1
|
Suleman S, Khalifa MS, Fawaz S, Alhaque S, Chinea Y, Themis M. Analysis of HIV-1-Based Lentiviral Vector Particle Composition by PacBio Long-Read Nucleic Acid Sequencing. Hum Gene Ther 2025; 36:628-636. [PMID: 39973307 DOI: 10.1089/hum.2024.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025] Open
Abstract
Lentivirus (LV) vectors offer permanent delivery of therapeutic genes to the host through an RNA intermediate genome. They are one of the most commonly used vectors for clinical gene therapy of inherited disorders such as immune deficiencies and cancer immunotherapy. One of the most difficult challenges facing their widespread application to patients is the large-scale production of highly pure vector stocks. To improve vector production and downstream purification, there has been a recent investment in the United Kingdom to establish good manufacturing process (GMP)-licensed centers for manufacture and quality control. Other requirements for these vectors include their target cell specificity and tropism, how to regulate gene expression of the therapeutic payload and their potential side effects. Comprehensive detail on the full nucleic acid content of LV is unknown, even though they have entered clinical trials. With potential adverse effects in mind, it is important to identify these contents to assess their safety and purity. In this study, we used highly sensitive PacBio long-distance, next-generation sequencing of reverse-transcribed vector component RNA to investigate the nucleic acid composition of recombinant HIV-1 particles generated by human 293T packaging cells. In this article, we describe our findings of nucleic acids other than the recombinant vector genome that exist, which could potentially be delivered during gene transfer, and suggest that removal of these unwanted components be considered before clinical LV application.
Collapse
Affiliation(s)
- Saqlain Suleman
- Department of Life Sciences, Brunel University London, London, United Kingdom
- Faculty of Science and Engineering, Anglia Ruskin University, Cambridge, United Kingdom
- Testavec Ltd., Queensgate House, Maidenhead, United Kingdom
| | - Mohammad S Khalifa
- Department of Life Sciences, Brunel University London, London, United Kingdom
| | - Serena Fawaz
- Department of Life Sciences, Brunel University London, London, United Kingdom
| | - Sharmin Alhaque
- Department of Life Sciences, Brunel University London, London, United Kingdom
| | - Yaghoub Chinea
- Department of Life Sciences, Brunel University London, London, United Kingdom
| | - Michael Themis
- Department of Life Sciences, Brunel University London, London, United Kingdom
- Testavec Ltd., Queensgate House, Maidenhead, United Kingdom
- Division of Ecology and Evolution, Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
2
|
Li Y, Yang Z, Xu M, Guan H, Wu Z, Li S. CALD1 inhibits invasion of human ovarian cancer cells by affecting cytoskeletal structure and the number of focal adhesion. Transl Cancer Res 2025; 14:1323-1335. [PMID: 40104711 PMCID: PMC11912064 DOI: 10.21037/tcr-24-1375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/04/2024] [Indexed: 03/20/2025]
Abstract
Background Ovarian cancer (OV) is associated with the highest mortality rate among gynecological cancers, largely due to late diagnosis and chemoresistance. The identification of novel diagnostic markers and therapeutic targets is crucial. Caldesmon 1 (CALD1), a cytoskeleton-regulating protein, has been implicated in various cancers. This study aims to investigate the expression and functional significance of CALD1 in OV, focusing on its potential impact on cell invasion and metastasis. Methods We analyzed CALD1 expression using The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases, along with tissue microarray immunohistochemistry (IHC). Drug sensitivity analysis was performed using the 'oncopredict' R package. A CALD1 gene network was constructed, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. SK-OV-3 cell lines with stable CALD1 knockdown were established and verified by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot (WB). We then assessed cell invasiveness using Transwell assays and visualized cytoskeletal changes through immunofluorescence staining of F-actin and Vinculin. Results The expression of CALD1 was significantly reduced in OV tissues compared to normal tissues. Patients with high and low expression levels of CALD1 showed significant differences in their response to chemotherapeutic drugs. CALD1 and its related genes were found to play an essential role in regulating cytoskeleton organization, focal adhesion formation, and cell movement processes. CALD1 knockdown cells exhibited a significant reduction in F-actin stress fibers, a loose cytoskeleton structure, decreased Vinculin expression, and enhanced migration ability. Conclusions Attenuated expression of CALD1 in SK-OV-3 cells leads to fewer F-actin stress fibers, reducing the association between the cytoskeleton and Vinculin. This results in reduced cellular focal adhesions and increased invasiveness of SK-OV-3 cells, promoting OV cell metastasis. These findings suggest that CALD1 may have important clinical implications in the diagnosis and treatment of OV.
Collapse
Affiliation(s)
- Yongchao Li
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Alar, China
| | - Zhao Yang
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Menglong Xu
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Alar, China
| | - Haocheng Guan
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Alar, China
| | - Zhenhui Wu
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Alar, China
| | - Shuwei Li
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Alar, China
| |
Collapse
|
3
|
Zhang A, Zhang X, Chen J, Shi X, Yu X, He Z, Sun J, Sun M, Liu Z. Approaches and applications in transdermal and transpulmonary gene drug delivery. Front Bioeng Biotechnol 2025; 12:1519557. [PMID: 39881959 PMCID: PMC11775749 DOI: 10.3389/fbioe.2024.1519557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/20/2024] [Indexed: 01/31/2025] Open
Abstract
Gene therapy has emerged as a pivotal component in the treatment of diverse genetic and acquired human diseases. However, effective gene delivery remains a formidable challenge to overcome. The presence of degrading enzymes, acidic pH conditions, and the gastrointestinal mucus layer pose significant barriers for genetic therapy, necessitating exploration of alternative therapeutic options. In recent years, transdermal and transpulmonary gene delivery modalities offer promising avenues with multiple advantages, such as non-invasion, avoided liver first-pass effect and improved patient compliance. Considering the rapid development of gene therapeutics via transdermal and transpulmonary administration, here we aim to summarize the nearest advances in transdermal and transpulmonary gene drug delivery. In this review, we firstly elaborate on current delivery carrier in gene therapy. We, further, describe approaches and applications for enhancing transdermal and transpulmonary gene delivery encompassing microneedles, chemical enhancers, physical methods for transdermal administration as well as nebulized formulations, dry powder formulations, and pressurized metered dose formulations for efficient transpulmonary delivery. Last but not least, the opportunities and outlooks of gene therapy through both administrated routes are highlighted.
Collapse
Affiliation(s)
- Anni Zhang
- Department of Ultrasound, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| | - Xuran Zhang
- Department of Orthopedics, Fuxin Center Hospital, Fuxin, Liaoning, China
| | - Jiahui Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xijuan Yu
- Department of Ultrasound, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang, Liaoning, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang, Liaoning, China
| | - Mengchi Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang, Liaoning, China
| | - Zhijun Liu
- Department of Ultrasound, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Tavakolidakhrabadi N, Ding WY, Saleem MA, Welsh GI, May C. Gene therapy and kidney diseases. Mol Ther Methods Clin Dev 2024; 32:101333. [PMID: 39434922 PMCID: PMC11492605 DOI: 10.1016/j.omtm.2024.101333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Chronic kidney disease (CKD) poses a significant global health challenge, projected to become one of the leading causes of death by 2040. Current treatments primarily manage complications and slow progression, highlighting the urgent need for personalized therapies targeting the disease-causing genes. Our increased understanding of the underlying genomic changes that lead to kidney diseases coupled with recent successful gene therapies targeting specific kidney cells have turned gene therapy and genome editing into a promising therapeutic approach for treating kidney disease. This review paper reflects on different delivery routes and systems that can be exploited to target specific kidney cells and the ways that gene therapy can be used to improve kidney health.
Collapse
Affiliation(s)
- Nadia Tavakolidakhrabadi
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| | - Wen Y. Ding
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| | - Moin A. Saleem
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
- Department of Paediatric Nephrology, Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Upper Maudlin Street, Bristol BS2 8BJ, UK
| | - Gavin I. Welsh
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| | - Carl May
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| |
Collapse
|
5
|
Zhang SH, Peng LL, Chen YF, Xu Y, Moradi V. Focusing on exosomes to overcome the existing bottlenecks of CAR-T cell therapy. Inflamm Regen 2024; 44:45. [PMID: 39490997 PMCID: PMC11533312 DOI: 10.1186/s41232-024-00358-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
Since chimeric antigen receptor T (CAR-T) cells were introduced three decades ago, the treatment using these cells has led to outstanding outcomes, and at the moment, CAR-T cell therapy is a well-established mainstay for treating CD19 + malignancies and multiple myeloma. Despite the astonishing results of CAR-T cell therapy in B-cell-derived malignancies, several bottlenecks must be overcome to promote its safety and efficacy and broaden its applicability. These bottlenecks include cumbersome production process, safety concerns of viral vectors, poor efficacy in treating solid tumors, life-threatening side effects, and dysfunctionality of infused CAR-T cells over time. Exosomes are nano-sized vesicles that are secreted by all living cells and play an essential role in cellular crosstalk by bridging between cells. In this review, we discuss how the existing bottlenecks of CAR-T cell therapy can be overcome by focusing on exosomes. First, we delve into the effect of tumor-derived exosomes on the CAR-T cell function and discuss how inhibiting their secretion can enhance the efficacy of CAR-T cell therapy. Afterward, the application of exosomes to the manufacturing of CAR-T cells in a non-viral approach is discussed. We also review the latest advancements in ex vivo activation and cultivation of CAR-T cells using exosomes, as well as the potential of engineered exosomes to in vivo induction or boost the in vivo proliferation of CAR-T cells. Finally, we discuss how CAR-engineered exosomes can be used as a versatile tool for the direct killing of tumor cells or delivering intended therapeutic payloads in a targeted manner.
Collapse
Affiliation(s)
- Si-Heng Zhang
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, 999078, China
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, 310000, China
| | - Ling-Long Peng
- Wuhu Hospital, East China Normal University (The Second People's Hospital of Wuhu), Wuhu, 241000, China
| | - Yi-Fei Chen
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, 999078, China
| | - Yan Xu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, 310000, China.
| | - Vahid Moradi
- Hematology and Bood Transfusion Science Department, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Arrasate A, Bravo I, Lopez-Robles C, Arbelaiz-Sarasola A, Ugalde M, Meijueiro ML, Zuazo M, Valero A, Banos-Mateos S, Ramirez JC, Albo C, Lamsfus-Calle A, Fertin MJ. Establishment and Characterization of a Stable Producer Cell Line Generation Platform for the Manufacturing of Clinical-Grade Lentiviral Vectors. Biomedicines 2024; 12:2265. [PMID: 39457578 PMCID: PMC11504443 DOI: 10.3390/biomedicines12102265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: To date, nearly 300 lentiviral-based gene therapy clinical trials have been conducted, with eight therapies receiving regulatory approval for commercialization. These advances, along with the increased number of advanced-phase clinical trials, have prompted contract development and manufacturing organizations (CDMOs) to develop innovative strategies to address the growing demand for large-scale batches of lentiviral vectors (LVVs). Consequently, manufacturers have focused on optimizing processes under good manufacturing practices (GMPs) to improve cost-efficiency, increase process robustness, and ensure regulatory compliance. Nowadays, the LVV production process mainly relies on the transient transfection of four plasmids encoding for the lentiviral helper genes and the transgene. While this method is efficient at small scales and has also proven to be scalable, the industry is exploring alternative processes due to the high cost of GMP reagents, and the batch-to-batch variability predominantly attributed to the transfection step. Methods: Here, we report the development and implementation of a reliable and clinical-grade envisioned platform based on the generation of stable producer cell lines (SCLs) from an initial well-characterized lentiviral packaging cell line (PCL). Results: This platform enables the production of VSV-G-pseudotyped LVVs through a fully transfection-free manufacturing process. Our data demonstrate that the developed platform will facilitate successful technological transfer to large-scale LVV production for clinical application. Conclusions: With this simple and robust stable cell line generation strategy, we address key concerns associated with the costs and reproducibility of current manufacturing processes.
