1
|
Verma R, Kumar K, Bhatt S, Yadav M, Kumar M, Tagde P, Rajinikanth PS, Tiwari A, Tiwari V, Nagpal D, Mittal V, Kaushik D. Untangling Breast Cancer: Trailing Towards Nanoformulations-based Drug Development. RECENT PATENTS ON NANOTECHNOLOGY 2025; 19:76-98. [PMID: 37519201 DOI: 10.2174/1872210517666230731091046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
All over the world, cancer death and prevalence are increasing. Breast cancer (BC) is the major cause of cancer mortality (15%) which makes it the most common cancer in women. BC is defined as the furious progression and quick division of breast cells. Novel nanotechnology-based approaches helped in improving survival rate, metastatic BC is still facing obstacles to treat with an expected overall 23% survival rate. This paper represents epidemiology, classification (non-invasive, invasive and metastatic), risk factors (genetic and non-genetic) and treatment challenges of breast cancer in brief. This review paper focus on the importance of nanotechnology-based nanoformulations for treatment of BC. This review aims to deliver elementary insight and understanding of the novel nanoformulations in BC treatment and to explain to the readers for enduring designing novel nanomedicine. Later, we elaborate on several types of nanoformulations used in tumor therapeutics such as liposomes, dendrimers, polymeric nanomaterials and many others. Potential research opportunities for clinical application and current challenges related to nanoformulations utility for the treatment of BC are also highlighted in this review. The role of artificial intelligence is elaborated in detail. We also confer the existing challenges and perspectives of nanoformulations in effective tumor management, with emphasis on the various patented nanoformulations approved or progression of clinical trials retrieved from various search engines.
Collapse
Affiliation(s)
- Ravinder Verma
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, Haryana, 127021, India
| | - Kuldeep Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Shailendra Bhatt
- Shrinathji Institute of Pharmacy, Shrinathji Society for Higher Education, Upali Oden, Nathdwara, Rajasmand, Rajasthan, India
| | - Manish Yadav
- Department of Pharmacy, G.D. Goenka University, Sohna Road, Gurugram, 122103, India
| | - Manish Kumar
- School of Pharmaceutical Sciences, CT University, Ludhiana, 142024, Punjab, India
| | - Priti Tagde
- Bhabha Pharmacy Research Institute, Bhabha University Bhopal, 462026, Madhya Pradesh, India
- PRISAL Foundation, Pharmaceutical Royal International Society, New Dehli, India
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Amebdkar University, Lucknow, India
| | - Abhishek Tiwari
- Pharmacy Academy, IFTM University, Lodhipur Rajput, Moradabad, U.P., 244102, India
| | - Varsha Tiwari
- Pharmacy Academy, IFTM University, Lodhipur Rajput, Moradabad, U.P., 244102, India
| | - Diksha Nagpal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
2
|
Sherif AY, Abbas Ibrahim M. Self-Nanoemulsifying Drug Delivery System Combined with a Polymeric Amorphous System of Glibenclamide for Enhanced Drug Dissolution and Stability. ACS OMEGA 2024; 9:43165-43174. [PMID: 39464452 PMCID: PMC11500158 DOI: 10.1021/acsomega.4c07285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/28/2024] [Accepted: 10/04/2024] [Indexed: 10/29/2024]
Abstract
Self-nanoemulsifying drug delivery systems (SNEDDS) have been widely applied to improve the dissolution and bioavailability of hydrophobic medications like glibenclamide (GB). However, the acid liability of GB limits its loading in SNEDDS formulation owing to the expected drug degradation. The present study investigated the ability of a polymeric amorphous system (PAS) to amorphize raw GB and facilitate its integration within dispersed SNEDDS. Liquid-SNEDDS (L-SNEDDS), solid-SNEDDS (S-SNEDDS), and combined systems (SNEDDS + PAS) were prepared for this purpose. The physicochemical properties of the prepared formulations were examined using a zeta-sizer, SEM, DSC, PXRD, and dissolution apparatus. In addition, GB integrity within formulations following incubation in a stability chamber was also investigated. The prepared formulations were able to be dispersed within the nanosize range. SEM, DSC, and PXRD showed that freeze-drying (FD) was superior to the microwave (MW) method in GB amorphization. Even though L-SNEDDS and S-SNEDDS were able to increase the dissolution efficiency (DE) of GB, drug degradation was observed. However, PAS prepared using FD was able to increase the DE of GB from 2.5% to 84.2% and protect the drug from chemical degradation. The present study revealed that a combined system (SNEDDS + PAS) is a promising approach to enhance the stability of acid-labile drugs and facilitate the integration of amorphous drugs within a dispersed SNEDDS formulation.
