradictory data, the international scientific community agrees on a role of OCTN1 in protecting cells and tissues from oxidative and/or inflammatory damage. Moreover, the involvement of this transporter in drug interactions and delivery has been well clarified, even though the exact profile of the transported/interacting molecules is still somehow confusing. Therefore, OCTN1 continues to be a hot topic in terms of its functional role and structure. This review focuses on the most recent advances on OCTN1 in terms of functional aspects, physiological roles, substrate specificity, drug interactions, tissue expression, and relationships with pathology.
Collapse
Affiliation(s)
- Lorena Pochini
- Unit of Biochemistry, Molecular Biotechnology and Molecular Biology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (L.P.); (M.G.); (M.S.); (L.C.); (G.P.)
| | - Michele Galluccio
- Unit of Biochemistry, Molecular Biotechnology and Molecular Biology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (L.P.); (M.G.); (M.S.); (L.C.); (G.P.)
| | - Mariafrancesca Scalise
- Unit of Biochemistry, Molecular Biotechnology and Molecular Biology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (L.P.); (M.G.); (M.S.); (L.C.); (G.P.)
| | - Lara Console
- Unit of Biochemistry, Molecular Biotechnology and Molecular Biology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (L.P.); (M.G.); (M.S.); (L.C.); (G.P.)
| | - Gilda Pappacoda
- Unit of Biochemistry, Molecular Biotechnology and Molecular Biology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (L.P.); (M.G.); (M.S.); (L.C.); (G.P.)
| | - Cesare Indiveri
- Unit of Biochemistry, Molecular Biotechnology and Molecular Biology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (L.P.); (M.G.); (M.S.); (L.C.); (G.P.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), National Research Council—CNR, Via Amendola 122/O, 70126 Bari, Italy
- Correspondence:
| |
Collapse
|
11
|
Jensen CFS, Wang D, Mamsen LS, Giwercman A, Jørgensen N, Fode M, Ohl D, Dong L, Hildorf SE, Pors SE, Fedder J, Ntemou E, Andersen CY, Sønksen J. Sertoli and Germ Cells Within Atrophic Seminiferous Tubules of Men With Non-Obstructive Azoospermia. Front Endocrinol (Lausanne) 2022; 13:825904. [PMID: 35721721 PMCID: PMC9201000 DOI: 10.3389/fendo.2022.825904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Infertile men with non-obstructive azoospermia (NOA) have impaired spermatogenesis. Dilated and un-dilated atrophic seminiferous tubules are often present in the testes of these patients, with the highest likelihood of active spermatogenesis in the dilated tubules. Little is known about the un-dilated tubules, which in NOA patients constitute the majority. To advance therapeutic strategies for men with NOA who fail surgical sperm retrieval we aimed to characterize the spermatogonial stem cell microenvironment in atrophic un-dilated tubules. METHODS Testis biopsies approximately 3x3x3 mm3 were obtained from un-dilated areas from 34 patients. They were classified as hypospermatogenesis (HS) (n=5), maturation arrest (MA) (n=14), and Sertoli cell only (SCO) (n= 15). Testis samples from five fertile men were included as controls. Biopsies were used for histological analysis, RT-PCR analysis and immunofluorescence of germ and Sertoli cell markers. RESULTS Anti-Müllerian hormone mRNA and protein expression was increased in un-dilated tubules in all three NOA subtypes, compared to the control, showing an immature state of Sertoli cells (p<0.05). The GDNF mRNA expression was significantly increased in MA (P=0.0003). The BMP4 mRNA expression showed a significant increase in HS, MA, and SCO (P=0.02, P=0.0005, P=0.02, respectively). The thickness of the tubule wall was increased 2.2-fold in the SCO-NOA compared to the control (p<0.05). In germ cells, we found the DEAD-box helicase 4 (DDX4) and melanoma-associated antigen A4 (MAGE-A4) mRNA and protein expression reduced in NOA (MAGE-A: 46% decrease in HS, 53% decrease in MA, absent in SCO). In HS-NOA, the number of androgen receptor positive Sertoli cells was reduced 30% with a similar pattern in mRNA expression. The γH2AX expression was increased in SCO as compared to HS and MA. However, none of these differences reached statistical significance probably due to low number of samples. CONCLUSIONS Sertoli cells were shown to be immature in un-dilated tubules of three NOA subtypes. The increased DNA damage in Sertoli cells and thicker tubule wall in SCO suggested a different mechanism for the absence of spermatogenesis from SCO to HS and MA. These results expand insight into the differences in un-dilated tubules from the different types of NOA patients.