Collapse
Affiliation(s)
- Ane Arrasate
- VIVEbiotech, Tandem Building, 20014 Donostia, Spain; (A.A.); (I.B.); (C.L.-R.); (A.A.-S.); (M.U.); (M.L.M.); (M.Z.); (A.V.); (S.B.-M.); (C.A.); (A.L.-C.)
- Campus of Biscay, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Igone Bravo
- VIVEbiotech, Tandem Building, 20014 Donostia, Spain; (A.A.); (I.B.); (C.L.-R.); (A.A.-S.); (M.U.); (M.L.M.); (M.Z.); (A.V.); (S.B.-M.); (C.A.); (A.L.-C.)
| | - Carlos Lopez-Robles
- VIVEbiotech, Tandem Building, 20014 Donostia, Spain; (A.A.); (I.B.); (C.L.-R.); (A.A.-S.); (M.U.); (M.L.M.); (M.Z.); (A.V.); (S.B.-M.); (C.A.); (A.L.-C.)
| | - Ane Arbelaiz-Sarasola
- VIVEbiotech, Tandem Building, 20014 Donostia, Spain; (A.A.); (I.B.); (C.L.-R.); (A.A.-S.); (M.U.); (M.L.M.); (M.Z.); (A.V.); (S.B.-M.); (C.A.); (A.L.-C.)
| | - Maddi Ugalde
- VIVEbiotech, Tandem Building, 20014 Donostia, Spain; (A.A.); (I.B.); (C.L.-R.); (A.A.-S.); (M.U.); (M.L.M.); (M.Z.); (A.V.); (S.B.-M.); (C.A.); (A.L.-C.)
| | - Martha Lucia Meijueiro
- VIVEbiotech, Tandem Building, 20014 Donostia, Spain; (A.A.); (I.B.); (C.L.-R.); (A.A.-S.); (M.U.); (M.L.M.); (M.Z.); (A.V.); (S.B.-M.); (C.A.); (A.L.-C.)
| | - Miren Zuazo
- VIVEbiotech, Tandem Building, 20014 Donostia, Spain; (A.A.); (I.B.); (C.L.-R.); (A.A.-S.); (M.U.); (M.L.M.); (M.Z.); (A.V.); (S.B.-M.); (C.A.); (A.L.-C.)
| | - Ana Valero
- VIVEbiotech, Tandem Building, 20014 Donostia, Spain; (A.A.); (I.B.); (C.L.-R.); (A.A.-S.); (M.U.); (M.L.M.); (M.Z.); (A.V.); (S.B.-M.); (C.A.); (A.L.-C.)
| | - Soledad Banos-Mateos
- VIVEbiotech, Tandem Building, 20014 Donostia, Spain; (A.A.); (I.B.); (C.L.-R.); (A.A.-S.); (M.U.); (M.L.M.); (M.Z.); (A.V.); (S.B.-M.); (C.A.); (A.L.-C.)
| | - Juan Carlos Ramirez
- VIVEbiotech, Tandem Building, 20014 Donostia, Spain; (A.A.); (I.B.); (C.L.-R.); (A.A.-S.); (M.U.); (M.L.M.); (M.Z.); (A.V.); (S.B.-M.); (C.A.); (A.L.-C.)
| | - Carmen Albo
- VIVEbiotech, Tandem Building, 20014 Donostia, Spain; (A.A.); (I.B.); (C.L.-R.); (A.A.-S.); (M.U.); (M.L.M.); (M.Z.); (A.V.); (S.B.-M.); (C.A.); (A.L.-C.)
| | - Andrés Lamsfus-Calle
- VIVEbiotech, Tandem Building, 20014 Donostia, Spain; (A.A.); (I.B.); (C.L.-R.); (A.A.-S.); (M.U.); (M.L.M.); (M.Z.); (A.V.); (S.B.-M.); (C.A.); (A.L.-C.)
| | - Marie J. Fertin
- VIVEbiotech, Tandem Building, 20014 Donostia, Spain; (A.A.); (I.B.); (C.L.-R.); (A.A.-S.); (M.U.); (M.L.M.); (M.Z.); (A.V.); (S.B.-M.); (C.A.); (A.L.-C.)
| |
Collapse
|
7
|
Keyer V, Syzdykova L, Ingirbay B, Sedova E, Zauatbayeva G, Kulatay T, Shevtsov A, Shustov AV. Non-industrial production of therapeutic lentiviral vectors: How to provide vectors to academic CAR-T. Biotechnol Bioeng 2024; 121:3252-3268. [PMID: 38963234 DOI: 10.1002/bit.28794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/31/2024] [Accepted: 06/20/2024] [Indexed: 07/05/2024]
Abstract
Bringing effective cancer therapy in the form of chimeric antigen receptor technology to untapped markets faces numerous challenges, including a global shortage of therapeutic lentiviral or retroviral vectors on which all current clinical therapies using genetically modified T cells are based. Production of these lentiviral vectors in academic settings in principle opens the way to local production of therapeutic cells, which is the only economically viable approach to make this therapy available to patients in developing countries. The conditions for obtaining and concentrating lentiviral vectors have been optimized and described. The calcium phosphate precipitation method was found to be suitable for transfecting high cell-density cultures, a prerequisite for high titers. We describe protocols for gradually increasing production from 6-well plates to P100 plates, T-175 flasks, and 5-layer stacks while maintaining high titers, >108 transducing units. Concentration experiments using ultracentrifugation revealed the advantage of lower centrifugation speeds compared to competing protocols. The resulting batches of lentiviral vectors had a titer of 1010 infectious particles and were used to transduce primary human T lymphocytes generating chimeric antigen receptor T cells, the quality of which was checked and found potential applicability for treatment.
Collapse
Affiliation(s)
- Viktoriya Keyer
- Laboratory for Genetic Engineering, National Center for Biotechnology, Astana, Kazakhstan
| | - Laura Syzdykova
- Laboratory for Genetic Engineering, National Center for Biotechnology, Astana, Kazakhstan
| | - Bakytkali Ingirbay
- Laboratory for Genetic Engineering, National Center for Biotechnology, Astana, Kazakhstan
| | - Elena Sedova
- Laboratory for Genetic Engineering, National Center for Biotechnology, Astana, Kazakhstan
| | - Gulzat Zauatbayeva
- Laboratory for Genetic Engineering, National Center for Biotechnology, Astana, Kazakhstan
| | - Tolganay Kulatay
- Laboratory for Genetic Engineering, National Center for Biotechnology, Astana, Kazakhstan
| | - Alexandr Shevtsov
- Laboratory for Genetic Engineering, National Center for Biotechnology, Astana, Kazakhstan
| | - Alexandr V Shustov
- Laboratory for Genetic Engineering, National Center for Biotechnology, Astana, Kazakhstan
| |
Collapse
|
8
|
Gao M, Sun Q, Zhang H, Liu M, Peng R, Qin W, Wang Q, Yang T, Zhou M, He X, Sun G. Bioinspired Nano-Photosensitizer-Activated Caspase-3/GSDME Pathway Induces Pyroptosis in Lung Cancer Cells. Adv Healthc Mater 2024; 13:e2401616. [PMID: 38895987 DOI: 10.1002/adhm.202401616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/09/2024] [Indexed: 06/21/2024]
Abstract
Noninflammatory apoptosis is transformed into inflammatory pyroptosis by activating caspase-3 to lyse gasdermin E (GSDME), and this process can be used as an effective therapeutic strategy. Thus, a selective and powerful inducer of activated caspase-3 plays a vital role in pyroptosis-based cancer therapy. Herein, a human cell membrane vesicle-based nanoplatform (HCNP) is designed for photodynamic therapy (PDT). HCNP is modified with vesicular stomatitis virus G-protein (VSVG) to anchor nano-photosensitizers on the tumor cell membrane. Photosensitizers are bonded to HCNP by clicking chemical reaction as pyroptosis inducers. The results show that HCNP effectively disrupts the mitochondrial function of cells by generating reactive oxygen species (ROS) upon laser irradiation; concomitantly, GSDME is cleaved by activated caspase-3 and promotes pyroptosis of lung cancer cells. Here an effective intervention strategy is proposed to induce pyroptosis based on light-activated PDT.
Collapse
Affiliation(s)
- Min Gao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Qiuting Sun
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Huiru Zhang
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Mengyu Liu
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Rui Peng
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Weiji Qin
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Qian Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Tianhao Yang
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Man Zhou
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Xiaoyan He
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Gengyun Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| |
Collapse
|
9
|
Mohammadian Gol T, Zahedipour F, Trosien P, Ureña-Bailén G, Kim M, Antony JS, Mezger M. Gene therapy in pediatrics - Clinical studies and approved drugs (as of 2023). Life Sci 2024; 348:122685. [PMID: 38710276 DOI: 10.1016/j.lfs.2024.122685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/17/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Gene therapy in pediatrics represents a cutting-edge therapeutic strategy for treating a range of genetic disorders that manifest in childhood. Gene therapy involves the modification or correction of a mutated gene or the introduction of a functional gene into a patient's cells. In general, it is implemented through two main modalities namely ex vivo gene therapy and in vivo gene therapy. Currently, a noteworthy array of gene therapy products has received valid market authorization, with several others in various stages of the approval process. Additionally, a multitude of clinical trials are actively underway, underscoring the dynamic progress within this field. Pediatric genetic disorders in the fields of hematology, oncology, vision and hearing loss, immunodeficiencies, neurological, and metabolic disorders are areas for gene therapy interventions. This review provides a comprehensive overview of the evolution and current progress of gene therapy-based treatments in the clinic for pediatric patients. It navigates the historical milestones of gene therapies, currently approved gene therapy products by the U.S. Food and Drug Administration (FDA) and/or European Medicines Agency (EMA) for children, and the promising future for genetic disorders. By providing a thorough compilation of approved gene therapy drugs and published results of completed or ongoing clinical trials, this review serves as a guide for pediatric clinicians to get a quick overview of the situation of clinical studies and approved gene therapy products as of 2023.
Collapse
Affiliation(s)
- Tahereh Mohammadian Gol
- University Children's Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | - Fatemeh Zahedipour
- University Children's Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Paul Trosien
- University Children's Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | - Guillermo Ureña-Bailén
- University Children's Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | - Miso Kim
- University Children's Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | - Justin S Antony
- University Children's Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | - Markus Mezger
- University Children's Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
10
|
Metanat Y, Viktor P, Amajd A, Kaur I, Hamed AM, Abed Al-Abadi NK, Alwan NH, Chaitanya MVNL, Lakshmaiya N, Ghildiyal P, Khalaf OM, Ciongradi CI, Sârbu I. The paths toward non-viral CAR-T cell manufacturing: A comprehensive review of state-of-the-art methods. Life Sci 2024; 348:122683. [PMID: 38702027 DOI: 10.1016/j.lfs.2024.122683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/11/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Although CAR-T cell therapy has emerged as a game-changer in cancer immunotherapy several bottlenecks limit its widespread use as a front-line therapy. Current protocols for the production of CAR-T cells rely mainly on the use of lentiviral/retroviral vectors. Nevertheless, according to the safety concerns around the use of viral vectors, there are several regulatory hurdles to their clinical use. Large-scale production of viral vectors under "Current Good Manufacturing Practice" (cGMP) involves rigorous quality control assessments and regulatory requirements that impose exorbitant costs on suppliers and as a result, lead to a significant increase in the cost of treatment. Pursuing an efficient non-viral method for genetic modification of immune cells is a hot topic in cell-based gene therapy. This study aims to investigate the current state-of-the-art in non-viral methods of CAR-T cell manufacturing. In the first part of this study, after reviewing the advantages and disadvantages of the clinical use of viral vectors, different non-viral vectors and the path of their clinical translation are discussed. These vectors include transposons (sleeping beauty, piggyBac, Tol2, and Tc Buster), programmable nucleases (ZFNs, TALENs, and CRISPR/Cas9), mRNA, plasmids, minicircles, and nanoplasmids. Afterward, various methods for efficient delivery of non-viral vectors into the cells are reviewed.