Collapse
Affiliation(s)
- Abdelrahman Y. Sherif
- Department of Pharmaceutics,
College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Abbas Ibrahim
- Department of Pharmaceutics,
College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Alshamrani S, Kumar A, Aldughaim MS, Alghamdi KM, Hussain MD, Alanazi FK, Kazi M. Development of Polymeric Micelles for Combined Delivery of Luteolin and Doxorubicin for Cancer Therapy. J Cancer 2024; 15:4717-4730. [PMID: 39006085 PMCID: PMC11242336 DOI: 10.7150/jca.96402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/30/2024] [Indexed: 07/16/2024] Open
Abstract
Background: Luteolin (LUT) is a bioactive compound with several pharmacological activities including anticancer effect. Doxorubicin (DOX) is an anthracycline chemotherapeutic drug that have proven to be effective in treating various types of cancers. Polymeric micelles (PMs) containing biologically active materials have emerged as prospective dosage forms with high drug-loading, which can add therapeutic benefit to the poorly water-soluble compounds and novel chemical entities. PMs are effective in delivering several drugs, such as anticancer drugs, antifungal drugs, flavonoids and drugs targeting the brain. The aim of the current study is to develop PMs for LUT and DOX as a combined delivery system for cancer therapy. Methods: PMs were prepared using 2.5% of each of LUT and DOX with varying compositions of Poloxamer 188, Poloxamer 407, Vitamin E (TPGS), Poloxamer 123 and Gellucire 44/14 at room temperature. Particle size, polydispersity index, zeta potential, were achieved using Zetasizer Nano particle size analyzer and the sizes were further confirmed with transmission electron microscopy (TEM). Prepared PMs were further characterized using powder X-ray diffraction (PXRD) and fourier transform infrared spectroscopy (FTIR). An MTT assay was performed on breast cancer (MCF-7) cells and liver cancer (HepG2) cells to determine the cytotoxic effect of the different PMs formulations. Results: PMs were successfully developed and optimized using 74.3% Poloxamer 407 with 20.7% Vitamin E (TPGS), and 70% Poloxamer 407 with 25% Gellucire 44/14, respectively. The droplet size and polydispersity index were found to be 62.03 ± 3.99 nm, 91.96 ± 5.80 nm and 0.33 ± 0.05, 0.59± 0.03, respectively for PMs containing TPGS and Gellucire 44/14. Zeta potentials of the PMs containing TPGS and Gellucire 44/14 were recorded as -2.27 ±0.11mV and -7.78 ± 0.10 mV, respectively. The PMs showed a spherical structure with approximately 50-90 nm range evident by TEM analysis. The PXRD spectra of PMs powder presented the amorphization of LUT and DOX. The FTIR spectra of LUT-loaded and DOX-loaded PMs were identical, suggesting consistent PMs composition. The MTT assay showed that the representative combined drug loaded PMs treatment led to a reduction in the viability of MCF-7 and HepG2 cells compared to drug free PMs and pure LUT, DOX alone. Conclusions: PMs with LUT and DOX exhibited significant cytotoxic effects against breast and liver cancer cells and could thus be an important new pharmaceutical formulation to treat cancer.
Collapse
Affiliation(s)
- Saad Alshamrani
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Ashok Kumar
- Vitiligo Research Chair, Department of Dermatology, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohammed S Aldughaim
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh, 11525, Kingdom of Saudi Arabia
| | - Khalid M Alghamdi
- Vitiligo Research Chair, Department of Dermatology, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
- Department of Dermatology, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Muhammad Delwar Hussain
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Fars K Alanazi
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Mohsin Kazi
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Reyna-Lázaro L, Morales-Becerril A, Aranda-Lara L, Isaac-Olivé K, Ocampo-García B, Gibbens-Bandala B, Olea-Mejía O, Morales-Avila E. Pharmaceutical Nanoplatforms Based on Self-nanoemulsifying Drug Delivery Systems for Optimal Transport and Co-delivery of siRNAs and Anticancer Drugs. J Pharm Sci 2024; 113:1907-1918. [PMID: 38369021 DOI: 10.1016/j.xphs.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
Small interfering RNAs (siRNAs) have the ability to induce selective gene silencing, although siRNAs are vulnerable to degradation in vivo. Various active pharmaceutical ingredients (APIs) are currently used as effective therapeutics in the treatment of cancer. However, routes of administration are limited due to their physicochemical and biopharmaceutical properties. This research aimed to develop oral pharmaceutical formulations based on self-nanoemulsifying drug delivery systems (SNEDDS) for optimal transport and co-delivery of siRNAs related to cancer and APIs. Formulations were developed using optimal mixing design (Design-Expert 11 software) for SNEDDS loading with siRNA (water/oil emulsion), API (oil/water emulsion), and siRNA-API (multiphase water/oil/water emulsion). The final formulations were characterized physicochemically and biologically. The nanosystems less than 50 nm in size had a drug loading above 48 %. The highest drug release occurred at intestinal pH, allowing drug protection in physiological fluids. SNEDDS-siRNA-APIs showed a twofold toxicity effect than APIs in solution and higher transfection and internalization of siRNA in cancer cells with respect to free siRNAs. In the duodenum, higher permeability was observed with SNEDDS-API than with the API solution, as determined by ex-vivo fluorescence microscopy. The multifunctional formulation based on SNEDDS was successfully prepared, siRNA, hydrophobic chemotherapeutics (doxorubicin, valrubicin and methotrexate) and photosensitizers (rhodamine b and protoporphyrin IX) agents were loaded, using a chitosan-RNA core, and Labrafil® M 1944 CS, Cremophor® RH40, phosphatidylcholine shell, forming stable hybrid SNEDDS as multiphasic emulsion, suitable as co-delivery system with a potent anticancer activity.
Collapse
Affiliation(s)
- Luz Reyna-Lázaro
- Universidad Autónoma del Estado de México, Facultad de Química, Toluca 50120, Estado de México, Mexico
| | - Aideé Morales-Becerril
- Universidad Autónoma del Estado de México, Facultad de Química, Toluca 50120, Estado de México, Mexico
| | - Liliana Aranda-Lara
- Universidad Autónoma del Estado de México, Facultad de Medicina, Toluca 50180, Estado de México, Mexico
| | - Keila Isaac-Olivé
- Universidad Autónoma del Estado de México, Facultad de Medicina, Toluca 50180, Estado de México, Mexico
| | - Blanca Ocampo-García
- Instituto Nacional de Investigaciones Nucleares, Departamento de Materiales Radiactivos, Ocoyoacac 52750, Estado de México, Mexico
| | - Brenda Gibbens-Bandala
- Instituto Nacional de Investigaciones Nucleares, Departamento de Materiales Radiactivos, Ocoyoacac 52750, Estado de México, Mexico
| | - Oscar Olea-Mejía
- Centro Conjunto de Investigación en Química Sustentable (CCIQS), Universidad Autónoma del Estado de México-Universidad Nacional Autónoma de México, Km 14.5 Carretera Toluca-Ixtlahuaca, San Cayetano de Morelos, 50200 Toluca, Mexico
| | - Enrique Morales-Avila
- Universidad Autónoma del Estado de México, Facultad de Química, Toluca 50120, Estado de México, Mexico.