Collapse
Affiliation(s)
- Christian Fuglesang Skjødt Jensen
- Department of Urology, Herlev and Gentofte Hospital, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Danyang Wang
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Linn Salto Mamsen
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Aleksander Giwercman
- Department of Translational Medicine and Reproductive Medicine Centre, Lunds University and Skane University Hospital, Malmö, Sweden
| | - Niels Jørgensen
- Department of Growth and Reproduction, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Mikkel Fode
- Department of Urology, Herlev and Gentofte Hospital, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Dana Ohl
- Department of Urology, University of Michigan, Ann Arbor, MI, United States
| | - Lihua Dong
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Simone Engmann Hildorf
- Centre of Andrology & Fertility Clinic, Department D, Odense University Hospital, Odense C, Denmark
| | - Susanne Elisabeth Pors
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Jens Fedder
- Centre of Andrology & Fertility Clinic, Department D, Odense University Hospital, Odense C, Denmark
| | - Elissavet Ntemou
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
- *Correspondence: Elissavet Ntemou,
| | - Claus Yding Andersen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Jens Sønksen
- Department of Urology, Herlev and Gentofte Hospital, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Miller SR, Jilek JL, McGrath ME, Hau RK, Jennings EQ, Galligan JJ, Wright SH, Cherrington NJ. Testicular disposition of clofarabine in rats is dependent on equilibrative nucleoside transporters. Pharmacol Res Perspect 2021; 9:e00831. [PMID: 34288585 PMCID: PMC8292784 DOI: 10.1002/prp2.831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/18/2021] [Indexed: 01/13/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer in children and adolescents. Although the 5-year survival rate is high, some patients respond poorly to chemotherapy or have recurrence in locations such as the testis. The blood-testis barrier (BTB) can prevent complete eradication by limiting chemotherapeutic access and lead to testicular relapse unless a chemotherapeutic is a substrate of drug transporters present at this barrier. Equilibrative nucleoside transporter (ENT) 1 and ENT2 facilitate the movement of substrates across the BTB. Clofarabine is a nucleoside analog used to treat relapsed or refractory ALL. This study investigated the role of ENTs in the testicular disposition of clofarabine. Pharmacological inhibition of the ENTs by 6-nitrobenzylthioinosine (NBMPR) was used to determine ENT contribution to clofarabine transport in primary rat Sertoli cells, in human Sertoli cells, and across the rat BTB. The presence of NBMPR decreased clofarabine uptake by 40% in primary rat Sertoli cells (p = .0329) and by 53% in a human Sertoli cell line (p = .0899). Rats treated with 10 mg/kg intraperitoneal (IP) injection of the NBMPR prodrug, 6-nitrobenzylthioinosine 5'-monophosphate (NBMPR-P), or vehicle, followed by an intravenous (IV) bolus 10 mg/kg dose of clofarabine, showed a trend toward a lower testis concentration of clofarabine than vehicle (1.81 ± 0.59 vs. 2.65 ± 0.92 ng/mg tissue; p = .1160). This suggests that ENTs could be important for clofarabine disposition. Clofarabine may be capable of crossing the human BTB, and its potential use as a first-line treatment to avoid testicular relapse should be considered.
Collapse
Affiliation(s)
- Siennah R. Miller
- College of PharmacyDepartment of Pharmacology & ToxicologyUniversity of ArizonaTucsonAZUSA
| | - Joseph L. Jilek
- College of PharmacyDepartment of Pharmacology & ToxicologyUniversity of ArizonaTucsonAZUSA
| | - Meghan E. McGrath
- College of PharmacyDepartment of Pharmacology & ToxicologyUniversity of ArizonaTucsonAZUSA
| | - Raymond K. Hau
- College of PharmacyDepartment of Pharmacology & ToxicologyUniversity of ArizonaTucsonAZUSA
| | - Erin Q. Jennings
- College of PharmacyDepartment of Pharmacology & ToxicologyUniversity of ArizonaTucsonAZUSA
| | - James J. Galligan
- College of PharmacyDepartment of Pharmacology & ToxicologyUniversity of ArizonaTucsonAZUSA
| | - Stephen H. Wright
- College of MedicineDepartment of PhysiologyUniversity of ArizonaTucsonAZUSA
| | - Nathan J. Cherrington
- College of PharmacyDepartment of Pharmacology & ToxicologyUniversity of ArizonaTucsonAZUSA
| |
Collapse
|