Collapse
Affiliation(s)
- Yekta Metanat
- Faculty of Medicine, Zahedan University of Medical Sciences, Sistan and Baluchestan Province, Iran
| | - Patrik Viktor
- Óbuda University, Karoly Keleti faculty, Tavaszmező u. 15-17, H-1084 Budapest, Hungary
| | - Ayesha Amajd
- Faculty of Transport and Aviation Engineering, Silesian University of Technology, Krasińskiego 8 Street, 40-019 Katowice, Poland
| | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bangalore, Karnataka, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan-303012, India
| | | | | | | | - M V N L Chaitanya
- School of pharmaceutical sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab - 144411, India
| | | | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | - Carmen Iulia Ciongradi
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania.
| | - Ioan Sârbu
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania.
| |
Collapse
|
11
|
Williams-Fegredo T, Davies L, Knevelman C, Mitrophanous K, Miskin J, Rafiq QA. Development of novel lipoplex formulation methodologies to improve large-scale transient transfection for lentiviral vector manufacture. Mol Ther Methods Clin Dev 2024; 32:101260. [PMID: 38745895 PMCID: PMC11092396 DOI: 10.1016/j.omtm.2024.101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/24/2024] [Indexed: 05/16/2024]
Abstract
Large-scale transient transfection has advanced significantly over the last 20 years, enabling the effective production of a diverse range of biopharmaceutical products, including viral vectors. However, a number of challenges specifically related to transfection reagent stability and transfection complex preparation times remain. New developments and improved transfection technologies are required to ensure that transient gene expression-based bioprocesses can meet the growing demand for viral vectors. In this paper, we demonstrate that the growth of cationic lipid-based liposomes, an essential step in many cationic lipid-based transfection processes, can be controlled through adoption of low pH (pH 6.40 to pH 6.75) and in low salt concentration (0.2× PBS) formulations, facilitating improved control over the nanoparticle growth kinetics and enhancing particle stability. Such complexes retain the ability to facilitate efficient transfection for prolonged periods compared with standard preparation methodologies. These findings have significant industrial applications for the large-scale manufacture of lentiviral vectors for two principal reasons. First, the alternative preparation strategy enables longer liposome incubation times to be used, facilitating effective control in a good manufacturing practices setting. Second, the improvement in particle stability facilitates the setting of wider process operating ranges, which will significantly improve process robustness and maximise batch-to-batch control and product consistency.
Collapse
Affiliation(s)
- Thomas Williams-Fegredo
- Oxford Biomedica (UK) Limited, Windrush Court, Transport Way, Oxford OX4 6LT, UK
- Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| | - Lee Davies
- Oxford Biomedica (UK) Limited, Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - Carol Knevelman
- Oxford Biomedica (UK) Limited, Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | | | - James Miskin
- Oxford Biomedica (UK) Limited, Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - Qasim A. Rafiq
- Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
12
|
Bauler M, Ferrara F, Lowe B, Beard JA, Wincek C, Wielgosz MM, Park JJ, Shang N, Nandy S, Li C, Langfitt DM, Zhou S, Throm RE. Genetic alteration of SJ293TS cells and modification of serum-free media enhances lentiviral vector production. Mol Ther Methods Clin Dev 2024; 32:101270. [PMID: 38883976 PMCID: PMC11176759 DOI: 10.1016/j.omtm.2024.101270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024]
Abstract
Successful cell and gene therapy clinical trials have resulted in the US Food and Drug Administration and European Medicines Agency approving their use for treatment of patients with certain types of cancers and monogenetic diseases. These novel therapies, which rely heavily on lentiviral vectors to deliver therapeutic transgenes to patient cells, have driven additional investigations, increasing demand for both pre-clinical and current Good Manufacturing Practices-grade viral vectors. To better support novel studies by improving current production methods, we report the development of a genetically modified HEK293T-based cell line that is null for expression of both Protein Kinase R and Beta-2 microglobulin and grows in suspension using serum-free media, SJ293TS-DPB. Absence of Protein Kinase R increased anti-sense lentiviral vector titers by more than 7-fold, while absence of Beta-2 microglobulin, a key component of major histocompatibility complex class I molecules, has been reported to reduce the immunogenicity of lentiviral particles. Furthermore, we describe an improved methodology for culturing SJ293TS-DPB that facilitates expansion, reduces handling, and increases titers by 2-fold compared with previous methods. SJ293TS-DPB stably produced lentiviral vectors for over 4 months and generated lentiviral vectors that efficiently transduce healthy human donor T cells and CD34+ hematopoietic stem cells.
Collapse
Affiliation(s)
- Matthew Bauler
- Vector Development and Production Laboratory, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Francesca Ferrara
- Vector Development and Production Laboratory, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brandon Lowe
- Vector Development and Production Laboratory, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jordan A Beard
- Vector Development and Production Laboratory, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Chris Wincek
- Vector Development and Production Laboratory, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Matthew M Wielgosz
- Vector Development and Production Laboratory, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jeoungeun J Park
- Experimental Cell Therapeutics Lab, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Na Shang
- Experimental Cell Therapeutics Lab, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Saikat Nandy
- Biostatistics, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Cai Li
- Biostatistics, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Deanna M Langfitt
- Bone Marrow Transplant and Cell Therapy, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sheng Zhou
- Experimental Cell Therapeutics Lab, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Robert E Throm
- Vector Development and Production Laboratory, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
13
|
Xu K, Zhang Q, Zhu D, Jiang Z. Hydrogels in Gene Delivery Techniques for Regenerative Medicine and Tissue Engineering. Macromol Biosci 2024; 24:e2300577. [PMID: 38265144 DOI: 10.1002/mabi.202300577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/16/2024] [Indexed: 01/25/2024]
Abstract
Hydrogels are 3D networks swollen with water. They are biocompatible, strong, and moldable and are emerging as a promising biomedical material for regenerative medicine and tissue engineering to deliver therapeutic genes. The excellent natural extracellular matrix simulation properties of hydrogels enable them to be co-cultured with cells or enhance the expression of viral or non-viral vectors. Its biocompatibility, high strength, and degradation performance also make the action process of carriers in tissues more ideal, making it an ideal biomedical material. It has been shown that hydrogel-based gene delivery technologies have the potential to play therapy-relevant roles in organs such as bone, cartilage, nerve, skin, reproductive organs, and liver in animal experiments and preclinical trials. This paper reviews recent articles on hydrogels in gene delivery and explains the manufacture, applications, developmental timeline, limitations, and future directions of hydrogel-based gene delivery techniques.
Collapse
Affiliation(s)
- Kexing Xu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Qinmeng Zhang
- Zhejiang University School of Medicine, Hangzhou, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Danji Zhu
- Zhejiang University School of Medicine, Hangzhou, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Zhiwei Jiang
- Zhejiang University School of Medicine, Hangzhou, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| |
Collapse
|
14
|
Suleman S, Fawaz S, Roberts T, Ellison S, Bigger B, Themis M. Optimised protocols to generate high titre lentiviral vectors using a novel transfection agent enabling extended HEK293T culture following transient transfection and suspension culture. J Virol Methods 2024; 325:114884. [PMID: 38218417 DOI: 10.1016/j.jviromet.2024.114884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
HIV-1 based lentiviral viruses are considered powerful and versatile gene therapy vectors to deliver therapeutic genes to patients with hereditary or acquired diseases. These vectors can efficiently transduce a variety of cell types when dividing or non-dividing to provide permanent delivery and long-term gene expression. Demand for scalable manufacturing protocols able to generate enough high titre vector for widespread use of this technology is increasing and considerable efforts to improve vector production cost-effectively, is ongoing. Current methods for LV production mainly use transient transfection of producer cell lines. Cells can be grown at scale, either in 2D relying on culturing producer cells in multi-tray flask cell culture factories or in roller bottles or can be adapted to grow in 3D suspensions in large batch fermenters. This suits rapid production and testing of new vector constructs pre-clinically for their efficacy, particle titre and safety. In this study, we sought to improve lentiviral titre over time by testing two alternative commercially available transfection reagents Fugene® 6 and Genejuice® with the commonly used polycation, polyethyleneimine. Our aim was to identify less cytotoxic transfection reagents that could be used to generate LV particles at high titre past the often used 72 h period when vector is usually collected before producer cell death is caused due to post transfection cytotoxicity. We show that LV could be produced in extended culture using Genejuice® and even by transfected cells in glass flasks in suspension. Because this delivery agent is less toxic to 293 T producer cells, following optimisation of transfection we found that LV can be harvested for more than 10 days at high titre. Using our protocol, titres of 109 TU/ml and 108 TU/ml were routinely reached via traditional monolayer conditions or suspension cultures, respectively. We propose, this simple change in vector production enables large volumes of high titre vector to be produced, cost effectively for non-clinical in vivo and in vitro applications or for more stringent downstream clinical grade vector purification.
Collapse
Affiliation(s)
- Saqlain Suleman
- Department of Life Sciences, College of Health, Medicine & Life Sciences, Brunel University London, Uxbridge, UK
| | - Serena Fawaz
- Department of Life Sciences, College of Health, Medicine & Life Sciences, Brunel University London, Uxbridge, UK
| | - Terry Roberts
- Department of Life Sciences, College of Health, Medicine & Life Sciences, Brunel University London, Uxbridge, UK
| | - Stuart Ellison
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Brian Bigger
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Michael Themis
- Department of Life Sciences, College of Health, Medicine & Life Sciences, Brunel University London, Uxbridge, UK; Division of Ecology and Evolution, Department of Life Sciences, Imperial College London, London, UK; Testavec Ltd, Queensgate House, Maidenhead, UK.
| |
Collapse
|
15
|
Hu Y, Eder BA, Lin J, Li S, Zhu Y, Wang TH, Guo T, Mao HQ. Liter-scale manufacturing of shelf-stable plasmid DNA/PEI transfection particles for viral vector production. Mol Ther Methods Clin Dev 2024; 32:101194. [PMID: 38352269 PMCID: PMC10863326 DOI: 10.1016/j.omtm.2024.101194] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024]
Abstract
The transfection efficiency and stability of the delivery vehicles of plasmid DNA (pDNA) are critical metrics to ensure high-quality and high-yield production of viral vectors. We previously identified that the optimal size of pDNA/poly(ethylenimine) (PEI) transfection particles is 400-500 nm and developed a bottom-up assembly method to construct stable 400-nm pDNA/PEI particles and benchmarked their transfection efficiency in producing lentiviral vectors (LVVs). Here, we report scale-up production protocols for such transfection particles. Using a two-inlet confined impinging jet (CIJ) mixer with a dual syringe pump set-up, we produced a 1-L batch at a flow rate of 100 mL/min, and further scaled up this process with a larger CIJ mixer and a dual peristaltic pump array, allowing for continuous production at a flow rate of 1 L/min without a lot size limit. We demonstrated the scalability of this process with a 5-L lot and validated the quality of these 400-nm transfection particles against the target product profile, including physical properties, shelf and on-bench stability, transfection efficiency, and LVV production yield in both 15-mL bench culture and 2-L bioreactor runs. These results confirm the potential of this particle assembly process as a scalable manufacturing platform for viral vector production.