| |
Collapse
|
5
|
Kanugo A, Dugad T. Design Optimization and Evaluation of Solid Lipid Nanoparticles of Azelnidipine for the Treatment of Hypertension. RECENT PATENTS ON NANOTECHNOLOGY 2024; 18:22-32. [PMID: 36278461 DOI: 10.2174/1872210517666221019102543] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/31/2022] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Solid lipid nanoparticles (SLN) are the most promising lipid-based drug delivery to enhance poorly water-soluble molecules' solubility, bioavailability, and therapeutic efficacy. Azelnidipine (AZN) is a calcium channel blocker widely recommended for treating high blood pressure, but its activity is restricted due to high lipophilicity and poor solubility in the GIT. The current research focused on developing the SLN of AZN and thereby improving the absorption, bioavailability, and therapeutic efficacy in hypertension which is a leading cause of death worldwide. Recent patents on SLN were available as U.S. Patent,10,973,798B2, U.S. Patent 10,251,960B2, U.S. Patent 2021/0069121A1, U.S. Patent 2022/0151945A1. METHODS SLN was developed by hot melt emulsification and ultrasonication method using glyceryl monostearate (GMS) as solid lipid and Poloxamer 188 as a surfactant to stabilize colloidal dispersion. RESULTS Box-Behnken model was utilized, which predicted 13 batches in which concentration of GMS (X1), Poloxamer 188 (X2) and sonication time (X3) were considered independent parameters. The particle size (Y1) and entrapment efficiency (Y2) were dependable parameters, and optimized batch F2 showed a particle size of 166.4 nm, polydispersity index of 0.40 and zeta potential of -13.7 mV. The entrapment efficiency was observed at 86.21%. FTIR spectra confirm the identity and compatibility with the formulation components. The differential scanning calorimetry (DSC) confirmed the absence of melting point and interpreted that AZN was entirely incorporated in the lipid matrix and transformed from crystalline to amorphous. The ANOVA for the particle size (p-value: 0.0203), % EE (p-value: 0.0271) was found significant. The in-vitro drug release showed a sustained release pattern for about 12 h. The AZN-loaded SLN was lyophilized and intended for oral delivery. CONCLUSION AZN-loaded SLN was developed by the hot melt emulsification method, which accelerated the solubility and bioavailability and was released sustainably for treating hypertension.
Collapse
Affiliation(s)
- Abhishek Kanugo
- SVKM's NMIMS School of Pharmacy and Technology Management Shirpur, Dhule, India-425405
| | - Tejas Dugad
- Department of Pharmaceutics, SVKM NMIMS SPTM Shirpur, Dhule, India-425405
| |
Collapse
|
6
|
Dayani L, Biganeh H, Rahimi R. Nanotechnology in the Formulation and Delivery of Natural Products for Cancer. HANDBOOK OF ONCOBIOLOGY: FROM BASIC TO CLINICAL SCIENCES 2024:1347-1369. [DOI: 10.1007/978-981-99-6263-1_68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Sherif AY, Shahba AAW. Development of a Multifunctional Oral Dosage Form via Integration of Solid Dispersion Technology with a Black Seed Oil-Based Self-Nanoemulsifying Drug Delivery System. Biomedicines 2023; 11:2733. [PMID: 37893108 PMCID: PMC10604588 DOI: 10.3390/biomedicines11102733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Lansoprazole (LZP) is used to treat acid-related gastrointestinal disorders; however, its low aqueous solubility limits its oral absorption. Black seed oil (BSO) has gastroprotective effects, making it a promising addition to gastric treatment regimens. The present study aims to develop a stable multifunctional formulation integrating solid dispersion (SD) technology with a bioactive self-nanoemulsifying drug delivery system (SNEDDS) based on BSO to synergistically enhance LZP delivery and therapeutic effects. The LZP-loaded SNEDDS was prepared using BSO, Transcutol P, and Kolliphor EL. SDs were produced by microwave irradiation and lyophilization using different polymers. The formulations were characterized by particle apparent hydrodynamic radius analysis, zeta potential, SEM, DSC, PXRD, and in vitro dissolution testing. Their chemical and physical stability under accelerated conditions was also examined. Physicochemical characterization revealed that the dispersed systems were in the nanosize range (<500 nm). DSC and PXRD studies revealed that lyophilization more potently disrupted LZP crystallinity versus microwave heating. The SNEDDS effectively solubilized LZP but degraded completely within 1 day. Lyophilized SDs with Pluronic F-127 demonstrated the highest LZP dissolution efficiency (3.5-fold vs. drug) and maintained chemical stability (>97%) for 1 month. SDs combined with the SNEDDS had variable effects suggesting that the synergistic benefits were dependent on the formulation and preparation method. Lyophilized LZP-Pluronic F127 SD enabled effective and stable LZP delivery alongside the bioactive effects of the BSO-based SNEDDS. This multifunctional system is a promising candidate with the potential for optimized gastrointestinal delivery of LZP and bioactive components.
