1
|
Wan L, Li S, Du J, Li A, Zhan Y, Zhu W, Zheng P, Qiao D, Nie C, Pan Q. Review of Metal-Polyphenol Self-Assembled Nanoparticles: Synthesis, Properties, and Biological Applications in Inflammatory Diseases. ACS Biomater Sci Eng 2025. [PMID: 40276988 DOI: 10.1021/acsbiomaterials.4c02366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Polyphenols, which are compounds characterized by the presence of phenolic hydroxyl groups, are abundantly found in natural plants and exist in highly complex forms within living organisms. As some of the most prevalent compounds in nature, polyphenols possess significant medicinal value due to their unique structural features, particularly their therapeutic efficacy in antitumor, anti-inflammatory, and antibacterial applications. In the context of inflammation therapy, polyphenolic compounds can inhibit the excessive release of inflammatory mediators from inflammatory cells, thereby mitigating inflammation. Furthermore, these compounds exhibit strong antioxidant properties, enabling them to scavenge free radicals and reactive oxygen species (ROS), reduce oxidative stress-related damage, and exert anti-inflammatory effects. Due to their multiple phenolic hydroxyl groups and their ability to chelate various metals, polyphenols are extensively utilized in the synthesis of self-assembled nanoparticles for the treatment of various diseases. Numerous studies have demonstrated that the therapeutic profile of nanoparticles formed through self-assembly with metal ions surpasses that of polyphenolic compounds alone. This Review will focus on the self-assembly of different polyphenolic compounds with various metal ions to generate nanoparticles, their characterization, and their therapeutic applications in inflammation-related diseases, providing researchers with new insights into the synthetic study of metal-polyphenol nanocomposites and their biological applications.
Collapse
Affiliation(s)
- Li Wan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Shizhe Li
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Jiawei Du
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Anqi Li
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Yujie Zhan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Dan Qiao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Cunpeng Nie
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Qingshan Pan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| |
Collapse
|
2
|
Vrablova L, Gonec T, Kauerova T, Oravec M, Jendrzejewska I, Kollar P, Cizek A, Jampilek J. Antimicrobial and ADME properties of methoxylated, methylated and nitrated 2-hydroxynaphthalene-1 carboxanilides. ADMET AND DMPK 2025; 13:2642. [PMID: 40161889 PMCID: PMC11954145 DOI: 10.5599/admet.2642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/04/2025] [Indexed: 04/02/2025] Open
Abstract
Background and purpose Many new compounds are being prepared to overcome the problem of increasing microbial resistance and the increasing number of infections. Experimental approach This study includes a series of twenty-seven mono-, di- and trisubstituted 2-hydroxynaphthalene-1-carboxanilides designed as multitarget agents. The compounds are substituted with methoxy, methyl, and nitro groups, as well as additionally with chlorine, bromine, and trifluoromethyl at various positions. All the compounds were evaluated for antibacterial activities against Gram-positive and Gram-negative bacteria and mycobacteria. Cytotoxicity on human cells was also tested. Key results Three compounds showed activity comparable to clinically used drugs. N-(3,5-Dimethylphenyl)-2-hydroxynaphthalene-1-carboxamide (13) showed only antistaphylococcal activity (minimum inhibitory concentration (MIC) = 54.9 μM); 2-hydroxy-N-[2-methyl-5-(trifluoromethyl)phenyl]naphthalene-1-carboxamide (22) and 2-hydroxy-N-[4-nitro-3-(trifluoromethyl)phenyl]naphthalene-1-carboxamide (27) were active across the entire spectrum of tested bacteria/mycobacteria, both against the sensitive set and against resistant isolates (MICs range 0.3 to 92.6 μM). Compound 22 was even active against E. coli (MIC = 23.2 μM). The active agents showed no in vitro cytotoxicity up to a concentration of 30 μM. Conclusion Compounds with trifluoromethyl in the meta-anilide position, experimental lipophilicity expressed as log k (logarithm of the capacity factor) in the range of 0.31 to 0.34 and calculated electron σ parameter for the anilide substituent higher than 0.59 were effective. The investigated compounds meet the definition of Michael acceptors. Based on ADME screening, the investigated compounds 13, 22 and 27 should have suitable physicochemical parameters for good bioavailability in the organism. Therefore, these are promising agents for further study.
Collapse
Affiliation(s)
- Lucia Vrablova
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Tomas Gonec
- Department of Chemical Drugs, Faculty of Pharmacy, Masaryk University, Palackeho tr. 1946/1, 612 00 Brno, Czech Republic
| | - Tereza Kauerova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Palackeho tr. 1946/1, 612 00 Brno, Czech Republic
| | - Michal Oravec
- Global Change Research Institute CAS, Belidla 986/4a, 603 00 Brno, Czech Republic
| | | | - Peter Kollar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Palackeho tr. 1946/1, 612 00 Brno, Czech Republic
| | - Alois Cizek
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic
| | - Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 779 00 Olomouc, Czech Republic
| |
Collapse
|
3
|
Aguiar TQ, Leal T, Rodrigues DG, Abrunhosa L, Oliveira C, Domingues L. Recombinant bovine serum albumin domain II as bioreceptor for ochratoxin A capture. Talanta 2025; 283:127126. [PMID: 39489069 DOI: 10.1016/j.talanta.2024.127126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/19/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Established chromatographic techniques for mycotoxin control in foodstuffs require prior sample enrichment and clean-up, typically achieved using immunoaffinity columns (IACs). Bovine serum albumin (BSA) has recently emerged as a cost-effective alternative to antibodies used in IACs. This study aimed at exploring the BSA domain II (BDII), which houses the primary binding site for ochratoxin A (OTA), as a bioreceptor for OTA capture. Recombinant BDII (rBDII) was produced in soluble form by Escherichia coli Origami 2(DE3), fused to a His6 (HisBDII) or thioredoxin-His6 (TrxBDII) tag, with yields up to 19 ± 4.3 mg/Lculture in shake-flask. Fluorescence and circular dichroism (CD) spectroscopy revealed interaction of OTA with both rBDII variants, with estimated binding constants for OTA-HisBDII/TrxBDII complexes in the range of 5.7-9.3 × 104 M-1. CD also showed an α/β structure of rBDII variants, in opposition to the predominant α-helical structure of whole BSA, and slight increase in their α-helical content upon binding to OTA. TrxBDII immobilized on Ni-NTA resin successfully captured OTA from spiked samples at the optimum pH range of 6.5-7.0, allowing OTA extraction, clean-up, and enrichment from spiked white grape juice, with up to 84 ± 7.4 % recovery.
Collapse
Affiliation(s)
- Tatiana Q Aguiar
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| | - Tânia Leal
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Diana G Rodrigues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Luís Abrunhosa
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Carla Oliveira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
4
|
Meenatchi R, Priya S, Shreya C, Gopi S, Rajagopal R, Kaliraj S, Kumaradoss KM, Arockiaraj J. Exploring the Anti-Adherence Potential of Skt35 to Combat Catheter-Associated Staphylococcus aureus Infections: Efficacy, Toxicity and Mechanism of Action. Chem Biodivers 2025:e202402087. [PMID: 39832262 DOI: 10.1002/cbdv.202402087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/22/2025]
Abstract
Catheter-associated urinary tract infections (CAUTIs), often caused by biofilm-forming Staphylococcus aureus, present significant clinical challenges. Skt35, a dioxopiperidinamide derivative of cinnamic acid, was investigated for its potential antibacterial and antibiofilm activities against S. aureus biofilms. The antibacterial effect of Skt35 was assessed using the zone of inhibition and microdilution methods, revealing a minimum inhibitory concentration (MIC) of 250 µM. Antibiofilm properties were confirmed through crystal violet assays, scanning electron microscopy and confocal laser scanning microscopy, showing significant biofilm inhibition at the Sub-MIC. In an in vitro bladder model, Skt35-coated silicone catheter tubes exhibited significant antiadhesive effects. Zebrafish embryo tests indicated no toxicity at concentrations up to 125 µM. Molecular docking and simulation analysis revealed strong binding affinities of Skt35 to Accessory Gene Regulator A (-7.9 kcal/mol) and Lux Small protein (-4.96 kcal/mol), suggesting potential disruption of quorum sensing and gene expression in S. aureus, making it a promising candidate for catheter coatings to prevent CAUTIs.