Collapse
Affiliation(s)
- Yizong Hu
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | - Jinghan Lin
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sixuan Li
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yining Zhu
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Tza-Huei Wang
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ting Guo
- 2seventy bio, Inc., Cambridge, MA 02142, USA
| | - Hai-Quan Mao
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
16
|
Wang W, Chen X, Chen J, Xu M, Liu Y, Yang S, Zhao W, Tan S. Engineering lentivirus envelope VSV-G for liver targeted delivery of IDOL-shRNA to ameliorate hypercholesterolemia and atherosclerosis. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102115. [PMID: 38314097 PMCID: PMC10835450 DOI: 10.1016/j.omtn.2024.102115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 01/05/2024] [Indexed: 02/06/2024]
Abstract
Lentiviral vectors (LVs) have been widely used as a tool for gene therapies. However, tissue-selective transduction after systemic delivery remains a challenge. Inducible degrader of low-density lipoprotein receptor is an attractive target for treating hypercholesterolemia. Here, a liver-targeted LV, CS8-LV-shIDOL, is developed by incorporating a hepatocyte-targeted peptide derived from circumsporozoite protein (CSP) into the lentivirus envelope for liver-targeted delivery of IDOL-shRNA (short hairpin RNA) to alleviate hypercholesterolemia. Tail-vein injection of CS8-LV-shIDOL results in extremely high accumulation in liver and nearly undetectable levels in other organs in mice. In addition, it shows superior therapeutic efficacy in lowering serum low-density lipoprotein cholesterol (LDL-C) and reducing atherosclerotic lesions over unmodified LV-shIDOL in hyperlipidemic mice. Mechanically, the envelope-engineered CS8-LV-shIDOL can enter liver cells via low-density lipoprotein receptor-related protein (LRP). Thus, this study provides a novel approach for liver-targeted delivery of IDOL-shRNA to treat hypercholesterolemia by using an envelope-engineered LV, and this delivery system has great potential for liver-targeted transgene therapy.
Collapse
Affiliation(s)
- Wei Wang
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Xuemei Chen
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Jiali Chen
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Menglong Xu
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Ying Liu
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Shijie Yang
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Wenfeng Zhao
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Shuhua Tan
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
17
|
Mayani M, Nellimarla S, Mangalathillam R, Rao H, Patarroyo-White S, Ma J, Figueroa B. Depth filtration for clarification of intensified lentiviral vector suspension cell culture. Biotechnol Prog 2024; 40:e3409. [PMID: 37985144 DOI: 10.1002/btpr.3409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 08/28/2023] [Accepted: 10/29/2023] [Indexed: 11/22/2023]
Abstract
Depth filtration significantly impacts efficiency of lentiviral (LV) vector purification process. However, it is often deprioritized in the overall scope of viral vector manufacturing process optimization. The demand for LV vectors has increased with the rise in disease indications, making it crucial to improve current manufacturing processes. Upstream bioreactor process intensification has enabled cell densities of over 107 viable cells/mL, creating challenges for harvest unit operations. The larger size of LV vectors and their physiochemical similarity to host cell-DNA (HC-DNA) and poor clarification performance causes significant challenges for the subsequent chromatography-based purifications. As a result, a robust and scalable harvest of LV process is needed, especially for LV in vivo therapeutic quality needs. In this study, we systematically evaluated the overlooked yet important issue of depth filtration systems to improve enveloped LV functional vector recovery. We found that an established depth filtration system in process A that provided 94% (n = 6) LV functional recovery could not be translated to intensified Process B cell culture. Hence, the depth filtration process became a bottleneck for the purification performance in an intensified process. We demonstrated an improvement in LV functional vector recovery from 34% to 82% via filter train optimization for an intensified suspension cell culture system (>107 cells/mL with higher titer), while still maintaining a loading throughput of ≥82 L/m2 and turbidity ≤20 NTU. It was demonstrated that the two or three-stage depth filtration scheme is scalable and more suitable for high cell density culture for large scale for LV manufacturing process.
Collapse
Affiliation(s)
- Mukesh Mayani
- Genomic Medicine Unit CMC, Global CMC Development, Waltham, Massachusetts, USA
- Process and Analytical Development (PAD), Gene Therapy Franchise, National Resilience Inc., Waltham, Massachusetts, USA
| | - Srinivas Nellimarla
- Genomic Medicine Unit CMC, Global CMC Development, Waltham, Massachusetts, USA
| | | | - Hema Rao
- Genomic Medicine Unit CMC, Global CMC Development, Waltham, Massachusetts, USA
| | | | - Junfen Ma
- Genomic Medicine Unit CMC, Global CMC Development, Waltham, Massachusetts, USA
| | - Bruno Figueroa
- Genomic Medicine Unit CMC, Global CMC Development, Waltham, Massachusetts, USA
| |
Collapse
|
18
|
Kaygisiz K, Rauch‐Wirth L, Iscen A, Hartenfels J, Kremer K, Münch J, Synatschke CV, Weil T. Peptide Amphiphiles as Biodegradable Adjuvants for Efficient Retroviral Gene Delivery. Adv Healthc Mater 2024; 13:e2301364. [PMID: 37947246 PMCID: PMC11468294 DOI: 10.1002/adhm.202301364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/20/2023] [Indexed: 11/12/2023]
Abstract
Retroviral gene delivery is the key technique for in vitro and ex vivo gene therapy. However, inefficient virion-cell attachment resulting in low gene transduction efficacy remains a major challenge in clinical applications. Adjuvants for ex vivo therapy settings need to increase transduction efficiency while being easily removed or degraded post-transduction to prevent the risk of venous embolism after infusing the transduced cells back to the bloodstream of patients, yet no such peptide system have been reported thus far. In this study, peptide amphiphiles (PAs) with a hydrophobic fatty acid and a hydrophilic peptide moiety that reveal enhanced viral transduction efficiency are introduced. The PAs form β-sheet-rich fibrils that assemble into positively charged aggregates, promoting virus adhesion to the cell membrane. The block-type amphiphilic sequence arrangement in the PAs ensures efficient cell-virus interaction and biodegradability. Good biodegradability is observed for fibrils forming small aggregates and it is shown that via molecular dynamics simulations, the fibril-fibril interactions of PAs are governed by fibril surface hydrophobicity. These findings establish PAs as additives in retroviral gene transfer, rivalling commercially available transduction enhancers in efficiency and degradability with promising translational options in clinical gene therapy applications.
Collapse
Affiliation(s)
- Kübra Kaygisiz
- Department Synthesis of MacromoleculesMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Lena Rauch‐Wirth
- Institute of Molecular VirologyUlm University Medical CenterMeyerhofstraße 189081UlmGermany
| | - Aysenur Iscen
- Polymer Theory DepartmentMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Jan Hartenfels
- Department Synthesis of MacromoleculesMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Kurt Kremer
- Polymer Theory DepartmentMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Jan Münch
- Institute of Molecular VirologyUlm University Medical CenterMeyerhofstraße 189081UlmGermany
| | - Christopher V. Synatschke
- Department Synthesis of MacromoleculesMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Tanja Weil
- Department Synthesis of MacromoleculesMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| |
Collapse
|
19
|
Wang P, Zhang Y, Hu J, Tan BK. Bioactive Peptides from Marine Organisms. Protein Pept Lett 2024; 31:569-585. [PMID: 39253911 DOI: 10.2174/0109298665329840240816062134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 09/11/2024]
Abstract
Marine organisms represent promising bioactive peptide resources with diverse biological activities such as antioxidant, antimicrobial, antihypertensive, anti-fatigue, and immunoregulatory activities. Despite many studies on marine bioactive peptides, there is a dearth of comprehensive review articles on the emerging trends that encompass the production techniques and the biological applications of marine bioactive peptides. In this review, we summarize the major research and findings related to marine bioactive peptides, encompassing aspects of their production, purification, biological activities, nanotechnology-based strategies, and their potential applications. Enzymatic hydrolysis currently stands out as the most commonly used method for producing marine bioactive peptides; the downstream purification process often includes a combination of multiple purification techniques. Due to their diverse biological properties, marine peptides have garnered considerable interest for industrial applications as active ingredients in the food, pharmaceutical, and cosmetics industries. Additionally, the incorporation of encapsulation strategies such as nano emulsion, nanoliposome, and microemulsions holds promise for significantly enhancing the bioavailability and bioactivity of marine peptides. Future research should also prioritize the systematic identification and validation of the potential health benefits of marine peptides by both in vitro and in vivo animal models, along with the conduct of human clinical trials.
Collapse
Affiliation(s)
- Peixin Wang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yi Zhang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiamiao Hu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Bee Kang Tan
- Department of Cardiovascular Sciences and Diabetes Research Centre, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
20
|
Vaz TA, Rodrigues AF, Coroadinha AS. Exploring nutrient supplementation and bioprocess optimization to improve the production of lentiviral vectors in serum-free medium suspension cultures. Biotechnol J 2024; 19:e2300212. [PMID: 37903159 DOI: 10.1002/biot.202300212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/01/2023]
Abstract
The use of lentiviral vectors (LV) in gene therapy has been growing in recent years. To meet the increasing clinical demand, LV production platforms will benefit from improved productivity and scalability to enable cost-effective manufacture of LV-based therapies. Here we report the adaptation of 293T cells to serum-free suspension cultures and the improvement of LV yields through transfection parameters optimization, process intensification and medium supplementation with nutrient boosters. Cells were sequentially adapted to different serum-free culture media, transfection parameters were optimized and the two best-performing conditions were selected to explore process intensification by increasing cell density at the time of transfection. LV production at higher cell densities increased volumetric titers up to 12-fold and lipid supplementation was the most efficient metabolic optimization strategy further enhancing LV productivity by 3-fold. Furthermore, cell concentration was identified and validated as an important source of transfection variability impairing cellular uptake of DNA polyplexes, impacting transfection efficiency and reducing LV titers down to 6-fold. This work contributes to improving LV-based gene therapy by establishing new scalable manufacturing platforms and providing key metabolic insights, unveiling important bioreaction parameters to improve vector yields.
Collapse
Affiliation(s)
- Tiago A Vaz
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana F Rodrigues
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- LASIGE, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Ana S Coroadinha
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
21
|
Triantafyllou N, Sarkis M, Krassakopoulou A, Shah N, Papathanasiou MM, Kontoravdi C. Uncertainty quantification for gene delivery methods: A roadmap for pDNA manufacturing from phase I clinical trials to commercialization. Biotechnol J 2024; 19:e2300103. [PMID: 37797343 DOI: 10.1002/biot.202300103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/01/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
The fast-growing interest in cell and gene therapy (C>) products has led to a growing demand for the production of plasmid DNA (pDNA) and viral vectors for clinical and commercial use. Manufacturers, regulators, and suppliers need to develop strategies for establishing robust and agile supply chains in the otherwise empirical field of C>. A model-based methodology that has great potential to support the wider adoption of C> is presented, by ensuring efficient timelines, scalability, and cost-effectiveness in the production of key raw materials. Specifically, key process and economic parameters are identified for (1) the production of pDNA for the forward-looking scenario of non-viral-based Chimeric Antigen Receptor (CAR) T-cell therapies from clinical (200 doses) to commercial (40,000 doses) scale and (2) the commercial (40,000 doses) production of pDNA and lentiviral vectors for the current state-of-the-art viral vector-based CAR T-cell therapies. By applying a systematic global sensitivity analysis, we quantify uncertainty in the manufacturing process and apportion it to key process and economic parameters, highlighting cost drivers and limitations that steer decision-making. The results underline the cost-efficiency and operational flexibility of non-viral-based therapies in the overall C> supply chain, as well as the importance of economies-of-scale in the production of pDNA.