Collapse
Affiliation(s)
- Abdelrahman Y. Sherif
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 1145, Saudi Arabia;
- Kayyali Research Chair for Pharmaceutical Industries, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ahmad Abdul-Wahhab Shahba
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 1145, Saudi Arabia;
| |
Collapse
|
8
|
Ishaq M, Khan MF, Verma G, Rathi A, Adil M, Faizan M, Najmi AK, Akhtar M, Al kamaly O, Alshawwa SZ, Shahat AA, Alhalmi A. Curcumin Nanoemulsion: Unveiling Cardioprotective Effects via ACE Inhibition and Antioxidant Properties in Hypertensive Rats. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1748. [PMID: 37893466 PMCID: PMC10608169 DOI: 10.3390/medicina59101748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: Curcumin, derived from Curcuma longa, is a well-known traditional medicinal compound recognized for its therapeutic attributes. Nevertheless, its efficacy is hampered by limited bioavailability, prompting researchers to explore the application of nanoemulsion as a potential alternative. Materials and Methods: This study delves into the antihypertensive effects of curcumin nanoemulsion (SNEC) by targeting the renin-angiotensin-aldosterone system (RAAS) and oxidative stress in deoxycorticosterone acetate (DOCA) salt-induced hypertensive rats. To gauge the cardio-protective impact of SNEC in DOCA salt-induced hypertension, molecular docking was undertaken, uncovering curcumin's high affinity and adept binding capabilities to the active site of angiotensin-converting enzyme (ACE). Additionally, the investigation employed uninephrectomized rats to assess hemodynamic parameters via an AD instrument. Serum ACE, angiotensin II, blood urea nitrogen (BUN), and creatinine levels were quantified using ELISA kits, while antioxidant parameters were evaluated through chemical assays. Result: The outcomes of the molecular docking analysis revealed robust binding of curcumin to the ACE active site. Furthermore, oral administration of SNEC significantly mitigated systolic, diastolic, and mean arterial blood pressure in contrast to the DOCA-induced hypertensive group. SNEC administration also led to a reduction in left ventricular end-diastolic pressure (LVEDP) and an elevation in the maximum rate of left ventricular pressure rise (LV (dP/dt) max). Moreover, SNEC administration distinctly lowered serum levels of ACE and angiotensin II compared to the hypertensive DOCA group. Renal markers, including serum creatinine and BUN, displayed a shift toward normalized levels with SNEC treatment. Additionally, SNEC showcased potent antioxidant characteristics by elevating reduced glutathione, catalase, and superoxide dismutase levels, while decreasing the concentration of thiobarbituric acid reactive substances. Conclusions: Collectively, these findings underscore that curcumin nanoemulsion exerts noteworthy cardio-protective effects through ACE activity inhibition and remarkable antioxidant properties.
Collapse
Affiliation(s)
- Mohd Ishaq
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (M.I.); (A.R.); (M.A.); (M.F.); (A.K.N.)
| | - Mohemmed Faraz Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Integral University, Lucknow 226026, India;
| | - Garima Verma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdrad, New Delhi 110062, India;
| | - Akshoo Rathi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (M.I.); (A.R.); (M.A.); (M.F.); (A.K.N.)
| | - Mohammad Adil
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (M.I.); (A.R.); (M.A.); (M.F.); (A.K.N.)
| | - Mohammad Faizan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (M.I.); (A.R.); (M.A.); (M.F.); (A.K.N.)
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (M.I.); (A.R.); (M.A.); (M.F.); (A.K.N.)
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (M.I.); (A.R.); (M.A.); (M.F.); (A.K.N.)
| | - Omkulthom Al kamaly
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (O.A.k.); (S.Z.A.)
| | - Samar Zuhair Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (O.A.k.); (S.Z.A.)
| | - Abdelaaty A. Shahat
- Department of Pharmacognosy, College of Pharmacy King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Abdulsalam Alhalmi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| |
Collapse
|
9
|
Shabani H, Karami MH, Kolour J, Sayyahi Z, Parvin MA, Soghala S, Baghini SS, Mardasi M, Chopani A, Moulavi P, Farkhondeh T, Darroudi M, Kabiri M, Samarghandian S. Anticancer activity of thymoquinone against breast cancer cells: Mechanisms of action and delivery approaches. Biomed Pharmacother 2023; 165:114972. [PMID: 37481931 DOI: 10.1016/j.biopha.2023.114972] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 07/25/2023] Open
Abstract
The rising incidence of breast cancer has been a significant source of concern in the medical community. Regarding the adverse effects and consequences of current treatments, cancers' health, and socio-economical aspects have become more complicated, leaving research aimed at improved or new treatments on top priority. Medicinal herbs contain multitarget compounds that can control cancer development and advancement. Owing to Nigella Sativa's elements, it can treat many disorders. Thymoquinone (TQ) is a natural chemical derived from the black seeds of Nigella sativa Linn proved to have anti-cancer and anti-inflammatory properties. TQ interferes in a broad spectrum of tumorigenic procedures and inhibits carcinogenesis, malignant development, invasion, migration, and angiogenesis owing to its multitargeting ability. It effectively facilitates miR-34a up-regulation, regulates the p53-dependent pathway, and suppresses Rac1 expression. TQ promotes apoptosis and controls the expression of pro- and anti-apoptotic genes. It has also been shown to diminish the phosphorylation of NF-B and IKK and decrease the metastasis and ERK1/2 and PI3K activity. We discuss TQ's cytotoxic effects for breast cancer treatment with a deep look at the relevant stimulatory or inhibitory signaling pathways. This review discusses the various forms of polymeric and non-polymeric nanocarriers (NC) and the encapsulation of TQ for increasing oral bioavailability and enhanced in vitro and in vivo efficacy of TQ-combined treatment with different chemotherapeutic agents against various breast cancer cell lines. This study can be useful to a broad scientific community, comprising pharmaceutical and biological scientists, as well as clinical investigators.
Collapse
Affiliation(s)
- Hadi Shabani
- Department of Biology, Faculty of Basic Sciences, Islamic Azad University, Islamshahr Branch, Iran
| | | | - Jalili Kolour
- Cellular and Molecular Biology master student, Department of Life Sciences and Systems Biology, University of Turin, Italy
| | - Zeinab Sayyahi
- Department of Physiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Amir Parvin
- Department of Cell and Molecular Biology, school of Biology, University of Tehran, Tehran, Iran
| | - Shahrad Soghala
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sadegh Shojaei Baghini
- Plant Biotechnology Department, National Institute of Genetic Engineering and Biotechnology(NIGEB), Tehran, Iran
| | - Mahsa Mardasi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G. C., Evin, Tehran, Iran
| | - Ali Chopani
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Pooria Moulavi
- Department of Biology, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Basic Sciences, Neyshabur University of Medical Sciences, Neyshabur 9318614139, Iran
| | - Mahboubeh Kabiri
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
10
|
Huang M, Zhai BT, Fan Y, Sun J, Shi YJ, Zhang XF, Zou JB, Wang JW, Guo DY. Targeted Drug Delivery Systems for Curcumin in Breast Cancer Therapy. Int J Nanomedicine 2023; 18:4275-4311. [PMID: 37534056 PMCID: PMC10392909 DOI: 10.2147/ijn.s410688] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/19/2023] [Indexed: 08/04/2023] Open
Abstract
Breast cancer (BC) is the most prevalent type of cancer in the world and the main reason women die from cancer. Due to the significant side effects of conventional treatments such as chemotherapy and radiotherapy, the search for supplemental and alternative natural drugs with lower toxicity and side effects is of interest to researchers. Curcumin (CUR) is a natural polyphenol extracted from turmeric. Numerous studies have demonstrated that CUR is an effective anticancer drug that works by modifying different intracellular signaling pathways. CUR's therapeutic utility is severely constrained by its short half-life in vivo, low water solubility, poor stability, quick metabolism, low oral bioavailability, and potential for gastrointestinal discomfort with high oral doses. One of the most practical solutions to the aforementioned issues is the development of targeted drug delivery systems (TDDSs) based on nanomaterials. To improve drug targeting and efficacy and to serve as a reference for the development and use of CUR TDDSs in the clinical setting, this review describes the physicochemical properties and bioavailability of CUR and its mechanism of action on BC, with emphasis on recent studies on TDDSs for BC in combination with CUR, including passive TDDSs, active TDDSs and physicochemical TDDSs.