Collapse
Affiliation(s)
- Ramu Meenatchi
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, India
| | - Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, India
| | - Chakraborty Shreya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, India
| | - Sanjay Gopi
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, India
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - S Kaliraj
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, India
| | - Kathiravan Muthu Kumaradoss
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, India
| |
Collapse
|
5
|
Collevecchio C, Genovese S, Epifano F, Marchetti L, Fiorito S. Albumin as an Effective Auxiliary Agent for the Enriched Extraction of Anthraquinones and Curcumin from Plant Matrices. Molecules 2025; 30:249. [PMID: 39860119 PMCID: PMC11767785 DOI: 10.3390/molecules30020249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Nowadays, several processes to enrich desired bioactive compounds in plant extracts have been developed. The objective of the present study was to assess the performance of bovine serum albumin in increasing the extractive yields of anthraquinones and diarylheptanoids from their respective raw plant powder extracts. Aloe emodin, rhein, emodin, and chrysophanol, from Polygonum cuspidatum, Senna alexandrina, Rhamnus frangula, and Rheum palmatum, and curcumin from Curcuma longa were analyzed in parent dry extracts, solubilized either with water, ethanol, or hydro-alcoholic mixtures, and in ones treated with aqueous solutions of bovine serum albumin by HPLC with UV/Vis detection. The different ratios between the volumes of solvents, powdered plant extracts, and bovine serum albumin were tested. The addition of albumin provided an increase in the yields of aloe emodin in the range 7.8-50.4-fold; of rhein in the range 6.1-14.1-fold; of emodin in the range 19.7-39.7-fold; of chrysophanol in the range 15.1-28.7-fold; and, finally, of curcumin of 32.1-fold. The addition of bovine serum albumin in the processing of plant extracts has been shown to be a novel and a valid alternative, comparing favourably to already reported methodologies. The easy-to-handle procedures, readily accessible facilities, and the employment of cheap substrates and reagents represent the most evident advantages of the methodology described herein.
Collapse
Affiliation(s)
| | - Salvatore Genovese
- Department of Pharmacy, University “Gabriele d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo, CH, Italy; (C.C.); (L.M.); (S.F.)
| | - Francesco Epifano
- Department of Pharmacy, University “Gabriele d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo, CH, Italy; (C.C.); (L.M.); (S.F.)
| | | | | |
Collapse
|
6
|
Stehlin J, Albert I, Frei T, Frei Haller B, Lardos A. Plants and their uses in dermatological recipes of the Receptarium of Burkhard III von Hallwyl from 16th century Switzerland - Data mining a historical text and preliminary in vitro screening. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118633. [PMID: 39097209 DOI: 10.1016/j.jep.2024.118633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/13/2024] [Accepted: 07/26/2024] [Indexed: 08/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Historical texts on materia medica can be an attractive source of ethnopharmacological information. Various research groups have investigated corresponding resources from Europe and the Mediterranean region, pursuing different objectives. Regardless of the method used, the indexing of textual information and its conversion into data sets useful for further investigations represents a significant challenge. AIM OF THE STUDY First, this study aims to systematically catalogue pharmaco-botanical information in the Receptarium of Burkhard von Hallwyl (RBH) in order to identify candidate plants in a targeted manner. Secondly, the potential of RBH as a resource for pharmacological investigations will be assessed by means of a preliminary in vitro screening. MATERIALS AND METHODS We developed a relational database for the systematic recording of parameters composing the medical recipes contained in the historical text. Focusing on dermatological recipes, we explored the mentioned plants and their uses by drawing on specific literature. The botanical identities (candidate species) suggested in the literature for the historical plant names were rated based on their plausibility of being the correct attribution. The historical uses were interpreted by consulting medical-historical and modern clinical literature. For the subsequent in vitro screening, we selected candidate species used in recipes directed at the treatment of inflammatory or infectious skin disorders and wounds. Plants were collected in Switzerland and their hydroethanolic crude extracts tested for possible cytotoxic effects and for their potential to modulate the release of IL-6 and TNF in PS-stimulated whole blood and PBMCs. RESULTS The historical text analysis points up the challenges associated with the assessment of historical plant names. Often two or more plant species are available as candidates for each of the 161 historical plant names counted in the 200 dermatological recipes in RBH. On the other hand, our method enabled to draw conclusions about the diseases underlying the 56 medical applications mentioned in the text. On this basis, 11 candidate species were selected for in vitro screening, four of which were used in RBH in herbal simple recipes and seven in a herbal compound formulation. None of the extracts tested showed a noteworthy effect on cell viability except for the sample of Sanicula europaea L. Extracts were tested at 50 μg/mL in the whole blood assay, where especially Vincetoxicum hirundinaria Medik. or Solanum nigrum L. showed inhibitory or stimulatory activities. In the PBMC assay, the root of Vincetoxicum hirundinaria revealed a distinct inhibitory effect on IL-6 release (IC50 of 3.6 μg/mL). CONCLUSIONS Using the example of RBH, this study illustrates a possible ethnopharmacological path from unlocking the historical text and its subsequent analysis, through the selection and collection of plant candidates to their in vitro investigation. Fully documenting our approach to the analysis of historical texts, we hope to contribute to the discussion on solutions for the digital indexing of premodern information on the use of plants or other natural products.
Collapse
Affiliation(s)
- Jonas Stehlin
- ZHAW Zurich University of Applied Sciences, School of Life Sciences and Facility Management, Institute of Chemistry and Biotechnology, Natural Product Chemistry and Phytopharmacy Group, Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland.
| | - Ina Albert
- ZHAW Zurich University of Applied Sciences, School of Life Sciences and Facility Management, Institute of Chemistry and Biotechnology, Pharmaceutical Technology and Pharmacology Group, Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland.
| | - Thomas Frei
- Pro Thesauro Sanitatis (PTS), c/o Thomas Frei, Kappelen 20, 5706, Boniswil, Switzerland.
| | - Barbara Frei Haller
- Pro Thesauro Sanitatis (PTS), c/o Thomas Frei, Kappelen 20, 5706, Boniswil, Switzerland; ETH Zürich, Institute of Pharmaceutical Sciences (IPW), Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland.
| | - Andreas Lardos
- ZHAW Zurich University of Applied Sciences, School of Life Sciences and Facility Management, Institute of Chemistry and Biotechnology, Natural Product Chemistry and Phytopharmacy Group, Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland; Pro Thesauro Sanitatis (PTS), c/o Thomas Frei, Kappelen 20, 5706, Boniswil, Switzerland.