Collapse
Affiliation(s)
- Niki Triantafyllou
- The Sargent Centre for Process Systems Engineering, Imperial College London, London, UK
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Miriam Sarkis
- The Sargent Centre for Process Systems Engineering, Imperial College London, London, UK
- Department of Chemical Engineering, Imperial College London, London, UK
| | | | - Nilay Shah
- The Sargent Centre for Process Systems Engineering, Imperial College London, London, UK
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Maria M Papathanasiou
- The Sargent Centre for Process Systems Engineering, Imperial College London, London, UK
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Cleo Kontoravdi
- The Sargent Centre for Process Systems Engineering, Imperial College London, London, UK
- Department of Chemical Engineering, Imperial College London, London, UK
| |
Collapse
|
22
|
Su Y, Chen S, Liu S, Wang Y, Chen X, Xu M, Cai S, Pan N, Qiao K, Chen B, Yang S, Liu Z. Affinity Purification and Molecular Characterization of Angiotensin-Converting Enzyme (ACE)-Inhibitory Peptides from Takifugu flavidus. Mar Drugs 2023; 21:522. [PMID: 37888457 PMCID: PMC10608451 DOI: 10.3390/md21100522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
An affinity chromatography filler of CNBr-activated Sepharose 4B-immobilized ACE was used to purify ACE-inhibitory peptides from Takifugu flavidus protein hydrolysate (<1 kDa). Twenty-four peptides with an average local confidence score (ALC) ≥ 80% from bounded components (eluted by 1 M NaCl) were identified by LC-MS/MS. Among them, a novel peptide, TLRFALHGME, with ACE-inhibitory activity (IC50 = 93.5 µmol·L-1) was selected. Molecular docking revealed that TLRFALHGME may interact with the active site of ACE through H-bond, hydrophobic, and electrostatic interactions. The total binding energy (ΔGbinding) of TLRFALHGME was estimated to be -82.7382 kJ·mol-1 by MD simulations, indicating the favorable binding of peptides with ACE. Furthermore, the binding affinity of TLRFALHGME to ACE was determined by surface plasmon resonance (SPR) with a Kd of 80.9 µmol, indicating that there was a direct molecular interaction between them. TLRFALHGME has great potential for the treatment of hypertension.
Collapse
Affiliation(s)
- Yongchang Su
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China;
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (Y.W.); (X.C.); (M.X.); (S.C.); (N.P.); (K.Q.); (B.C.)
| | - Shicheng Chen
- Medical Laboratory Sciences Program, College of Health and Human Sciences, Northern Illinois University, DeKalb, IL 60015, USA;
| | - Shuji Liu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (Y.W.); (X.C.); (M.X.); (S.C.); (N.P.); (K.Q.); (B.C.)
| | - Yin Wang
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (Y.W.); (X.C.); (M.X.); (S.C.); (N.P.); (K.Q.); (B.C.)
| | - Xiaoting Chen
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (Y.W.); (X.C.); (M.X.); (S.C.); (N.P.); (K.Q.); (B.C.)
| | - Min Xu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (Y.W.); (X.C.); (M.X.); (S.C.); (N.P.); (K.Q.); (B.C.)
| | - Shuilin Cai
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (Y.W.); (X.C.); (M.X.); (S.C.); (N.P.); (K.Q.); (B.C.)
| | - Nan Pan
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (Y.W.); (X.C.); (M.X.); (S.C.); (N.P.); (K.Q.); (B.C.)
| | - Kun Qiao
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (Y.W.); (X.C.); (M.X.); (S.C.); (N.P.); (K.Q.); (B.C.)
| | - Bei Chen
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (Y.W.); (X.C.); (M.X.); (S.C.); (N.P.); (K.Q.); (B.C.)
| | - Suping Yang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China;
| | - Zhiyu Liu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (Y.W.); (X.C.); (M.X.); (S.C.); (N.P.); (K.Q.); (B.C.)
| |
Collapse
|
23
|
Fiol CR, Collignon ML, Welsh J, Rafiq QA. Optimizing and developing a scalable, chemically defined, animal component-free lentiviral vector production process in a fixed-bed bioreactor. Mol Ther Methods Clin Dev 2023; 30:221-234. [PMID: 37528866 PMCID: PMC10388200 DOI: 10.1016/j.omtm.2023.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/28/2023] [Indexed: 08/03/2023]
Abstract
Lentiviral vectors (LVVs) play a critical role in gene delivery for ex vivo gene-modified cell therapies. However, the lack of scalable LVV production methods and the high cost associated with them may limit their use. In this work, we demonstrate the optimization and development of a scalable, chemically defined, animal component-free LVV production process using adherent human embryonic kidney 293T cells in a fixed-bed bioreactor. The initial studies focused on the optimization of the culture process in 2D static cultures. Process changes such as decreasing cell seeding density on day 0 from 2.5 × 104 to 5 × 103 cells/cm2, delaying the transient transfection from 24 to 120 h post-seeding, reducing plasmid DNA to 167 ng/cm2, and adding 5 mM sodium butyrate 6 h post-transfection improved functional LVV titers by 26.9-fold. The optimized animal component-free production process was then transferred to the iCELLis Nano bioreactor, a fixed-bed bioreactor, where titers of 1.2 × 106 TU/cm2 were achieved when it was operated in perfusion. In this work, comparable functional LVV titers were obtained with FreeStyle 293 Expression medium and the conventional Dulbecco's modified Eagle's medium supplemented with 10% fetal bovine serum both at small and large scale.
Collapse
Affiliation(s)
- Carme Ripoll Fiol
- Department of Biochemical Engineering, University College London, Gower Street, WC1E 6BT London, UK
| | - Marie-Laure Collignon
- Department of Scientific and Laboratory Services (SLS), Pall Corporation, Reugelstraat 2, 3320 Hoegaarden, Belgium
| | - John Welsh
- Department of Research and Development (R&D), Pall Corporation, 5 Harbourgate Business Park, Southampton Road, PO6 4BQ Portsmouth, UK
| | - Qasim A. Rafiq
- Department of Biochemical Engineering, University College London, Gower Street, WC1E 6BT London, UK
| |
Collapse
|
24
|
Klimpel M, Terrao M, Ching N, Climenti V, Noll T, Pirzas V, Laux H. Development of a perfusion process for continuous lentivirus production using stable suspension producer cell lines. Biotechnol Bioeng 2023; 120:2622-2638. [PMID: 37148430 DOI: 10.1002/bit.28413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/24/2023] [Accepted: 04/19/2023] [Indexed: 05/08/2023]
Abstract
The large-scale production of clinical-grade lentiviral vectors (LVs) for gene therapy applications is a remaining challenge. The use of adherent cell lines and methods like transient transfection are cost-intensive and hamper process scalability as well as reproducibility. This study describes the use of two suspension-adapted stable packaging cell lines, called GPRGs and GPRTGs, for the development of a scalable and serum-free LV production process. Both stable packaging cell lines are based on an inducible Tet-off system, thus requiring doxycycline removal for initiation of the virus production. Therefore, we compared different methods for doxycycline removal and inoculated three independent 5 L bioreactors using a scalable induction method by dilution, an acoustic cell washer and manual centrifugation. The bioreactors were inoculated with a stable producer cell line encoding for a LV carrying a clinically relevant gene. LV production was performed in perfusion mode using a cell retention device based on acoustic wave separation. Comparable cell-specific productivities were obtained with all three methods and cumulative functional yields up to 6.36 × 1011 transducing units per bioreactor were generated in a 234-h long process, demonstrating the usability of stable Tet-off cell lines for an easily scalable suspension process. Remarkably, cell viabilities >90% were maintained at high cell densities without compromising productivity throughout the whole process, allowing to further extend the process time. Given its low effects of toxicity during virus production, the presented cell lines are excellent candidates to develop a fully continuous LV production process to overcome the existing bottlenecks in LV manufacturing.
Collapse
Affiliation(s)
- Maximilian Klimpel
- Biopharmaceutical Product Development, CSL Behring Innovation GmbH, Marburg, Germany
| | - Monica Terrao
- Biopharmaceutical Product Development, CSL Behring Innovation GmbH, Marburg, Germany
| | - Nilakshi Ching
- Biopharmaceutical Product Development, CSL Behring Innovation GmbH, Marburg, Germany
| | - Vanessa Climenti
- Biopharmaceutical Product Development, CSL Behring Innovation GmbH, Marburg, Germany
| | - Thomas Noll
- Chair for Cell Culture Technology, University of Bielefeld, Bielefeld, Germany
| | - Vicky Pirzas
- Biopharmaceutical Product Development, CSL Behring Innovation GmbH, Marburg, Germany
| | - Holger Laux
- Biopharmaceutical Product Development, CSL Behring Innovation GmbH, Marburg, Germany
| |
Collapse
|
25
|
Broussau S, Lytvyn V, Simoneau M, Guilbault C, Leclerc M, Nazemi-Moghaddam N, Coulombe N, Elahi SM, McComb S, Gilbert R. Packaging cells for lentiviral vectors generated using the cumate and coumermycin gene induction systems and nanowell single-cell cloning. Mol Ther Methods Clin Dev 2023; 29:40-57. [PMID: 36936448 PMCID: PMC10018046 DOI: 10.1016/j.omtm.2023.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Lentiviral vectors (LVs) are important for cell therapy because of their capacity to stably modify the genome after integration. This study describes a novel and relatively simple approach to generate packaging cells and producer clones for self-inactivating (SIN) LVs pseudotyped with the vesicular stomatitis virus glycoprotein (VSV-G). A novel gene regulation system, based on the combination of the cumate and coumermycin induction systems, was developed to ensure tight control for the expression of cytotoxic packaging elements. To accelerate clone isolation and ensure monoclonality, the packaging genes were transfected simultaneously into human embryonic kidney cells (293SF-3F6) previously engineered with the induction system, and clones were isolated after limiting dilution into nanowell arrays using a robotic cell picking instrument with scanning capability. The method's effectiveness to isolate colonies derived from single cells was demonstrated using mixed populations of cells labeled with two different fluorescent markers. Because the recipient cell line grew in suspension culture, and all the procedures were performed without serum, the resulting clones were readily adaptable to serum-free suspension culture. The best producer clone produced LVs expressing GFP at a titer of 2.3 × 108 transduction units (TU)/mL in the culture medium under batch mode without concentration.