Collapse
Affiliation(s)
- Mian Huang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Bing-Tao Zhai
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Yu Fan
- School of Basic Medicine, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Jing Sun
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Ya-Jun Shi
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Xiao-Fei Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Jun-Bo Zou
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Jia-Wen Wang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Dong-Yan Guo
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| |
Collapse
|
11
|
Vieira IRS, Tessaro L, Lima AKO, Velloso IPS, Conte-Junior CA. Recent Progress in Nanotechnology Improving the Therapeutic Potential of Polyphenols for Cancer. Nutrients 2023; 15:3136. [PMID: 37513554 PMCID: PMC10384266 DOI: 10.3390/nu15143136] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Polyphenols derived from fruits, vegetables, and plants are bioactive compounds potentially beneficial to human health. Notably, compounds such as quercetin, curcumin, epigallocatechin-3-gallate (EGCG), and resveratrol have been highlighted as antiproliferative agents for cancer. Due to their low solubility and limited bioavailability, some alternative nanotechnologies have been applied to encapsulate these compounds, aiming to improve their efficacy against cancer. In this comprehensive review, we evaluate the main nanotechnology approaches to improve the therapeutic potential of polyphenols against cancer using in vitro studies and in vivo preclinical models, highlighting recent advancements in the field. It was found that polymeric nanomaterials, lipid-based nanomaterials, inorganic nanomaterials, and carbon-based nanomaterials are the most used classes of nanocarriers for encapsulating polyphenols. These delivery systems exhibit enhanced antitumor activity and pro-apoptotic effects, particularly against breast, lung, prostate, cervical, and colorectal cancer cells, surpassing the performance of free bioactive compounds. Preclinical trials in xenograft animal models have revealed decreased tumor growth after treatment with polyphenol-loaded delivery systems. Moreover, the interaction of polyphenol co-delivery systems and polyphenol-drug delivery systems is a promising approach to increase anticancer activity and decrease chemotherapy side effects. These innovative approaches hold significant implications for the advancement of clinical cancer research.
Collapse
Affiliation(s)
- Italo Rennan Sousa Vieira
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Bio-Chemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Leticia Tessaro
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Bio-Chemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Alan Kelbis Oliveira Lima
- Nanobiotechnology Laboratory, Institute of Biology (IB), Department of Genetics and Morphology, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Isabela Portella Silva Velloso
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Bio-Chemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Bio-Chemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| |
Collapse
|
12
|
Kazi M, Khan MF, Nasr FA, Ahmed MZ, Alqahtani AS, Ali MM, Aldughaim MS. Development of Curcumin and Piperine-Loaded Bio-Active Self-Nanoemulsifying Drugs and Investigation of Their Bioactivity in Zebrafish Embryos and Human Hematological Cancer Cell Lines. Int J Nanomedicine 2023; 18:1793-1808. [PMID: 37051315 PMCID: PMC10084868 DOI: 10.2147/ijn.s400330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/25/2023] [Indexed: 04/08/2023] Open
Abstract
Purpose Curcumin (CUR) and piperine (PP) are bioactive compounds with prominent pharmacological activities that have been investigated for the treatment of various diseases. The aim of the present study is to develop Bio-SNEDDS for CUR and PP as a combined delivery system for cancer therapy. Methods CUR and PP loaded Bio-SNEDDSs with varying compositions of bioactive lipid oils, surfactants, and cosolvents were prepared at room temperature. Bio-SNEDDSs were characterized using a Zetasizer Nano particle size analyzer and further examined by transmission electron microscopy (TEM) for morphology. The in vivo toxicity of the preparations of Bio-SNEDDS was investigated in wild-type zebrafish embryos and cytotoxicity in THP-1 (human leukemia monocytic cells), Jurkat (human T lymphocyte cells) and HUVEC (non-cancerous normal) cells. Results Bio-SNEDDSs were successfully developed with black seed oil, Imwitor 988, Transcutol P and Cremophor RH40 at a ratio of 20/20/10/50 (%w/w). The droplet size, polydispersity index and zeta potential of the optimized Bio-SNEDDS were found to be 42.13 nm, 0.59, and -19.30 mV, respectively. Bio-SNEDDS showed a spherical structure evident by TEM analysis. The results showed that Bio-SNEDDS did not induce toxicity in zebrafish embryos at concentrations between 0.40 and 30.00 μg/mL. In TG (fli1: EGFP) embryos treated with Bio-SNEDDS, there was no change in the blood vessel structure. The O-dianisidine staining of Bio-SNEDDS treated embryos at 48 h post-fertilization also showed a significant reduction in the number of blood cells compared to mock (DMSO 0.1% V/V) treated embryos. Bio-SNEDDS induced significant levels of cytotoxicity in the hematological cell lines THP-1 and Jurkat, while low toxicity in normal HUVEC cell lines was observed with IC50 values of 18.63±0.23 μg/mL, 26.03 ± 1.5 μg/mL and 17.52 ± 0.22 μg/mL, respectively. Conclusion Bio-SNEDDS exhibited enhanced anticancer activity and could thus be an important new pharmaceutical formulation to treat leukemia.