| |
Collapse
|
7
|
Georgieva E, Ananiev J, Yovchev Y, Arabadzhiev G, Abrashev H, Zaharieva V, Atanasov V, Kostandieva R, Mitev M, Petkova-Parlapanska K, Karamalakova Y, Tsoneva V, Nikolova G. Stable Nitroxide as Diagnostic Tools for Monitoring of Oxidative Stress and Hypoalbuminemia in the Context of COVID-19. Int J Mol Sci 2024; 25:8045. [PMID: 39125614 PMCID: PMC11312055 DOI: 10.3390/ijms25158045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 08/12/2024] Open
Abstract
Oxidative stress is a major source of ROS-mediated damage to macromolecules, tissues, and the whole body. It is an important marker in the severe picture of pathological conditions. The discovery of free radicals in biological systems gives a "start" to studying various pathological processes related to the development and progression of many diseases. From this moment on, the enrichment of knowledge about the participation of free radicals and free-radical processes in the pathogenesis of cardiovascular, neurodegenerative, and endocrine diseases, inflammatory conditions, and infections, including COVID-19, is increasing exponentially. Excessive inflammatory responses and abnormal reactive oxygen species (ROS) levels may disrupt mitochondrial dynamics, increasing the risk of cell damage. In addition, low serum albumin levels and changes in the normal physiological balance between reduced and oxidized albumin can be a serious prerequisite for impaired antioxidant capacity of the body, worsening the condition in patients. This review presents the interrelationship between oxidative stress, inflammation, and low albumin levels, which are hallmarks of COVID-19.
Collapse
Affiliation(s)
- Ekaterina Georgieva
- Department of General and Clinical Pathology, Forensic Medicine, Deontology and Dermatovenerology, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (E.G.); (J.A.); (V.Z.)
| | - Julian Ananiev
- Department of General and Clinical Pathology, Forensic Medicine, Deontology and Dermatovenerology, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (E.G.); (J.A.); (V.Z.)
| | - Yovcho Yovchev
- Department of Surgery and Anesthesiology, University Hospital “Prof. Dr. St. Kirkovich”, 6000 Stara Zagora, Bulgaria; (Y.Y.); (G.A.)
| | - Georgi Arabadzhiev
- Department of Surgery and Anesthesiology, University Hospital “Prof. Dr. St. Kirkovich”, 6000 Stara Zagora, Bulgaria; (Y.Y.); (G.A.)
| | - Hristo Abrashev
- Department of Vascular Surgery, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria;
| | - Vyara Zaharieva
- Department of General and Clinical Pathology, Forensic Medicine, Deontology and Dermatovenerology, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (E.G.); (J.A.); (V.Z.)
| | - Vasil Atanasov
- Forensic Toxicology Laboratory, Military Medical Academy, 3 G. Sofiiski, 1606 Sofia, Bulgaria; (V.A.); (R.K.)
| | - Rositsa Kostandieva
- Forensic Toxicology Laboratory, Military Medical Academy, 3 G. Sofiiski, 1606 Sofia, Bulgaria; (V.A.); (R.K.)
| | - Mitko Mitev
- Department of Diagnostic Imaging, University Hospital “Prof. Dr. St. Kirkovich”, 6000 Stara Zagora, Bulgaria;
| | - Kamelia Petkova-Parlapanska
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (K.P.-P.); (G.N.)
| | - Yanka Karamalakova
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (K.P.-P.); (G.N.)
| | - Vanya Tsoneva
- Department of Propaedeutics of Internal Medicine and Clinical Laboratory, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria;
| | - Galina Nikolova
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (K.P.-P.); (G.N.)
| |
Collapse
|
8
|
Damian-Medina K, Herrera-González A, Figueroa-Yáñez LJ, Arrizon J. Enzymatic Fructosylation of Phenolic Compounds: A New Alternative for the Development of Antidiabetic Drugs. Molecules 2024; 29:3072. [PMID: 38999025 PMCID: PMC11243490 DOI: 10.3390/molecules29133072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/14/2024] Open
Abstract
Enzymatic fructosylation has emerged as a strategy to enhance the hydrophilicity of polyphenols by introducing sugar moieties, leading to the development of phenolic glycosides, which exhibit improved solubility, stability, and biological activities compared to their non-glycosylated forms. This study provides a detailed analysis of the interactions between five phenolic fructosides (4MFPh, MFF, DFPh, MFPh, and MFPu) and twelve proteins (11β-HS1, CRP, DPPIV, IRS, PPAR-γ, GK, AMPK, IR, GFAT, IL-1ß, IL-6, and TNF-α) associated with the pathogenesis of T2DM. The strongest interactions were observed for phlorizin fructosides (DFPh) with IR (-16.8 kcal/mol) and GFAT (-16.9 kcal/mol). MFPh with 11β-HS1 (-13.99 kcal/mol) and GFAT (-12.55 kcal/mol). 4MFPh with GFAT (-11.79 kcal/mol) and IR (-12.11 kcal/mol). MFF with AMPK (-9.10 kcal/mol) and PPAR- γ (-9.71 kcal/mol), followed by puerarin and ferulic acid monofructosides. The fructoside group showed lower free energy binding values than the controls, metformin and sitagliptin. Hydrogen bonding (HB) was identified as the primary interaction mechanism, with specific polar amino acids such as serin, glutamine, glutamic acid, threonine, aspartic acid, and lysine identified as key contributors. ADMET results indicated favorable absorption and distribution characteristics of the fructosides. These findings provide valuable information for further exploration of phenolic fructosides as potential therapeutic agents for T2DM.
Collapse
Affiliation(s)
- Karla Damian-Medina
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA;
| | - Azucena Herrera-González
- Department of Chemical Engineering, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Mexico;
| | - Luis J. Figueroa-Yáñez
- Industrial Biotechnology Division, Unidad Zapopan, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara 45019, Mexico;
| | - Javier Arrizon
- Industrial Biotechnology Division, Unidad Zapopan, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara 45019, Mexico;
| |
Collapse
|
9
|
Tufail N, Abidi M, Warsi MS, Kausar T, Nayeem SM. Computational and physicochemical insight into 4-hydroxy-2-nonenal induced structural and functional perturbations in human low-density lipoprotein. J Biomol Struct Dyn 2024; 42:2698-2713. [PMID: 37154523 DOI: 10.1080/07391102.2023.2208234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/19/2023] [Indexed: 05/10/2023]
Abstract
Lipid peroxidation (LPO) is a biological process that frequently occurs under physiological conditions. Undue oxidative stress increases the level of LPO; which may further contribute to the development of cancer. 4-Hydroxy-2-nonenal (HNE), one of the principal by-products of LPO, is present in high concentrations in oxidatively stressed cells. HNE rapidly reacts with various biological components, including DNA and proteins; however, the extent of protein degradation by lipid electrophiles is not well understood. The influence of HNE on protein structures will likely have a considerable therapeutic value. This research elucidates the potential of HNE, one of the most researched phospholipid peroxidation products, in modifying low-density lipoprotein (LDL). In this study, we tracked the structural alterations in LDL by HNE using various physicochemical techniques. To comprehend the stability, binding mechanism and conformational dynamics of the HNE-LDL complex, computational investigations were carried out. LDL was altered in vitro by HNE, and the secondary and tertiary structural alterations were examined using spectroscopic methods, such as UV-visible, fluorescence, circular dichroism and fourier transform infrared spectroscopy. Carbonyl content, thiobarbituric acid-reactive-substance (TBARS) and nitroblue tetrazolium (NBT) reduction assays were used to examine changes in the oxidation status of LDL. Thioflavin T (ThT), 1-anilinonaphthalene-8-sulfonic (ANS) binding assay and electron microscopy were used to investigate aggregates formation. According to our research, LDL modified by HNE results in changes in structural dynamics, oxidative stress and the formation of LDL aggregates. The current investigation must characterize HNE's interactions with LDL and comprehend how it can change their physiological or pathological functions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Neda Tufail
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Minhal Abidi
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Mohd Sharib Warsi
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Tasneem Kausar
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| | - Shahid M Nayeem
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
10
|
Sofia Almeida A, Cardoso T, Cravo S, Elizabeth Tiritan M, Remião F, Fernandes C. Binding studies of synthetic cathinones to human serum albumin by high-performance affinity chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1227:123836. [PMID: 37494753 DOI: 10.1016/j.jchromb.2023.123836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/05/2023] [Accepted: 07/16/2023] [Indexed: 07/28/2023]
Abstract
The binding affinity to human serum albumin (HSA) of a series of fourteen synthetic cathinones, new psychoactive substances widely abused, was investigated by high-performance affinity chromatography (HPAC). Zonal elution experiments were conducted to measure the retention times of each synthetic cathinone on an HSA column, which enabled the calculation of the percentage of the drug bound. For some synthetic cathinones, enantioselectivity on HSA was found. To gather information on the HSA binding sites and better understand the chiral recognition mechanisms, enantioresolution of selected cathinones was carried out at a milligram scale through liquid chromatography (LC) with carbamate polysaccharide-based columns. This work was followed by zonal displacement chromatography using known competitors with specific binding sites on HSA, namely (S)-ibuprofen and warfarin. Competition was observed between the tested drugs and both competitors (except for pentedrone with warfarin), which is consistent with an allosteric competition involving a non-cooperative binding mechanism.