Collapse
Affiliation(s)
- Sophie Broussau
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC H4P 2R2, Canada
| | - Viktoria Lytvyn
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC H4P 2R2, Canada
| | - Mélanie Simoneau
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC H4P 2R2, Canada
| | - Claire Guilbault
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC H4P 2R2, Canada
| | - Mélanie Leclerc
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC H4P 2R2, Canada
| | - Nazila Nazemi-Moghaddam
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC H4P 2R2, Canada
| | - Nathalie Coulombe
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC H4P 2R2, Canada
| | - Seyyed Mehdy Elahi
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC H4P 2R2, Canada
| | - Scott McComb
- Department of Immunology, Human Health Therapeutics Research Centre, National Research Council, Canada, Ottawa, ON K1A 0R6, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Rénald Gilbert
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC H4P 2R2, Canada
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
- Département de Génie chimique, Université Laval, Québec, QC G1V 0A6, Canada
- Corresponding author: Rénald Gilbert, National Research Council Canada, Building Montreal, 6100 Avenue Royalmount, Montreal, QC H4P 2R2, Canada.
| |
Collapse
|
26
|
Ali S, Rivera M, Ward J, Keshavarz-Moore E, Mason C, Nesbeth DN. Serum-free lentiviral vector production is compatible with medium-resident nuclease activity arising from adherent HEK293T host cells engineered with a nuclease-encoding transgene. Heliyon 2023; 9:e17067. [PMID: 37484388 PMCID: PMC10361239 DOI: 10.1016/j.heliyon.2023.e17067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023] Open
Abstract
At present lentiviral vector production for cell and gene therapy commonly involves transient plasmid transfection of mammalian cells cultivated in serum-containing media and addition of exogenous nuclease to reduce host cell and plasmid DNA impurities. Switching from serum-containing media to chemically-defined, serum free media, and minimising the number of process additions, are both increasingly regarded as necessary steps for simplifying and potentially automating lentiviral vector bioprocessing in future. Here we adapted human embryonic kidney 293T (HEK293T) cells to grow in serum-free media and also modified these cells with transgenes designed to encode a secreted nuclease activity. Stable transfection of HEK293T cells with transgenes encoding the Staphylococcus aureus nuclease B (NucB) open reading frame with either its native secretion signal peptide, the murine Igκ chain leader sequence or a novel viral transport fusion protein, all resulted in qualitatively detectable nuclease activity in serum-free media. Serum-free transient transfection of human embryonic kidney HEK293T cells stably harbouring the transgene for NucB with its native secretion signal produced active lentivirus in the presence of medium-resident nuclease activity. This lentivirus material was able to transduce the AGF-T immortal T cell line with a green fluorescent protein reporter payload at a level of 2.05 × 105 TU/mL (±3.34 × 104 TU/mL). Sufficient nuclease activity was present in 10 μL of this unconcentrated lentivirus material to degrade 1.5 μg DNA within 2 h at 37 °C, without agitation - conditions compatible with lentivirus production. These observations demonstrate that lentiviral vector production, by transient transfection, is compatible with host cells harbouring a nuclease transgene and evidencing nuclease activity in their surrounding growth media. This work provides a solid basis for future investigations, beyond the scope of this present study, in which commercial and academic groups can apply this approach to therapeutic payloads and potentially omit exogenous nuclease bioprocess additions.
Collapse
|
27
|
Moreira AS, Bezemer S, Faria TQ, Detmers F, Hermans P, Sierkstra L, Coroadinha AS, Peixoto C. Implementation of Novel Affinity Ligand for Lentiviral Vector Purification. Int J Mol Sci 2023; 24:3354. [PMID: 36834764 PMCID: PMC9966744 DOI: 10.3390/ijms24043354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
The use of viral vectors as therapeutic products for multiple applications such as vaccines, cancer treatment, or gene therapies, has been growing exponentially. Therefore, improved manufacturing processes are needed to cope with the high number of functional particles required for clinical trials and, eventually, commercialization. Affinity chromatography (AC) can be used to simplify purification processes and generate clinical-grade products with high titer and purity. However, one of the major challenges in the purification of Lentiviral vectors (LVs) using AC is to combine a highly specific ligand with a gentle elution condition assuring the preservation of vector biological activity. In this work, we report for the first time the implementation of an AC resin to specifically purify VSV-G pseudotyped LVs. After ligand screening, different critical process parameters were assessed and optimized. A dynamic capacity of 1 × 1011 total particles per mL of resin was determined and an average recovery yield of 45% was found for the small-scale purification process. The established AC robustness was confirmed by the performance of an intermediate scale providing an infectious particles yield of 54%, which demonstrates the scalability and reproducibility of the AC matrix. Overall, this work contributes to increasing downstream process efficiency by delivering a purification technology that enables high purity, scalability, and process intensification in a single step, contributing to time-to-market reduction.
Collapse
Affiliation(s)
- Ana Sofia Moreira
- IBET Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
- ITQB Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Sandra Bezemer
- Thermo Fisher Scientific, 2333 CH Leiden, The Netherlands
| | - Tiago Q. Faria
- IBET Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Frank Detmers
- Thermo Fisher Scientific, 2333 CH Leiden, The Netherlands
| | - Pim Hermans
- Thermo Fisher Scientific, 2333 CH Leiden, The Netherlands
| | | | - Ana Sofia Coroadinha
- IBET Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Cristina Peixoto
- IBET Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| |
Collapse
|
28
|
Bandeira F, Grottone GT, Covre JL, Cristovam PC, Loureiro RR, Pinheiro FI, Casaroli-Marano RP, Donato W, Gomes JÁP. A Framework for Human Corneal Endothelial Cell Culture and Preliminary Wound Model Experiments with a New Cell Tracking Approach. Int J Mol Sci 2023; 24:ijms24032982. [PMID: 36769303 PMCID: PMC9917640 DOI: 10.3390/ijms24032982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Cell injection therapy is emerging as an alternative to treat corneal endothelial dysfunction (CED) and to avoid corneal scarring due to bullous keratopathy. However, establishing a standardized culture procedure that provides appropriate cell yield while retaining functional features remains a challenge. Here, we describe a detailed framework obtained from in vitro culture of human corneal endothelial cells (HCECs) and comparative in vivo experimental models for CED treatment with a new cell tracking approach. Two digestion methods were compared regarding HCEC morphology and adhesion. The effect of Y-27632 (ROCKi) supplementation on final cell yield was also assessed. Cell adhesion efficacy with two cell delivery systems (superparamagnetic embedding and cell suspension) was evaluated in an ex vivo human cornea model and in an in vivo rabbit CED model. The injection of supplemented culture medium or balanced salt solution (BSS) was used for the positive and negative controls, respectively. HCEC isolation with collagenase resulted in better morphology and adhesion of cultured HCEC when compared to EDTA. Y-27632 supplementation resulted in a 2.6-fold increase in final cell yield compared to the control. Ex vivo and in vivo adhesion with both cell delivery systems was confirmed by cell tracker fluorescence detection. Corneal edema and opacity improved in both animal groups treated with cultured HCEC. The corneas in the control groups remained opaque. Both HCEC delivery systems seemed comparable as treatments for CED and for the prevention of corneal scarring.
Collapse
Affiliation(s)
- Francisco Bandeira
- Department of Ophthalmology, Federal University of São Paulo, São Paulo 04023-062, Brazil
- Medicine School, Barcelona University, 08007 Barcelona, Spain
- Correspondence: ; Tel.: +55-2197-2355-742
| | | | - Joyce Luciana Covre
- Department of Ophthalmology, Federal University of São Paulo, São Paulo 04023-062, Brazil
| | | | - Renata Ruoco Loureiro
- Department of Ophthalmology, Federal University of São Paulo, São Paulo 04023-062, Brazil
| | - Francisco Irochima Pinheiro
- Biotechnology Post-Graduate Program, Potiguar University, Natal 59082-902, Brazil
- Department of Surgery, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | | | - Waleska Donato
- Department of Ophthalmology, Federal University of São Paulo, São Paulo 04023-062, Brazil
| | | |
Collapse
|
29
|
Syzdykova L, Zauatbayeva G, Keyer V, Ramanculov Y, Arsienko R, Shustov AV. Process for production of chimeric antigen receptor-transducing lentivirus particles using infection with replicon particles containing self-replicating RNAs. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
30
|
Mitusova K, Peltek OO, Karpov TE, Muslimov AR, Zyuzin MV, Timin AS. Overcoming the blood-brain barrier for the therapy of malignant brain tumor: current status and prospects of drug delivery approaches. J Nanobiotechnology 2022; 20:412. [PMID: 36109754 PMCID: PMC9479308 DOI: 10.1186/s12951-022-01610-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/18/2022] [Indexed: 01/06/2023] Open
Abstract
Besides the broad development of nanotechnological approaches for cancer diagnosis and therapy, currently, there is no significant progress in the treatment of different types of brain tumors. Therapeutic molecules crossing the blood-brain barrier (BBB) and reaching an appropriate targeting ability remain the key challenges. Many invasive and non-invasive methods, and various types of nanocarriers and their hybrids have been widely explored for brain tumor treatment. However, unfortunately, no crucial clinical translations were observed to date. In particular, chemotherapy and surgery remain the main methods for the therapy of brain tumors. Exploring the mechanisms of the BBB penetration in detail and investigating advanced drug delivery platforms are the key factors that could bring us closer to understanding the development of effective therapy against brain tumors. In this review, we discuss the most relevant aspects of the BBB penetration mechanisms, observing both invasive and non-invasive methods of drug delivery. We also review the recent progress in the development of functional drug delivery platforms, from viruses to cell-based vehicles, for brain tumor therapy. The destructive potential of chemotherapeutic drugs delivered to the brain tumor is also considered. This review then summarizes the existing challenges and future prospects in the use of drug delivery platforms for the treatment of brain tumors.
Collapse
Affiliation(s)
- Ksenia Mitusova
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg, 195251, Russian Federation
| | - Oleksii O Peltek
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg, 191002, Russian Federation
| | - Timofey E Karpov
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg, 195251, Russian Federation
| | - Albert R Muslimov
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg, 195251, Russian Federation
- Sirius University of Science and Technology, Olympic Ave 1, Sirius, 354340, Russian Federation
| | - Mikhail V Zyuzin
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg, 191002, Russian Federation
| | - Alexander S Timin
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg, 195251, Russian Federation.
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg, 191002, Russian Federation.
| |
Collapse
|
31
|
Wei Y, An X, Cao Q, Che N, Xue Y, Deng H, Wang Q, Zhou R. Lentiviral vector–based xenograft tumors as candidate reference materials for detection of HER2-low breast cancer. Front Oncol 2022; 12:955943. [PMID: 36052254 PMCID: PMC9425432 DOI: 10.3389/fonc.2022.955943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/14/2022] [Indexed: 12/09/2022] Open
Abstract
The human epidermal growth factor receptor 2 (HER2) is an important biomarker that plays a pivotal role in therapeutic decision-making for patients with breast cancer (BC). Patients with HER2-low BC can benefit from new HER2 targeted therapy. For ensuring the accurate and reproducible detection of HER2-low cancer, reliable reference materials are required for monitoring the sensitivity and specificity of detection assays. Herein, a lentiviral vector was used to transduce the HER2 gene into MDA-MB-231 cells that exhibited low HER2 density, and the cells were characterized by droplet digital PCR to accurately determine the copy number variation. Then, the formalin-fixed paraffin-embedded (FFPE) samples from xenografts were prepared and evaluated for suitability as candidate reference materials by immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH). The FFPE reference materials were selected on the basis of IHC score of 2+ and negative FISH result to meet the requirement for HER2-low BC detection. Furthermore, the FFPE reference materials exhibited typical histological structures that resembled the clinical BC specimens. These novel FFPE reference materials displayed the high stability and homogeneity, and they were produced in high quantity. In summary, we generated high-quality reference materials for internal quality control and proficiency testing in HER2-low detection.
Collapse
Affiliation(s)
- Yali Wei
- Department of Clinical Laboratory, Beijing Chaoyang Hospital, The Third Clinical Medical College of Capital Medical University, Beijing, China
| | - Xu An
- Department of Clinical Laboratory, Tongzhou Maternal and Child Health Hospital of Beijing, Beijing, China
| | - Qinmei Cao
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Clinical Medical College of Capital Medical University, Beijing, China
| | - Nanying Che
- Department of Pathology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yuanyuan Xue
- Ministry of Education (MOE) Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haiteng Deng
- Ministry of Education (MOE) Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qingtao Wang
- Department of Clinical Laboratory, Beijing Chaoyang Hospital, The Third Clinical Medical College of Capital Medical University, Beijing, China
- *Correspondence: Qingtao Wang, ; Rui Zhou,
| | - Rui Zhou
- Department of Clinical Laboratory, Beijing Chaoyang Hospital, The Third Clinical Medical College of Capital Medical University, Beijing, China
- *Correspondence: Qingtao Wang, ; Rui Zhou,
| |
Collapse
|
32
|
Engineering off-the-shelf universal CAR T cells: A silver lining in the cloud. Cytokine 2022; 156:155920. [DOI: 10.1016/j.cyto.2022.155920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/29/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022]
|
33
|
Arsenijevic Y, Berger A, Udry F, Kostic C. Lentiviral Vectors for Ocular Gene Therapy. Pharmaceutics 2022; 14:pharmaceutics14081605. [PMID: 36015231 PMCID: PMC9414879 DOI: 10.3390/pharmaceutics14081605] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 12/10/2022] Open
Abstract
This review offers the basics of lentiviral vector technologies, their advantages and pitfalls, and an overview of their use in the field of ophthalmology. First, the description of the global challenges encountered to develop safe and efficient lentiviral recombinant vectors for clinical application is provided. The risks and the measures taken to minimize secondary effects as well as new strategies using these vectors are also discussed. This review then focuses on lentiviral vectors specifically designed for ocular therapy and goes over preclinical and clinical studies describing their safety and efficacy. A therapeutic approach using lentiviral vector-mediated gene therapy is currently being developed for many ocular diseases, e.g., aged-related macular degeneration, retinopathy of prematurity, inherited retinal dystrophies (Leber congenital amaurosis type 2, Stargardt disease, Usher syndrome), glaucoma, and corneal fibrosis or engraftment rejection. In summary, this review shows how lentiviral vectors offer an interesting alternative for gene therapy in all ocular compartments.