Collapse
Affiliation(s)
- Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
- Correspondence: Mohsin Kazi; Mohammed S Aldughaim, Email ;
| | - Muhammad Farooq Khan
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Fahd A Nasr
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Mohammad Z Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Ali S Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Meser M Ali
- Department of Neurosurgery, Henry Ford Health, Detroit, MI, 48202, USA
| | - Mohammed S Aldughaim
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh, 11525, Kingdom of Saudi Arabia
| |
Collapse
|
13
|
Oral Bioactive Self-Nanoemulsifying Drug Delivery Systems of Remdesivir and Baricitinib: A Paradigmatic Case of Drug Repositioning for Cancer Management. Molecules 2023; 28:molecules28052237. [PMID: 36903483 PMCID: PMC10005540 DOI: 10.3390/molecules28052237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Oral anticancer therapy mostly faces the challenges of low aqueous solubility, poor and irregular absorption from the gastrointestinal tract, food-influenced absorption, high first-pass metabolism, non-targeted delivery, and severe systemic and local adverse effects. Interest has been growing in bioactive self-nanoemulsifying drug delivery systems (bio-SNEDDSs) using lipid-based excipients within nanomedicine. This study aimed to develop novel bio-SNEDDS to deliver antiviral remdesivir and baricitinib for the treatment of breast and lung cancers. Pure natural oils used in bio-SNEDDS were analyzed using GC-MS to examine bioactive constituents. The initial evaluation of bio-SNEDDSs were performed based on self-emulsification assessment, particle size analysis, zeta potential, viscosity measurement, and transmission electron microscopy (TEM). The single and combined anticancer effects of remdesivir and baricitinib in different bio-SNEDDS formulations were investigated in MDA-MB-231 (breast cancer) and A549 (lung cancer) cell lines. The results from the GC-MS analysis of bioactive oils BSO and FSO showed pharmacologically active constituents, such as thymoquinone, isoborneol, paeonol and p-cymenene, and squalene, respectively. The representative F5 bio-SNEDDSs showed relatively uniform, nanosized (247 nm) droplet along with acceptable zeta potential values (+29 mV). The viscosity of the F5 bio-SNEDDS was recorded within 0.69 Cp. The TEM suggested uniform spherical droplets upon aqueous dispersions. Drug-free, remdesivir and baricitinib-loaded bio-SNEDDSs (combined) showed superior anticancer effects with IC50 value that ranged from 1.9-4.2 µg/mL (for breast cancer), 2.4-5.8 µg/mL (for lung cancer), and 3.05-5.44 µg/mL (human fibroblasts cell line). In conclusion, the representative F5 bio-SNEDDS could be a promising candidate for improving the anticancer effect of remdesivir and baricitinib along with their existing antiviral performance in combined dosage form.
Collapse
|
14
|
Development, Validation and Application of a Novel UHPLC-UV Method for the Simultaneous Determination of Valsartan and Nifedipine in the New Formulation of Self-Nanoemulsifying Drug Delivery Systems. SEPARATIONS 2022. [DOI: 10.3390/separations9110325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Our objective is to develop a robust method to quantify valsartan (VAL) and nifedipine (NIF) in developed a self-nanoemulsifying drug delivery formulation. An in-house ultra-high-performance liquid chromatography (UHPLC UV) method has been developed and validated for the simultaneous determination of VAL and NIF. The UV detection was performed isocratically, with a mobile phase comprised of acetonitrile, methanol and ammonium formate in the ratios of (15:45:40% v/v) and a flow rate of 0.35 mL/min at 236 nm. The correlation coefficients (R2) of this linear regression were 0.9984 for NIF and 0.9997 for VAL, respectively. The limit of detection (LOD) for NIF as 3.78 ppm, whereas the limit of detection (LOD) for VAL was 1.56 ppm. The limit of quantification (LOQ) of NIF and VAL were 11.47 ppm and 4.73 ppm, respectively. This method was effectively utilized to determine the amount of drug entrapped and drug loading efficiency percentage of the NIF and VAL self-nanoemulsifying formulations.
Collapse
|
15
|
Shahba AAW, Sherif AY, Elzayat EM, Kazi M. Combined Ramipril and Black Seed Oil Dosage Forms Using Bioactive Self-Nanoemulsifying Drug Delivery Systems (BIO-SNEDDSs). Pharmaceuticals (Basel) 2022; 15:ph15091120. [PMID: 36145341 PMCID: PMC9503356 DOI: 10.3390/ph15091120] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022] Open
Abstract
Purpose: Ramipril (RMP)—an angiotensin-converting enzyme (ACE) inhibitor—and thymoquinone (THQ) suffer from poor oral bioavailability. Developing a combined liquid SNEDDS that comprises RMP and black seed oil (as a natural source of THQ) could lead to several formulations and therapeutic benefits. Methods: The present study involved comprehensive optimization of RMP/THQ liquid SNEDDS using self-emulsification assessment, equilibrium solubility studies, droplet size analysis, and experimentally designed phase diagrams. In addition, the optimized RMP/THQ SNEDDS was evaluated against pure RMP, pure THQ, and the combined pure RMP + RMP-free SNEDDS (capsule-in-capsule) dosage form via in vitro dissolution studies. Results: The phase diagram study revealed that black seed oil (BSO) showed enhanced self-emulsification efficiency with the cosolvent (Transcutol P) and hydrogenated castor oil. The phase diagram studies also revealed that the optimized formulation BSO/TCP/HCO-30 (32.25/27.75/40 % w/w) showed high apparent solubility of RMP (25.5 mg/g), good THQ content (2.7 mg/g), and nanometric (51 nm) droplet size. The in-vitro dissolution studies revealed that the optimized drug-loaded SNEDDS showed good release of RMP and THQ (up to 86% and 89%, respectively). Similarly, the isolation between RMP and SNEDDS (pure RMP + RMP-free SNEDDS) using capsule-in-capsule technology showed >84% RMP release and >82% THQ release. Conclusions: The combined pure RMP + RMP-free SNEDDS (containing black seed oil) could be a potential dosage form combining the solubilization benefits of SNEDDSs, enhancing the release of RMP/THQ along with enhancing RMP stability through its isolation from lipid-based excipients during storage.