Collapse
Affiliation(s)
- Ana Sofia Almeida
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; TOXRUN-Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra 4585-116, Portugal; UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal
| | - Tony Cardoso
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Sara Cravo
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - Maria Elizabeth Tiritan
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; TOXRUN-Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra 4585-116, Portugal
| | - Fernando Remião
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
11
|
Ansari S, Zia MK, Fatima S, Ahsan H, Khan FH. Probing the binding of morin with alpha-2-macroglobulin using multi-spectroscopic and molecular docking approach : Interaction of morin with α 2M. J Biol Phys 2023; 49:235-255. [PMID: 36913165 PMCID: PMC10160284 DOI: 10.1007/s10867-023-09629-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/11/2023] [Indexed: 03/14/2023] Open
Abstract
Alpha-2-macroglobulin (α2M) is an essential antiproteinase that is widely distributed in human plasma. The present study was aimed at investigating the binding of a potential therapeutic dietary flavonol, morin, with human α2M using a multi-spectroscopic and molecular docking approach. Recently, flavonoid-protein interaction has gained significant attention, because a majority of dietary bioactive components interact with proteins, thereby altering their structure and function. The results of the activity assay exhibited a 48% reduction in the antiproteolytic potential of α2M upon interaction with morin. Fluorescence quenching tests unequivocally confirmed quenching in the fluorescence of α2M in the presence of morin, conforming complex formation and demonstrating that the binding mechanism involves a dynamic mode of interaction. Synchronous fluorescence spectra of α2M with morin showed perturbation in the microenvironment around tryptophan residues. Furthermore, structural changes were observed through CD and FT-IR, showing alterations in the secondary structure of α2M induced by morin. FRET further supports the results of the dynamic mode of quenching. Moderate interaction is shown by binding constant values using Stern-Volmer's fluorescence spectroscopy. Morin binds to α2M at 298 K with a binding constant of 2.7 × 104 M-1, indicating the strength of the association. The α2M-morin system was found to have negative ΔG values, which suggests that the binding process was spontaneous. Molecular docking also reveals the different amino acid residues involved in this binding process, revealing that the binding energy is -8.1 kcal/mol.
Collapse
Affiliation(s)
- Sana Ansari
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Mohammad Khalid Zia
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Shamila Fatima
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Fahim H Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
12
|
Castro-Muñoz R, Boczkaj G, Cabezas R. A Perspective on Missing Aspects in Ongoing Purification Research towards Melissa officinalis. Foods 2023; 12:foods12091916. [PMID: 37174453 PMCID: PMC10178074 DOI: 10.3390/foods12091916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Melissa officinalis L. is a medicinal plant used worldwide for ethno-medical purposes. Today, it is grown everywhere; while it is known to originate from Southern Europe, it is now found around the world, from North America to New Zealand. The biological properties of this medicinal plant are mainly related to its high content of phytochemical (bioactive) compounds, such as flavonoids, polyphenolic compounds, aldehydes, glycosides and terpenes, among many other groups of substances. Among the main biological activities associated with this plant are antimicrobial activity (against fungi and bacteria), and antispasmodic, antioxidant and insomnia properties. Today, this plant is still used by society (as a natural medicine) to alleviate many other illnesses and symptoms. Therefore, in this perspective, we provide an update on the phytochemical profiling analysis of this plant, as well as the relationships of specific biological and pharmacological effects of specific phytochemicals. Currently, among the organic solvents, ethanol reveals the highest effectiveness for the solvent extraction of precious components (mainly rosmarinic acid). Additionally, our attention is devoted to current developments in the extraction and fractionation of the phytochemicals of M. officinalis, highlighting the ongoing progress of the main strategies that the research community has employed. Finally, after analyzing the literature, we suggest potential perspectives in the field of sustainable extraction and purification of the phytochemical present in the plant. For instance, some research gaps concern the application of cavitation-assisted extraction processes, which can effectively enhance mass transfer while reducing the particle size of the extracted material in situ. Meanwhile, membrane-assisted processes could be useful in the fractionation and purification of obtained extracts. On the other hand, further studies should include the application of ionic liquids and deep eutectic solvents (DES), including DESs of natural origin (NADES) and hydrophobic DESs (hDES), as extraction or fractionating solvents, along with new possibilities for effective extraction related to DESs formed in situ, assisted by mechanical mixing (mechanochemistry-based approach).
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Avenida Eduardo Monroy Cárdenas 2000 San Antonio Buenavista, Toluca de Lerdo 50110, Mexico
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland
| | - Grzegorz Boczkaj
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland
| | - René Cabezas
- Departamento de Química Ambiental, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile
| |
Collapse
|
13
|
Pinto D, Almeida A, López-Yerena A, Pinto S, Sarmento B, Lamuela-Raventós R, Vallverdú-Queralt A, Delerue-Matos C, Rodrigues F. Appraisal of a new potential antioxidants-rich nutraceutical ingredient from chestnut shells through in-vivo assays – A targeted metabolomic approach in phenolic compounds. Food Chem 2023; 404:134546. [DOI: 10.1016/j.foodchem.2022.134546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/17/2022] [Accepted: 10/05/2022] [Indexed: 11/22/2022]
|
14
|
Rajput A, Sharma P, Singh D, Singh S, Kaur P, Attri S, Mohana P, Kaur H, Rashid F, Bhatia A, Jankowski J, Arora V, Tuli HS, Arora S. Role of polyphenolic compounds and their nanoformulations: a comprehensive review on cross-talk between chronic kidney and cardiovascular diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:901-924. [PMID: 36826494 DOI: 10.1007/s00210-023-02410-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/26/2023] [Indexed: 02/25/2023]
Abstract
Chronic kidney disease (CKD) affects a huge portion of the world's population and frequently leads to cardiovascular diseases (CVDs). It might be because of common risk factors between chronic kidney disease and cardiovascular diseases. Renal dysfunction caused by chronic kidney disease creates oxidative stress which in turn leads to cardiovascular diseases. Oxidative stress causes endothelial dysfunction and inflammation in heart which results in atherosclerosis. It ends in clogging of veins and arteries that causes cardiac stroke and myocardial infarction. To develop an innovative therapeutic approach and new drugs to treat these diseases, it is important to understand the pathophysiological mechanism behind the CKD and CVDs and their interrelationship. Natural phytoconstituents of plants such as polyphenolic compounds are well known for their medicinal value. Polyphenols are plant secondary metabolites with immense antioxidant properties, which can protect from free radical damage. Nowadays, polyphenols are generating a lot of buzz in the scientific community because of their potential health benefits especially in the case of heart and kidney diseases. This review provides a detailed account of the pathophysiological link between CKD and CVDs and the pharmacological potential of polyphenols and their nanoformulations in promoting cardiovascular and renal health.