Collapse
Affiliation(s)
- Yvan Arsenijevic
- Unit Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland;
- Correspondence: (Y.A.); (C.K.)
| | - Adeline Berger
- Group Epigenetics of ocular diseases, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland;
| | - Florian Udry
- Unit Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland;
| | - Corinne Kostic
- Group for Retinal Disorder Research, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland
- Correspondence: (Y.A.); (C.K.)
| |
Collapse
|
34
|
Gao Q, DeLaura IF, Anwar IJ, Kesseli SJ, Kahan R, Abraham N, Asokan A, Barbas AS, Hartwig MG. Gene Therapy: Will the Promise of Optimizing Lung Allografts Become Reality? Front Immunol 2022; 13:931524. [PMID: 35844566 PMCID: PMC9283701 DOI: 10.3389/fimmu.2022.931524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/09/2022] [Indexed: 01/21/2023] Open
Abstract
Lung transplantation is the definitive therapy for patients living with end-stage lung disease. Despite significant progress made in the field, graft survival remains the lowest of all solid organ transplants. Additionally, the lung has among the lowest of organ utilization rates-among eligible donors, only 22% of lungs from multi-organ donors were transplanted in 2019. Novel strategies are needed to rehabilitate marginal organs and improve graft survival. Gene therapy is one promising strategy in optimizing donor allografts. Over-expression or inhibition of specific genes can be achieved to target various pathways of graft injury, including ischemic-reperfusion injuries, humoral or cellular rejection, and chronic lung allograft dysfunction. Experiments in animal models have historically utilized adenovirus-based vectors and the majority of literature in lung transplantation has focused on overexpression of IL-10. Although several strategies were shown to prevent rejection and prolong graft survival in preclinical models, none have led to clinical translation. The past decade has seen a renaissance in the field of gene therapy and two AAV-based in vivo gene therapies are now FDA-approved for clinical use. Concurrently, normothermic ex vivo machine perfusion technology has emerged as an alternative to traditional static cold storage. This preservation method keeps organs physiologically active during storage and thus potentially offers a platform for gene therapy. This review will explore the advantages and disadvantages of various gene therapy modalities, review various candidate genes implicated in various stages of allograft injury and summarize the recent efforts in optimizing donor lungs using gene therapy.
Collapse
Affiliation(s)
- Qimeng Gao
- Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Isabel F. DeLaura
- Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Imran J. Anwar
- Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Samuel J. Kesseli
- Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Riley Kahan
- Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Nader Abraham
- Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Aravind Asokan
- Department of Surgery, Duke University Medical Center, Durham, NC, United States
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC, United States
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Andrew S. Barbas
- Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Matthew G. Hartwig
- Division of Cardiovascular and Thoracic Surgery, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
35
|
Culture media selection and feeding strategy for high titer production of a lentiviral vector by stable producer clones cultivated at high cell density. Bioprocess Biosyst Eng 2022; 45:1267-1280. [PMID: 35758994 PMCID: PMC9363386 DOI: 10.1007/s00449-022-02737-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/23/2022] [Indexed: 11/03/2022]
Abstract
The growing interest in the use of lentiviral vectors (LVs) for various applications has created a strong demand for large quantities of vectors. To meet the increased demand, we developed a high cell density culture process for production of LV using stable producer clones generated from HEK293 cells, and improved volumetric LV productivity by up to fivefold, reaching a high titer of 8.2 × 107 TU/mL. However, culture media selection and feeding strategy development were not straightforward. The stable producer clone either did not grow or grow to lower cell density in majority of six commercial HEK293 media selected from four manufacturers, although its parental cell line, HEK293 cell, grows robustly in these media. In addition, the LV productivity was only improved up to 53% by increasing cell density from 1 × 106 and 3.8 × 106 cells/mL at induction in batch cultures using two identified top performance media, even these two media supported the clone growth to 5.7 × 106 and 8.1 × 106 cells/mL, respectively. A combination of media and feed from different companies was required to provide diverse nutrients and generate synergetic effect, which supported the clone growing to a higher cell density of 11 × 106 cells/mL and also increasing LV productivity by up to fivefold. This study illustrates that culture media selection and feeding strategy development for a new clone or cell line can be a complex process, due to variable nutritional requirements of a new clone. A combination of diversified culture media and feed provides a broader nutrients and could be used as one fast approach to dramatically improve process performance.
Collapse
|
36
|
Tran MY, Kamen AA. Production of Lentiviral Vectors Using a HEK-293 Producer Cell Line and Advanced Perfusion Processing. Front Bioeng Biotechnol 2022; 10:887716. [PMID: 35774066 PMCID: PMC9237754 DOI: 10.3389/fbioe.2022.887716] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/24/2022] [Indexed: 12/03/2022] Open
Abstract
The field of lentiviral vector (LV) production continues to face challenges in large-scale manufacturing, specifically regarding producing enough vectors to meet the demand for treating patients as well as producing high and consistent quality of vectors for efficient dosing. Two areas of interest are the use of stable producer cell lines, which facilitates the scalability of LV production processes as well as making the process more reproducible and robust for clinical applications, and the search of a cell retention device scalable to industrial-size bioreactors. This manuscript investigates a stable producer cell line for producing LVs with GFP as the transgene at shake flask scale and demonstrates LV production at 3L bioreactor scale using the Tangential Flow Depth Filtration (TFDF) as a cell retention device in perfusion mode. Cumulative functional yields of 3.3 x 1011 and 3.9 x 1011 transducing units were achieved; the former over 6 days of LV production with 16.3 L of perfused media and the latter over 4 days with 16 L. In comparing to a previously published value that was achieved using the same stable producer cell line and the acoustic filter as the perfusion device at the same bioreactor scale, the TFDF perfusion run produced 1.5-fold higher cumulative functional yield. Given its scale-up potential, the TFDF is an excellent candidate to be further evaluated to determine optimized conditions that can ultimately support continuous manufacturing of LVs at large scale.
Collapse
|
37
|
Mahalingam G, Rachamalla HK, Arjunan P, Periyasami Y, M S, Thangavel S, Mohankumar KM, Moorthy M, Velayudhan SR, Srivastava A, Marepally S. Optimization of SARS-CoV-2 Pseudovirion Production in Lentivirus Backbone With a Novel Liposomal System. Front Pharmacol 2022; 13:840727. [PMID: 35401169 PMCID: PMC8990231 DOI: 10.3389/fphar.2022.840727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/21/2022] [Indexed: 01/11/2023] Open
Abstract
Due to the fast mutating nature of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the development of novel therapeutics, vaccines, and evaluating the efficacies of existing one’s against the mutated strains is critical for containing the virus. Pseudotyped SARS-CoV-2 viruses are proven to be instrumental in evaluating the efficiencies of therapeutics, owing to their ease in application and safety when compared to handling the live virus. However, a comprehensive protocol that includes selecting transfection reagents, validating different packaging systems for high-throughput screening of neutralizing antibodies, is still a requisite. To this end, we designed and synthesized amide linker-based cationic lipids with varying hydrophilic head groups from dimethyl (Lipo-DME) to methyl, ethylhydroxyl (Lipo-MeOH), and diethylhydroxyl (Lipo-DOH) keeping the hydrophobic tail, stearic acid, as constant. Among the liposomal formulations of these lipids, Lipo-DOH was found to be superior in delivering plasmids and demonstrated comparable transfection efficiencies with commercial standard Lipofectamine 3000. We further used Lipo-DOH for lentivirus and SARS-CoV-2 pseudovirion preparation. For comparing different lentivirus packaging systems, we optimized conditions using Addgene and BEI systems and found that the BEI lenti plasmid system was found to be efficient in making lentiviruses using Lipo-DOH. Using the optimized transfection reagent and the lentivirus system, we developed a robust protocol for the generation of SARS-CoV-2 pseudovirions and characterized their infectivity in human ACE2 expressing HEK-293T cells and neutralizing properties in IgG against spike protein of SARS-CoV-2 positive human sera from individuals recovered from COVID-19.
Collapse
Affiliation(s)
- Gokulnath Mahalingam
- Centre for Stem Cell Research (CSCR) (a Unit of InStem, Bengaluru), CMC Campus, Vellore, India
| | | | - Porkizhi Arjunan
- Centre for Stem Cell Research (CSCR) (a Unit of InStem, Bengaluru), CMC Campus, Vellore, India
| | - Yogapriya Periyasami
- Centre for Stem Cell Research (CSCR) (a Unit of InStem, Bengaluru), CMC Campus, Vellore, India
| | - Salma M
- Centre for Stem Cell Research (CSCR) (a Unit of InStem, Bengaluru), CMC Campus, Vellore, India
| | | | | | - Mahesh Moorthy
- Department of Clinical Virology, Christian Medical College, Vellore, India
| | - Shaji R. Velayudhan
- Centre for Stem Cell Research (CSCR) (a Unit of InStem, Bengaluru), CMC Campus, Vellore, India
| | - Alok Srivastava
- Centre for Stem Cell Research (CSCR) (a Unit of InStem, Bengaluru), CMC Campus, Vellore, India
| | - Srujan Marepally
- Centre for Stem Cell Research (CSCR) (a Unit of InStem, Bengaluru), CMC Campus, Vellore, India
- *Correspondence: Srujan Marepally,
| |
Collapse
|
38
|
Palameta S, Manrique-Rincón AJ, Toscaro JM, Semionatto IF, Fonseca MC, Rosa RS, Ruas LP, Oliveira PS, Bajgelman MC. Boosting antitumor response with PSMA-targeted immunomodulatory VLPs, harboring costimulatory TNFSF ligands and GM-CSF cytokine. Mol Ther Oncolytics 2022; 24:650-662. [PMID: 35284623 PMCID: PMC8898762 DOI: 10.1016/j.omto.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/11/2022] [Indexed: 11/29/2022] Open
Abstract
Therapeutic strategies based on immunomodulation have improved cancer therapy. Most approaches target co-stimulatory pathways or the inhibition of immunosuppressive mechanisms, to enhance immune response and overcome the immune tolerance of tumors. Here, we propose a novel platform to deliver targeted immunomodulatory signaling, enhancing antitumor response. The platform is based on virus-like particles derived from lentiviral capsids. These particles may be engineered to harbor multifunctional ligands on the surface that drive tropism to the tumor site and deliver immunomodulatory signaling, boosting the antitumor response. We generated virus-like particles harboring a PSMA-ligand, TNFSF co-stimulatory ligands 4-1BBL or OX40L, and a membrane-anchored GM-CSF cytokine. The virus-like particles are driven to PSMA-expressing tumors and deliver immunomodulatory signaling from the TNFSF surface ligands and the anchored GM-CSF, inducing T cell proliferation, inhibition of regulatory T cells, and potentiating elimination of tumor cells. The PSMA-targeted particles harboring immunomodulators enhanced antitumor activity in immunocompetent challenged mice and may be explored as a potential tool for cancer immunotherapy.