Collapse
Affiliation(s)
- Ahmad Abdul-Wahhab Shahba
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box-2457, Riyadh 11451, Saudi Arabia
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdelrahman Y. Sherif
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box-2457, Riyadh 11451, Saudi Arabia
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ehab M. Elzayat
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box-2457, Riyadh 11451, Saudi Arabia
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box-2457, Riyadh 11451, Saudi Arabia
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence: ; Tel.: +966-11-4677372; Fax: +966-11-4676295
| |
Collapse
|
16
|
Al-Qahtani SD, Bin-Melaih HH, Atiya EM, Fahmy UA, Binmahfouz LS, Neamatallah T, Al-Abbasi FA, Abdel-Naim AB. Self-Nanoemulsifying Drug Delivery System of 2-Methoxyestradiol Exhibits Enhanced Anti-Proliferative and Pro-Apoptotic Activities in MCF-7 Breast Cancer Cells. Life (Basel) 2022; 12:life12091369. [PMID: 36143405 PMCID: PMC9503162 DOI: 10.3390/life12091369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: 2-Methoxyestradiol (2ME) is a metabolite of estrogens and possesses promising anti-proliferative and cytotoxic activities. However, it suffers unfavorable pharmacokinetic characteristics such as absorption after oral administration. The aim of this study was to prepare an optimized 2ME self-nanoemulsifying drug delivery system (2ME-SNEDDS) and evaluate its cytotoxicity and pro-apoptotic activities in MCF-7 breast cancer cells. (2) Methods: For optimization of the 2ME-SNEDDS, a three-component system was used in the D-optimal mixture experimental study. MCF-7 cells were incubated with the 2ME-SNEDDS and subjected to an assessment of growth inhibition, cell cycle progression, annexin V staining, caspase-3 concentration, Bax, Bcl-2, and cyclin D1 mRNA expression, and reactive oxygen species (ROS) generation. (3) Results: The optimized formula had a globule size of 94.97 ± 4.35 nm. Zeta potential was found to be −3.4 ± 1.2 mV with a polydispersity index (PDI) of 0.34. In addition, 96.3 ± 4.3% of 2ME was released from the 2ME-SNEDDS within 24 h using the activated analysis bag technique. Moreover, the prepared 2ME-SNEDDS exhibited a significant enhancement of the anti-proliferative activity against MCF-7 cells in comparison to raw 2ME. This was associated with cyclin D1 expression down-regulation and the accumulation of cells in the G0/G1 and G2/M phases. The pro-apoptotic activities of the 2ME-SNEDDS were confirmed by annexin V staining, which indicated enhanced early and late cell death. This accompanied modulation of the mRNA expression of Bax and Bcl-2 in favor of apoptosis. The 2ME-SNEDDS significantly enhanced cleaved caspase-3 concentration in comparison to raw 2ME. In addition, the 2ME-SNEDDS significantly increased the generation of ROS in MCF-7 cells. (4) Conclusions: The 2ME-SNEDDS exhibits enhanced cytotoxicity and pro-apoptotic activity in MCF-7 cells. This is mediated by, at least partially, ROS generation.
Collapse
Affiliation(s)
- Salwa D. Al-Qahtani
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Science, Majmaah University, Majmaah 11952, Saudi Arabia
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hawazen H. Bin-Melaih
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Eman M. Atiya
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Lenah S. Binmahfouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Thikryat Neamatallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ashraf B. Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence:
| |
Collapse
|
17
|
Samimi-Dehkordi N, Taheri G, Afzali S, Sazegar H, Shakeri F. Co-expression network analysis for renal cell carcinoma genes and in vitro confirmation of their expression in cell model in the presence of curcumin. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Alshadidi A, Shahba AAW, Sales I, Rashid MA, Kazi M. Combined Curcumin and Lansoprazole-Loaded Bioactive Solid Self-Nanoemulsifying Drug Delivery Systems (Bio-SSNEDDS). Pharmaceutics 2021; 14:pharmaceutics14010002. [PMID: 35056898 PMCID: PMC8781459 DOI: 10.3390/pharmaceutics14010002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The current study aimed to design a novel combination of lansoprazole (LNS) and curcumin (CUR) solid oral dosage form using bioactive self-nanoemulsifying drug delivery systems (Bio-SSNEDDS). METHODS Liquid SNEDDS were prepared using the lipid-excipients: Imwitor988 (cosurfactant), Kolliphor El (surfactant), the bioactive black seed (BSO) and/or zanthoxylum rhetsa seed oils (ZRO). Liquid SNEDDS were loaded with CUR and LNS, then solidified using commercially available (uncured) and processed (cured) Neusilin® US2 (NUS2) adsorbent. A novel UHPLC method was validated to simultaneously quantify CUR and LNS in lipid-based formulations. The liquid SNEDDS were characterized in terms of self-emulsification, droplet size and zeta-potential measurements. The solidified SNEDDS were characterized by differential scanning calorimetry (DSC), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), in vitro dissolution and stability in accelerated storage conditions. RESULTS Liquid SNEDDS containing BSO produced a transparent appearance and ultra-fine droplet size (14 nm) upon aqueous dilution. The solidified SNEDDS using cured and uncured NUS2 showed complete solidification with no particle agglomeration. DSC and XRD confirmed the conversion of crystalline CUR and LNS to the amorphous form in all solid SNEDDS samples. SEM images showed that CUR/LNS-SNEDDS were relatively spherical and regular in shape. The optimized solid SNEDDS showed higher percent of cumulative release as compared to the pure drugs. Curing NUS2 with 10% PVP led to significant enhancement of CUR and LNS dissolution efficiencies (up to 1.82- and 2.75-fold, respectively) compared to uncured NUS2-based solid SNEDDS. These findings could be attributed to the significant (50%) reduction in the micropore area% in cured NUS2 which reflects blocking very small pores allowing more space for the self-emulsification process to take place in the larger-size pores. Solid SNEDDS showed significant enhancement of liquid SNEDDS stability after 6 months storage in accelerated conditions. CONCLUSIONS The developed Bio-SSNEDDS of CUR and LNS using processed NUS2 could be used as a potential combination therapy to improve the treatment of peptic ulcers.