Collapse
Affiliation(s)
- Ankita Rajput
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Palvi Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Davinder Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sharabjit Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Prabhjot Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Shivani Attri
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Pallvi Mohana
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Harneetpal Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Farhana Rashid
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Astha Bhatia
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
| | - Vanita Arora
- Sri Sukhmani Dental College & Hospital, Derabassi, Punjab, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
15
|
He Q, Mu Q, Wei Z, Peng B, Lan Z, Zhang Y, Yao W, Nie J. Investigation of the binding behavior of bioactive 7-methoxyflavone to human serum albumin by coupling multi-spectroscopic with computational approaches. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121920. [PMID: 36201870 DOI: 10.1016/j.saa.2022.121920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
The natural flavonoids with bioactivity as secondary plant metabolites are mostly found in fruits, vegetables, tea and herbs, the distribution and bioavailability of which in vivo depends on the interaction and successive binding with carrier proteins in the systemic circulation. In this paper, the binding behavior of bioactive 7-methoxyflavone (7-MF) with human serum albumin (HSA) was studied with the aid of the combination of multi-spectroscopic methods, molecular docking and molecular dynamic simulation. The results of multi-spectroscopic experiments revealed that 7-MF interacted with HSA predominantly via fluorescence static quenching and the microenvironment around the fluorophore Trp residues in HSA became more hydrophilicity with the binding of 7-MF. Thermodynamic analysis demonstrated that hydrogen bonds and van der Waals forces played a dominant role in stabilizing the HSA-7-MF complex. Moreover, the docking experiment and molecular dynamic simulation further confirmed that 7-MF could enter the active cavity of HSA and caused more stable conformation and change of secondary structure of HSA through forming hydrogen bond. The exploration of the mechanism of 7-MF binding to HSA lights a new avenue to understand the stability, transport and distribution of 7-MF and 7-MF may hold great potential to be extended as a promising alternative of dietary supplements or pharmaceutical agents.
Collapse
Affiliation(s)
- Qing He
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Qi'er Mu
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Zhongxun Wei
- Momordica grosvenori Research Institution, Yongfu County Bureau of Agriculture and Rural Affairs, Guilin 541800, China
| | - Bin Peng
- Momordica grosvenori Research Institution, Yongfu County Bureau of Agriculture and Rural Affairs, Guilin 541800, China
| | - Zhenni Lan
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Yun Zhang
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| | - Weihao Yao
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Jinfang Nie
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
16
|
Theobroma cacao and Theobroma grandiflorum: Botany, Composition and Pharmacological Activities of Pods and Seeds. Foods 2022; 11:foods11243966. [PMID: 36553708 PMCID: PMC9778104 DOI: 10.3390/foods11243966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Cocoa and cupuassu are evergreen Amazonian trees belonging to the genus Theobroma, with morphologically distinct fruits, including pods and beans. These beans are generally used for agri-food and cosmetics and have high fat and carbohydrates contents. The beans also contain interesting bioactive compounds, among which are polyphenols and methylxanthines thought to be responsible for various health benefits such as protective abilities against cardiovascular and neurodegenerative disorders and other metabolic disorders such as obesity and diabetes. Although these pods represent 50-80% of the whole fruit and provide a rich source of proteins, they are regularly eliminated during the cocoa and cupuassu transformation process. The purpose of this work is to provide an overview of recent research on cocoa and cupuassu pods and beans, with emphasis on their chemical composition, bioavailability, and pharmacological properties. According to the literature, pods and beans from cocoa and cupuassu are promising ecological and healthy resources.
Collapse
|
17
|
Masoumi B, Tabibiazar M, Golchinfar Z, Mohammadifar M, Hamishehkar H. A review of protein-phenolic acid interaction: reaction mechanisms and applications. Crit Rev Food Sci Nutr 2022; 64:3539-3555. [PMID: 36222353 DOI: 10.1080/10408398.2022.2132376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Phenolic acids (PA) are types of phytochemicals with health benefits. The interaction between proteins and PAs can cause minor or extensive changes in the structure of proteins and subsequently affect various protein properties. This study investigates the protein/PA (PPA) interaction and its effects on the structural, physicochemical, and functional properties of the system. This work particularly focused on the ability of PAs as a subgroup of phenolic compounds (PC) on the modification of proteins. Different aspects including the influence of structure affinity relationship and molecular weight of PA on the protein interaction have been discussed in this review. The physicochemical properties of PPA change mainly due to the change of hydrophilic/hydrophobic parts and/or the formation of some covalent and non-covalent interactions. Furthermore, PPA interactions affecting functional properties were discussed in separate sections. Due to insufficient studies on the interaction of PPAs, understanding the mechanism and also the type of binding between protein and PA can help to develop a new generation of PPA. These systems seem to have good capabilities in the formulation of low-fat foods like high internal Phase Emulsions, drug delivery systems, hydrogel structures, multifunctional fibers or packaging films, and 3 D printing in the meat processing industry.
Collapse
Affiliation(s)
- Behzad Masoumi
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Tabibiazar
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Golchinfar
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadamin Mohammadifar
- Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Spanakis M, Patelarou E, Patelarou A. Drug-Food Interactions with a Focus on Mediterranean Diet. APPLIED SCIENCES 2022; 12:10207. [DOI: 10.3390/app122010207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
There is a growing interest among people in western countries for adoption of healthier lifestyle habits and diet behaviors with one of the most known ones to be Mediterranean diet (Med-D). Med-D is linked with daily consumption of food products such as vegetables, fruits, whole grains, seafood, beans, nuts, olive oil, low-fat food derivatives and limited consumption of meat or full fat food products. Med-D is well-known to promote well-being and lower the risk of chronic conditions such as cardiovascular diseases, diabetes, and metabolic syndrome. On the other hand bioactive constituents in foods may interfere with drugs’ pharmacological mechanisms, modulating the clinical outcome leading to drug-food interactions (DFIs). This review discusses current evidence for food products that are included within the Med-Dand available scientific data suggest a potential contribution in DFIs with impact on therapeutic outcome. Most cases refer to potential modulation of drugs’ absorption and metabolism such as foods’ impact on drugs’ carrier-mediated transport and enzymatic metabolism as well as potential synergistic or antagonistic effects that enhance or reduce the pharmacological effect for some drugs. Adherence to Med-D can improve disease management and overall well-being, but specific foods should be consumed with caution so as to not hinder therapy outcome. Proper patient education and consultation from healthcare providers is important to avoid any conflicts and side effects due to clinically significant DFIs.