Collapse
|
39
|
Cooney AL, Wambach JA, Sinn PL, McCray PB. Gene Therapy Potential for Genetic Disorders of Surfactant Dysfunction. Front Genome Ed 2022; 3:785829. [PMID: 35098209 PMCID: PMC8798122 DOI: 10.3389/fgeed.2021.785829] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/15/2021] [Indexed: 12/30/2022] Open
Abstract
Pulmonary surfactant is critically important to prevent atelectasis by lowering the surface tension of the alveolar lining liquid. While respiratory distress syndrome (RDS) is common in premature infants, severe RDS in term and late preterm infants suggests an underlying genetic etiology. Pathogenic variants in the genes encoding key components of pulmonary surfactant including surfactant protein B (SP-B, SFTPB gene), surfactant protein C (SP-C, SFTPC gene), and the ATP-Binding Cassette transporter A3 (ABCA3, ABCA3 gene) result in severe neonatal RDS or childhood interstitial lung disease (chILD). These proteins play essential roles in pulmonary surfactant biogenesis and are expressed in alveolar epithelial type II cells (AEC2), the progenitor cell of the alveolar epithelium. SP-B deficiency most commonly presents in the neonatal period with severe RDS and requires lung transplantation for survival. SFTPC mutations act in an autosomal dominant fashion and more commonly presents with chILD or idiopathic pulmonary fibrosis than neonatal RDS. ABCA3 deficiency often presents as neonatal RDS or chILD. Gene therapy is a promising option to treat monogenic lung diseases. Successes and challenges in developing gene therapies for genetic disorders of surfactant dysfunction include viral vector design and tropism for target cell types. In this review, we explore adeno-associated virus (AAV), lentiviral, and adenoviral (Ad)-based vectors as delivery vehicles. Both gene addition and gene editing strategies are compared to best design treatments for lung diseases resulting from pathogenic variants in the SFTPB, SFTPC, and ABCA3 genes.
Collapse
Affiliation(s)
- Ashley L. Cooney
- Department of Pediatrics, The University of Iowa, Iowa City, IA, United States
- Pappajohn Biomedical Institute and the Center for Gene Therapy, The University of Iowa, Iowa City, IA, United States
- *Correspondence: Ashley L. Cooney,
| | - Jennifer A. Wambach
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Patrick L. Sinn
- Department of Pediatrics, The University of Iowa, Iowa City, IA, United States
- Pappajohn Biomedical Institute and the Center for Gene Therapy, The University of Iowa, Iowa City, IA, United States
| | - Paul B. McCray
- Department of Pediatrics, The University of Iowa, Iowa City, IA, United States
- Pappajohn Biomedical Institute and the Center for Gene Therapy, The University of Iowa, Iowa City, IA, United States
| |
Collapse
|
40
|
Coroadinha AS. Cancer Gene Therapy: Development and Production of Lentiviral Vectors for Gene Therapy. Methods Mol Biol 2022; 2521:297-315. [PMID: 35733005 DOI: 10.1007/978-1-0716-2441-8_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lentiviral vectors are among the most used vectors in gene therapy to treat pathologies of different origins, such as cancers, rare monogenic diseases or neurological disorders. This chapter provides an overview on lentiviral vector developments in terms of vector design and manufacture for gene therapy applications. The state of the art of vector production will be summarized face to the recent developments contributing to improve vector safety, efficacy and manufacturing robustness, focusing on human immunodeficiency virus 1 (HIV-1) based lentiviral vectors. Transient and stable production systems will be discussed highlighting recent advances in producer cell line development. Challenges in lentiviral vector development upstream and downstream will be addressed with a particular focus on the improvements undertaken to increase vector yields and production scalability.
Collapse
Affiliation(s)
- Ana S Coroadinha
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
41
|
Echeverría N, Comas V, Aldunate F, Perbolianachis P, Moreno P, Cristina J. In the era of rapid mRNA-based vaccines: Why is there no effective hepatitis C virus vaccine yet? World J Hepatol 2021; 13:1234-1268. [PMID: 34786164 PMCID: PMC8568586 DOI: 10.4254/wjh.v13.i10.1234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/14/2021] [Accepted: 09/10/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is responsible for no less than 71 million people chronically infected and is one of the most frequent indications for liver transplantation worldwide. Despite direct-acting antiviral therapies fuel optimism in controlling HCV infections, there are several obstacles regarding treatment accessibility and reinfection continues to remain a possibility. Indeed, the majority of new HCV infections in developed countries occur in people who inject drugs and are more plausible to get reinfected. To achieve global epidemic control of this virus the development of an effective prophylactic or therapeutic vaccine becomes a must. The coronavirus disease 19 (COVID-19) pandemic led to auspicious vaccine development against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus, which has renewed interest on fighting HCV epidemic with vaccination. The aim of this review is to highlight the current situation of HCV vaccine candidates designed to prevent and/or to reduce HCV infectious cases and their complications. We will emphasize on some of the crossroads encountered during vaccine development against this insidious virus, together with some key aspects of HCV immunology which have, so far, hampered the progress in this area. The main focus will be on nucleic acid-based as well as recombinant viral vector-based vaccine candidates as the most novel vaccine approaches, some of which have been recently and successfully employed for SARS-CoV-2 vaccines. Finally, some ideas will be presented on which methods to explore for the design of live-attenuated vaccines against HCV.
Collapse
Affiliation(s)
- Natalia Echeverría
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Victoria Comas
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Fabián Aldunate
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Paula Perbolianachis
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Pilar Moreno
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Juan Cristina
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay.
| |
Collapse
|
42
|
Abstract
INTRODUCTION Lentiviral vectors have emerged as powerful vectors for vaccination, due to their high efficiency to transduce dendritic cells and to induce long-lasting humoral immunity, CD8+ T cells, and effective protection in numerous preclinical animal models of infection and oncology. AREAS COVERED Here, we reviewed the literature, highlighting the relevance of lentiviral vectors in vaccinology. We recapitulated both their virological and immunological aspects of lentiviral vectors. We compared lentiviral vectors to the gold standard viral vaccine vectors, i.e. adenoviral vectors, and updated the latest results in lentiviral vector-based vaccination in preclinical models. EXPERT OPINION Lentiviral vectors are non-replicative, negligibly inflammatory, and not targets of preexisting immunity in human populations. These are major characteristics to consider in vaccine development. The potential of lentiviral vectors to transduce non-dividing cells, including dendritic cells, is determinant in their strong immunogenicity. Notably, lentiviral vectors can be engineered to target antigen expression to specific host cells. The very weak inflammatory properties of these vectors allow their use in mucosal vaccination, with particular interest in infectious diseases that affect the lungs or brain, including COVID-19. Recent results in various preclinical models have reinforced the interest of these vectors in prophylaxis against infectious diseases and in onco-immunotherapy.
Collapse
Affiliation(s)
- Min-Wen Ku
- Virology Department, Institut Pasteur-TheraVectys Joint Lab, Paris, France
| | - Pierre Charneau
- Virology Department, Institut Pasteur-TheraVectys Joint Lab, Paris, France
| | - Laleh Majlessi
- Virology Department, Institut Pasteur-TheraVectys Joint Lab, Paris, France
| |
Collapse
|
43
|
Lentiviral Vectors for T Cell Engineering: Clinical Applications, Bioprocessing and Future Perspectives. Viruses 2021; 13:v13081528. [PMID: 34452392 PMCID: PMC8402758 DOI: 10.3390/v13081528] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/11/2021] [Accepted: 07/17/2021] [Indexed: 12/12/2022] Open
Abstract
Lentiviral vectors have played a critical role in the emergence of gene-modified cell therapies, specifically T cell therapies. Tisagenlecleucel (Kymriah), axicabtagene ciloleucel (Yescarta) and most recently brexucabtagene autoleucel (Tecartus) are examples of T cell therapies which are now commercially available for distribution after successfully obtaining EMA and FDA approval for the treatment of blood cancers. All three therapies rely on retroviral vectors to transduce the therapeutic chimeric antigen receptor (CAR) into T lymphocytes. Although these innovations represent promising new therapeutic avenues, major obstacles remain in making them readily available tools for medical care. This article reviews the biological principles as well as the bioprocessing of lentiviral (LV) vectors and adoptive T cell therapy. Clinical and engineering successes, shortcomings and future opportunities are also discussed. The development of Good Manufacturing Practice (GMP)-compliant instruments, technologies and protocols will play an essential role in the development of LV-engineered T cell therapies.
Collapse
|
44
|
Analytics of host cell proteins (HCPs): lessons from biopharmaceutical mAb analysis for Gene therapy products. Curr Opin Biotechnol 2021; 71:98-104. [PMID: 34311150 DOI: 10.1016/j.copbio.2021.06.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 12/18/2022]
Abstract
Analytics for host cell protein (HCP) analysis of therapeutic monoclonal antibody preparations have developed enormously. We consider how learnings from this can inform HCP analysis of gene therapy viral vector products. The application of mass spectrometry (MS) approaches for analysis of HCPs in viral vector preparations is being established, although such information remains limited and is yet to be widely applied into process or host cell line development to reduce HCP amounts or risk. As these MS approaches, and the data from them, are applied and become available, the process understanding created will speed process development activity. We describe technologies that have been, or can be, applied to viral vector HCP analysis to aid process development, reduce HCP amounts, identify critical HCPs and thus inform risk assessment and management based on a knowledge of specific HCPs, ultimately delivering safe and efficacious gene therapy products to the clinic.
Collapse
|
45
|
Ramirez GA, Gasmi M. Manufacturing of Viral Gene Therapies. Int Ophthalmol Clin 2021; 61:91-112. [PMID: 34196319 DOI: 10.1097/iio.0000000000000362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Toon K, Bentley EM, Mattiuzzo G. More Than Just Gene Therapy Vectors: Lentiviral Vector Pseudotypes for Serological Investigation. Viruses 2021; 13:217. [PMID: 33572589 PMCID: PMC7911487 DOI: 10.3390/v13020217] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Serological assays detecting neutralising antibodies are important for determining the immune responses following infection or vaccination and are also often considered a correlate of protection. The target of neutralising antibodies is usually located in the Envelope protein on the viral surface, which mediates cell entry. As such, presentation of the Envelope protein on a lentiviral particle represents a convenient alternative to handling of a potentially high containment virus or for those viruses with no established cell culture system. The flexibility, relative safety and, in most cases, ease of production of lentiviral pseudotypes, have led to their use in serological assays for many applications such as the evaluation of candidate vaccines, screening and characterization of anti-viral therapeutics, and sero-surveillance. Above all, the speed of production of the lentiviral pseudotypes, once the envelope sequence is published, makes them important tools in the response to viral outbreaks, as shown during the COVID-19 pandemic in 2020. In this review, we provide an overview of the landscape of the serological applications of pseudotyped lentiviral vectors, with a brief discussion on their production and batch quality analysis. Finally, we evaluate their role as surrogates for the real virus and possible alternatives.
Collapse
Affiliation(s)
- Kamilla Toon
- Division of Virology, National Institute for Biological Standards and Control-MHRA, Blanche Lane, South Mimms EN6 3QG, UK;
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Emma M. Bentley
- Division of Virology, National Institute for Biological Standards and Control-MHRA, Blanche Lane, South Mimms EN6 3QG, UK;
| | - Giada Mattiuzzo
- Division of Virology, National Institute for Biological Standards and Control-MHRA, Blanche Lane, South Mimms EN6 3QG, UK;
| |
Collapse
|