Collapse
Affiliation(s)
- Abdulrahman Alshadidi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Riyadh Province, Saudi Arabia;
| | - Ahmad Abdul-Wahhab Shahba
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Riyadh Province, Saudi Arabia;
- Correspondence: (A.A.-W.S.); (M.K.); Tel.: +966-(11)-4694253 (A.A.-W.S.); +966-(11)-4677372 (M.K.); Fax: +966-(11)-4676295 (A.A.-W.S. & M.K.)
| | - Ibrahim Sales
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Riyadh Province, Saudi Arabia;
| | - Md Abdur Rashid
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Aseer, Saudi Arabia;
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Riyadh Province, Saudi Arabia;
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Riyadh Province, Saudi Arabia
- Correspondence: (A.A.-W.S.); (M.K.); Tel.: +966-(11)-4694253 (A.A.-W.S.); +966-(11)-4677372 (M.K.); Fax: +966-(11)-4676295 (A.A.-W.S. & M.K.)
| |
Collapse
|
19
|
Zareshahrabadi Z, Karimirad M, Pakshir K, Bahmyari R, Motamedi M, Nouraei H, Zomorodian K. Survey of aflatoxins and ochratoxin A contamination in spices by HPLC-based method in Shiraz, Southern of Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:40992-40999. [PMID: 33774787 DOI: 10.1007/s11356-021-13616-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Among food and agricultural products, spices play important roles in the diets of millions of people worldwide. These products may be colonized by fungi genus and subsequently mycotoxin production. Due to the large demand and supply of spice for cooking, preservative effects, or medicine purpose, it is essential that further investigation is designed to examine mycotoxins in spice. In the present study, the possible contamination of spices by aflatoxins (AFTs) and ochratoxin A (OTA) were analyzed. A total of 80 spice samples (curry, sumac, ginger, and saffron) were purchased and cultured on appropriate medium. Simultaneously mycotoxins from spices were extracted with immunoaffinity columns (IAC), and the occurrence of AFTs (B1 + B2 + G1 + G2) and OTA was then determined using high-performance liquid chromatography (HPLC) with a fluorescence detector (FD). The results depicted that 62 (77.5%) and 58 (72.5%) spice samples were contaminated with AFTs and OTA, respectively. Out of the 80 analyzed spices samples, the mean concentration of AFTs and OTA was higher in the curry samples. Among spices that contaminated with mycotoxins, 5 (6.25%) and 2 (10%) of the samples were above the acceptable limit of AFTs (≥ 10 μg/kg) and OTA (≥ 15 μg/kg), respectively. Aspergillus species were the predominant species isolated, followed by Penicillium, and finally Mucor species.Among the examined samples, only few curry samples were contaminated with mycotoxins above acceptable limit. Despite this low level of contamination, this spice is used daily in the cuisine of this region of the world, and consequently, even the small amount of these heat stable toxins for a long time may cause many adverse effects. Hence, it is recommended to monitor the toxicogenous fungi contamination and level of mycotoxins in the spices.
Collapse
Affiliation(s)
- Zahra Zareshahrabadi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdieh Karimirad
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Keyvan Pakshir
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Basic Sciences in Infectious Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Robab Bahmyari
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marjan Motamedi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hasti Nouraei
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamiar Zomorodian
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Basic Sciences in Infectious Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
20
|
Pal RR, Rajpal V, Singh P, Saraf SA. Recent Findings on Thymoquinone and Its Applications as a Nanocarrier for the Treatment of Cancer and Rheumatoid Arthritis. Pharmaceutics 2021; 13:775. [PMID: 34067322 PMCID: PMC8224699 DOI: 10.3390/pharmaceutics13060775] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer causes a considerable amount of mortality in the world, while arthritis is an immunological dysregulation with multifactorial pathogenesis including genetic and environmental defects. Both conditions have inflammation as a part of their pathogenesis. Resistance to anticancer and disease-modifying antirheumatic drugs (DMARDs) happens frequently through the generation of energy-dependent transporters, which lead to the expulsion of cellular drug contents. Thymoquinone (TQ) is a bioactive molecule with anticancer as well as anti-inflammatory activities via the downregulation of several chemokines and cytokines. Nevertheless, the pharmacological importance and therapeutic feasibility of thymoquinone are underutilized due to intrinsic pharmacokinetics, including short half-life, inadequate biological stability, poor aqueous solubility, and low bioavailability. Owing to these pharmacokinetic limitations of TQ, nanoformulations have gained remarkable attention in recent years. Therefore, this compilation intends to critically analyze recent advancements in rheumatoid arthritis and cancer delivery of TQ. This literature search revealed that nanocarriers exhibit potential results in achieving targetability, maximizing drug internalization, as well as enhancing the anti-inflammatory and anticancer efficacy of TQ. Additionally, TQ-NPs (thymoquinone nanoparticles) as a therapeutic payload modulated autophagy as well as enhanced the potential of other drugs when given in combination. Moreover, nanoformulations improved pharmacokinetics, drug deposition, using EPR (enhanced permeability and retention) and receptor-mediated delivery, and enhanced anti-inflammatory and anticancer properties. TQ's potential to reduce metal toxicity, its clinical trials and patents have also been discussed.
Collapse
Affiliation(s)
- Ravi Raj Pal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India; (R.R.P.); (P.S.)
| | - Vasundhara Rajpal
- Department of Biotechology, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India;
| | - Priya Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India; (R.R.P.); (P.S.)
| | - Shubhini A. Saraf
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India; (R.R.P.); (P.S.)
| |
Collapse
|