Collapse
Affiliation(s)
- Marios Spanakis
- Department of Nursing, School of Health Sciences, Hellenic Mediterranean University, GR-71410 Heraklion, Crete, Greece
| | - Evridiki Patelarou
- Department of Nursing, School of Health Sciences, Hellenic Mediterranean University, GR-71410 Heraklion, Crete, Greece
| | - Athina Patelarou
- Department of Nursing, School of Health Sciences, Hellenic Mediterranean University, GR-71410 Heraklion, Crete, Greece
| |
Collapse
|
19
|
Fan J, Gilmartin K, Octaviano S, Villar F, Remache B, Regan J. Using Human Serum Albumin Binding Affinities as a Proactive Strategy to Affect the Pharmacodynamics and Pharmacokinetics of Preclinical Drug Candidates. ACS Pharmacol Transl Sci 2022; 5:803-810. [PMID: 36110380 PMCID: PMC9469496 DOI: 10.1021/acsptsci.2c00115] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 10/15/2022]
Abstract
We report on a new preclinical drug optimization strategy that measures drug candidates' binding affinity with human serum albumin (HSA) as an assessment of increasing or decreasing serum T1/2. Three common scaffolds were used as drug prototypes. Common polar and nonpolar substituents attached to the scaffolds have been identified as opportunities for increasing or decreasing the HSA binding affinity. This approach of adjusting HSA binding could be proactively established for preclinical drug candidates by appending functionality to sites on the drug scaffold not involved in biological target interactions. This strategy complements other medicinal chemistry efforts to identify longer or shorter human dosing regimens.
Collapse
Affiliation(s)
- Jianwei Fan
- Department of Chemistry and
Biochemistry, Manhattan College, 4513 Manhattan College Parkway, Riverdale, New York 10471, United States
| | - Katherine Gilmartin
- Department of Chemistry and
Biochemistry, Manhattan College, 4513 Manhattan College Parkway, Riverdale, New York 10471, United States
| | - Steven Octaviano
- Department of Chemistry and
Biochemistry, Manhattan College, 4513 Manhattan College Parkway, Riverdale, New York 10471, United States
| | - Francisca Villar
- Department of Chemistry and
Biochemistry, Manhattan College, 4513 Manhattan College Parkway, Riverdale, New York 10471, United States
| | - Brianna Remache
- Department of Chemistry and
Biochemistry, Manhattan College, 4513 Manhattan College Parkway, Riverdale, New York 10471, United States
| | - John Regan
- Department of Chemistry and
Biochemistry, Manhattan College, 4513 Manhattan College Parkway, Riverdale, New York 10471, United States
| |
Collapse
|
20
|
PI3K/mTOR Dual Inhibitor Pictilisib Stably Binds to Site I of Human Serum Albumin as Observed by Computer Simulation, Multispectroscopic, and Microscopic Studies. Molecules 2022; 27:molecules27165071. [PMID: 36014303 PMCID: PMC9413508 DOI: 10.3390/molecules27165071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022] Open
Abstract
Pictilisib (GDC-0941) is a well-known dual inhibitor of class I PI3K and mTOR and is presently undergoing phase 2 clinical trials for cancer treatment. The present work investigated the dynamic behaviors and interaction mechanism between GDC-0941 and human serum albumin (HSA). Molecular docking and MD trajectory analyses revealed that GDC-0941 bound to HSA and that the binding site was positioned in subdomain IIA at Sudlow’s site I of HSA. The fluorescence intensity of HSA was strongly quenched by GDC-0941, and results showed that the HSA–GDC-0941 interaction was a static process caused by ground-state complex formation. The association constant of the HSA–GDC-0941 complex was approximately 105 M−1, reflecting moderate affinity. Thermodynamic analysis conclusions were identical with MD simulation results, which revealed that van der Waals interactions were the vital forces involved in the binding process. CD, synchronous, and 3D fluorescence spectroscopic results revealed that GDC-0941 induced the structural change in HSA. Moreover, the conformational change of HSA affected its molecular sizes, as evidenced by AFM. This work provides a useful research strategy for exploring the interaction of GDC-0941 with HSA, thus helping in the understanding of the transport and delivery of dual inhibitors in the blood circulation system.
Collapse
|
21
|
Wang P, Shang R, Ma Y, Wang D, Zhao W, Chen F, Hu X, Zhao X. Targeting microbiota-host interactions with resveratrol on cancer: Effects and potential mechanisms of action. Crit Rev Food Sci Nutr 2022; 64:311-333. [PMID: 35917112 DOI: 10.1080/10408398.2022.2106180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Resveratrol (RSV) is a natural polyphenolic compound detected in grapes, berries, and red wine. The anticancer activities of RSV have been observed in vivo and in vitro studies. However, the pharmacology mechanism of RSV is confusing due to its low bioavailability. According to studies of the metabolic characteristics of RSV, the gut intestine is a crucial site of its health benefits. Dietary RSV exhibits a profound effect on the gut microbiota structure and metabolic function. In addition, emerging evidence demonstrates a protective effect of RSV metabolites against carcinogenesis. Therefore, to better understand the anticancer mechanisms of dietary RSV, it is vital to evaluate the role of RSV-microbiota-host interactions in cancer therapy. In this review, we summarized significant findings on the anticancer activities of RSV based on epidemiological, experimental and clinical studies involved in investigating the metabolic characteristics and the traditional anticancer mechanisms of RSV. Special attention is given to the putative mechanisms involving microbiota-host interactions, such as the modulation of gut microecology and the anticancer effects of RSV metabolites. The changes in microbiota-host interactions after RSV supplementation play vital roles in cancer prevention and thus offering a new perspective on nutritional interventions to treat cancer.
Collapse
Affiliation(s)
- Pan Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Runze Shang
- Department of General Surgery, Affiliated Haixia Hospital of Huaqiao University (The 910 Hospital), Quanzhou, Fujian, China
| | - Yue Ma
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Dan Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Wenting Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiaoyan Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
22
|
Simko P, Leskanicova A, Suvakova M, Blicharova A, Karasova M, Goga M, Kolesarova M, Bojkova B, Majerova P, Zidekova N, Barvik I, Kovac A, Kiskova T. Biochemical Properties of Atranorin-Induced Behavioral and Systematic Changes of Laboratory Rats. Life (Basel) 2022; 12:life12071090. [PMID: 35888178 PMCID: PMC9316313 DOI: 10.3390/life12071090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Atranorin (ATR) is a secondary metabolite of lichens. While previous studies investigated the effects of this substance predominantly in an in vitro environment, in our study we investigated the basic physicochemical properties, the binding affinity to human serum albumin (HSA), basic pharmacokinetics, and, mainly, on the systematic effects of ATR in vivo. Sporadic studies describe its effects during, predominantly, cancer. This project is original in terms of testing the efficacy of ATR on a healthy organism, where we can possibly attribute negative effects directly to ATR and not to the disease. For the experiment, 24 Sprague Dawley rats (Velaz, Únetice, Czech Republic) were used. The animals were divided into four groups. The first group (n = 6) included healthy males as control intact rats (♂INT) and the second group (n = 6) included healthy females as control intact rats (♀INT). Groups three and four (♂ATR/n = 6 and ♀ATR/n = 6) consisted of animals with daily administered ATR (10mg/kg body weight) in an ethanol-water solution per os for a one-month period. Our results demonstrate that ATR binds to HSA near the binding site TRP214 and acts on a systemic level. ATR caused mild anemia during the treatment. However, based on the levels of hepatic enzymes in the blood (ALT, ALP, or bilirubin levels), thiobarbituric acid reactive substances (TBARS), or liver histology, no impact on liver was recorded. Significantly increased creatinine and lactate dehydrogenase levels together with increased defecation activity during behavioral testing may indicate the anabolic effect of ATR in skeletal muscles. Interestingly, ATR changed some forms of behavior. ATR at a dose of 10 mg/kg body weight is non-toxic and, therefore, could be used in further research.
Collapse
Affiliation(s)
- Patrik Simko
- Institute of Biology and Ecology, Faculty of Sciences, Pavol Jozef Safarik University, 040 01 Kosice, Slovakia; (P.S.); (A.L.); (M.G.); (M.K.); (B.B.)
| | - Andrea Leskanicova
- Institute of Biology and Ecology, Faculty of Sciences, Pavol Jozef Safarik University, 040 01 Kosice, Slovakia; (P.S.); (A.L.); (M.G.); (M.K.); (B.B.)
| | - Maria Suvakova
- Institute of Chemistry, Faculty of Sciences, Pavol Jozef Safarik University, 040 01 Kosice, Slovakia;
| | - Alzbeta Blicharova
- Institute of Pathology, Faculty of Medicine, Pavol Jozef Safarik University, 040 01 Kosice, Slovakia;
| | - Martina Karasova
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Kosice, Slovakia;
| | - Michal Goga
- Institute of Biology and Ecology, Faculty of Sciences, Pavol Jozef Safarik University, 040 01 Kosice, Slovakia; (P.S.); (A.L.); (M.G.); (M.K.); (B.B.)
| | - Mariana Kolesarova
- Institute of Biology and Ecology, Faculty of Sciences, Pavol Jozef Safarik University, 040 01 Kosice, Slovakia; (P.S.); (A.L.); (M.G.); (M.K.); (B.B.)
| | - Bianka Bojkova
- Institute of Biology and Ecology, Faculty of Sciences, Pavol Jozef Safarik University, 040 01 Kosice, Slovakia; (P.S.); (A.L.); (M.G.); (M.K.); (B.B.)
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, 831 01 Bratislava, Slovakia; (P.M.); (A.K.)
| | - Nela Zidekova
- Biomedical Center Martin (BioMed), Jessenius Faculty of Medicine in Martin, Comenius University, 814 99 Bratislava, Slovakia;
| | - Ivan Barvik
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, 110 00 Prague, Czech Republic;
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, 831 01 Bratislava, Slovakia; (P.M.); (A.K.)
| | - Terezia Kiskova
- Institute of Biology and Ecology, Faculty of Sciences, Pavol Jozef Safarik University, 040 01 Kosice, Slovakia; (P.S.); (A.L.); (M.G.); (M.K.); (B.B.)
- Correspondence: ; Tel.: +421-55-234-1216
| |
Collapse
|
23
|
Petrisor G, Motelica L, Craciun LN, Oprea OC, Ficai D, Ficai A. Melissa officinalis: Composition, Pharmacological Effects and Derived Release Systems-A Review. Int J Mol Sci 2022; 23:3591. [PMID: 35408950 PMCID: PMC8998931 DOI: 10.3390/ijms23073591] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
Melissa officinalis is a medicinal plant rich in biologically active compounds which is used worldwide for its therapeutic effects. Chemical studies on its composition have shown that it contains mainly flavonoids, terpenoids, phenolic acids, tannins, and essential oil. The main active constituents of Melissa officinalis are volatile compounds (geranial, neral, citronellal and geraniol), triterpenes (ursolic acid and oleanolic acid), phenolic acids (rosmarinic acid, caffeic acid and chlorogenic acid), and flavonoids (quercetin, rhamnocitrin, and luteolin). According to the biological studies, the essential oil and extracts of Melissa officinalis have active compounds that determine many pharmacological effects with potential medical uses. A new field of research has led to the development of controlled release systems with active substances from plants. Therefore, the essential oil or extract of Melissa officinalis has become a major target to be incorporated into various controlled release systems which allow a sustained delivery.
Collapse
Affiliation(s)
- Gabriela Petrisor
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania; (G.P.); (L.M.)
- National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania; (O.C.O.); (D.F.)
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Ludmila Motelica
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania; (G.P.); (L.M.)
- National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania; (O.C.O.); (D.F.)
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Luminita Narcisa Craciun
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania;
| | - Ovidiu Cristian Oprea
- National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania; (O.C.O.); (D.F.)
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania;
| | - Denisa Ficai
- National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania; (O.C.O.); (D.F.)
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania;
| | - Anton Ficai
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania; (G.P.); (L.M.)
- National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania; (O.C.O.); (D.F.)
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 050044 Bucharest, Romania
| |
Collapse
|
24
|
Carta S, Tsiplakou E, Mitsiopoulou C, Pulina G, Nudda A. Cocoa husks fed to lactating dairy ewes affect milk fatty acid profile and oxidative status of blood and milk. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2021.106599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Hu Y, Guo C, Lin Q, Hu J, Li X, Sang S, McClements DJ, Long J, Jin ZY, Wang J, Qiu C. Complexation of curcumin with cyclodextrins adjusts its binding to plasma proteins. Food Funct 2022; 13:8920-8929. [DOI: 10.1039/d2fo01531e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Curcumin shows poor bioaccessibility due to its poor water solubility that limiting its application in aqueous formulations, and the weak binding to plasma proteins that hindering its transportation to targeted...
Collapse
|
26
|
de Araújo Esteves Duarte I, Milenkovic D, Borges TK, de Lacerda de Oliveira L, Costa AM. Brazilian passion fruit as a new healthy food: from its composition to health properties and mechanisms of action. Food Funct 2021; 12:11106-11120. [PMID: 34651638 DOI: 10.1039/d1fo01976g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Brazilian biodiversity is one of the largest in the world, with about 41 000 species cataloged within two global biodiversity hotspots: Atlantic Forest and Cerrado, the Brazilian savannah. Passiflora, known also as passion flowers, is a genus of which 96% of its species are distributed in the Americas, mainly Brazil and Colombia. Passion fruit extracts have a commercial value on a global scale through the pharmaceutical, nutraceutical, self-care, and food and beverage industries. Passiflora are widely studied due to their potential antioxidant, anti-inflammatory, anxiolytic, antidepressant and vascular and neuronal protective effects, probably owing to their content of polyphenols. Passiflora setacea DC is a species of wild passion fruit from the Brazilian Cerrado, rich in flavonoid C-glycosides, homoorientin, vitexin, isovitexin and orientin. Intake of these plant food bioactives has been associated with protection against chronic non-communicable diseases (CNDCs), including cardiovascular diseases, cancers, and neurodegenerative diseases. In this review, we aimed to discuss the varieties of Passiflora, their content in plant food bioactives and their potential molecular mechanisms of action in preventing or reversing CNDCs.
Collapse
Affiliation(s)
- Isabella de Araújo Esteves Duarte
- Postgraduate Program in Human Nutrition, College of Health Sciences, Campus Universitário Darcy Ribeiro, University of Brasilia, Brasília DF 70.910-900, Brazil.
| | - Dragan Milenkovic
- Unité de Nutrition Humaine, Université Clermont Auvergne, INRAE, UNH, F-63000 Clermont-Ferrand, France.,Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, CA 95616, USA
| | - Tatiana Karla Borges
- Laboratory of Cellular Immunology, Faculty of Medicine, University of Brasilia, Brasília DF 70.910-900, Brazil
| | - Livia de Lacerda de Oliveira
- Postgraduate Program in Human Nutrition, College of Health Sciences, Campus Universitário Darcy Ribeiro, University of Brasilia, Brasília DF 70.910-900, Brazil.
| | - Ana Maria Costa
- Laboratory of Food Science, Embrapa Cerrados, Planaltina DF 73.310-970, Brazil
| |
Collapse
|
27
|
Synthesis and molecular interaction study of a diphenolic hidrazinyl-thiazole compound with strong antioxidant and antiradical activity with HSA. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
28
|
Enantioresolution and Binding Affinity Studies on Human Serum Albumin: Recent Applications and Trends. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9110304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interaction between proteins and drugs or other bioactive compounds has been widely explored over the past years. Several methods for analysis of this phenomenon have been developed and improved. Nowadays, increasing attention is paid to innovative methods, such as high performance affinity liquid chromatography (HPALC) and affinity capillary electrophoresis (ACE), taking into account various advantages. Moreover, the development of separation methods for the analysis and resolution of chiral drugs has been an area of ongoing interest in analytical and medicinal chemistry research. In addition to bioaffinity binding studies, both HPALC and ACE al-low one to perform other type of analyses, namely, displacement studies and enantioseparation of racemic or enantiomeric mixtures. Actually, proteins used as chiral selectors in chromatographic and electrophoretic methods have unique enantioselective properties demonstrating suitability for the enantioseparation of a large variety of chiral drugs or other bioactive compounds. This review is mainly focused in chromatographic and electrophoretic methods using human serum albumin (HSA), the most abundant plasma protein, as chiral selector for binding affinity analysis and enantioresolution of drugs. For both analytical purposes, updated examples are presented to highlight recent applications and current trends.
Collapse
|
29
|
López-Yerena A, Domínguez-López I, Vallverdú-Queralt A, Pérez M, Jáuregui O, Escribano-Ferrer E, Lamuela-Raventós RM. Metabolomics Technologies for the Identification and Quantification of Dietary Phenolic Compound Metabolites: An Overview. Antioxidants (Basel) 2021; 10:846. [PMID: 34070614 PMCID: PMC8229076 DOI: 10.3390/antiox10060846] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
In the search for natural products with properties that may protect against or slow down chronic and degenerative diseases (e.g., cancer, and cardiovascular and neurodegenerative conditions), phenolic compounds (PC) with benefits for human health have been identified. The biological effects of PC in vivo depend on their bioavailability, intestinal absorption, metabolism, and interaction with target tissues. The identification of phenolic compounds metabolites (PCM), in biological samples, after food ingestion rich in PC is a first step to understand the overall effect on human health. However, their wide range of physicochemical properties, levels of abundance, and lack of reference standards, renders its identification and quantification a challenging task for existing analytical platforms. The most frequent approaches to metabolomics analysis combine mass spectrometry and NMR, parallel technologies that provide an overview of the metabolome and high-power compound elucidation. In this scenario, the aim of this review is to summarize the pre-analytical separation processes for plasma and urine samples and the technologies applied in quantitative and qualitative analysis of PCM. Additionally, a comparison of targeted and non-targeted approaches is presented, not available in previous reviews, which may be useful for future metabolomics studies of PCM.
Collapse
Affiliation(s)
- Anallely López-Yerena
- Department of Nutrition, Food Science and Gastronomy XaRTA, Institute of Nutrition and Food Safety (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (I.D.-L.); (A.V.-Q.); (M.P.)
| | - Inés Domínguez-López
- Department of Nutrition, Food Science and Gastronomy XaRTA, Institute of Nutrition and Food Safety (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (I.D.-L.); (A.V.-Q.); (M.P.)
| | - Anna Vallverdú-Queralt
- Department of Nutrition, Food Science and Gastronomy XaRTA, Institute of Nutrition and Food Safety (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (I.D.-L.); (A.V.-Q.); (M.P.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Maria Pérez
- Department of Nutrition, Food Science and Gastronomy XaRTA, Institute of Nutrition and Food Safety (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (I.D.-L.); (A.V.-Q.); (M.P.)
- Laboratory of Organic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Olga Jáuregui
- Scientific and Technological Center (CCiTUB), University of Barcelona, 08028 Barcelona, Spain;
- CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Elvira Escribano-Ferrer
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Biopharmaceutics and Pharmacokinetics Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Institute of Nanoscience and Nanotechnology (IN2UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Pharmaceutical Nanotechnology Group I+D+I Associated Unit to CSIC, University of Barcelona, 08028 Barcelona, Spain
| | - Rosa M. Lamuela-Raventós
- Department of Nutrition, Food Science and Gastronomy XaRTA, Institute of Nutrition and Food Safety (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (I.D.-L.); (A.V.-Q.); (M.P.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| |
Collapse
|
30
|
López-Yerena A, Pérez M, Vallverdú-Queralt A, Miliarakis E, Lamuela-Raventós RM, Escribano-Ferrer E. Oleacein Intestinal Permeation and Metabolism in Rats Using an In Situ Perfusion Technique. Pharmaceutics 2021; 13:719. [PMID: 34068871 PMCID: PMC8153610 DOI: 10.3390/pharmaceutics13050719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/27/2022] Open
Abstract
Oleacein (OLEA) is one of the most important phenolic compounds in extra virgin olive oil in terms of concentration and health-promoting properties, yet there are insufficient data on its absorption and metabolism. Several non-human models have been developed to assess the intestinal permeability of drugs, among them, single-pass intestinal perfusion (SPIP), which is commonly used to investigate the trans-membrane transport of drugs in situ. In this study, the SPIP model and simultaneous luminal blood sampling were used to study the absorption and metabolism of OLEA in rats. Samples of intestinal fluid and mesenteric blood were taken at different times and the ileum segment was excised at the end of the experiment for analysis by LC-ESI-LTQ-Orbitrap-MS. OLEA was mostly metabolized by phase I reactions, undergoing hydrolysis and oxidation, and metabolite levels were much higher in the plasma than in the lumen. The large number of metabolites identified and their relatively high abundance indicates an important intestinal first-pass effect during absorption. According to the results, OLEA is well absorbed in the intestine, with an intestinal permeability similar to that of the highly permeable model compound naproxen. No significant differences were found in the percentage of absorbed OLEA and naproxen (48.98 ± 12.27% and 43.96 ± 7.58%, respectively).
Collapse
Affiliation(s)
- Anallely López-Yerena
- Department of Nutrition, Food Science and Gastronomy XaRTA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (M.P.); (A.V.-Q.); (R.M.L.-R.)
| | - Maria Pérez
- Department of Nutrition, Food Science and Gastronomy XaRTA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (M.P.); (A.V.-Q.); (R.M.L.-R.)
- Laboratory of Organic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Anna Vallverdú-Queralt
- Department of Nutrition, Food Science and Gastronomy XaRTA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (M.P.); (A.V.-Q.); (R.M.L.-R.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | | | - Rosa M. Lamuela-Raventós
- Department of Nutrition, Food Science and Gastronomy XaRTA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (M.P.); (A.V.-Q.); (R.M.L.-R.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Elvira Escribano-Ferrer
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Biopharmaceutics and Pharmacokinetics Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Pharmaceutical Nanotechnology Group I+D+I Associated Unit to CSIC, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
31
|
Abdel-Tawab M. Considerations to Be Taken When Carrying Out Medicinal Plant Research-What We Learn from an Insight into the IC 50 Values, Bioavailability and Clinical Efficacy of Exemplary Anti-Inflammatory Herbal Components. Pharmaceuticals (Basel) 2021; 14:437. [PMID: 34066427 PMCID: PMC8148151 DOI: 10.3390/ph14050437] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Medicinal plants represent a big reservoir for discovering new drugs against all kinds of diseases including inflammation. In spite the large number of promising anti-inflammatory plant extracts and isolated components, research on medicinal plants proves to be very difficult. Based on that background this review aims to provide a summarized insight into the hitherto known pharmacologically active concentrations, bioavailability, and clinical efficacy of boswellic acids, curcumin, quercetin and resveratrol. These examples have in common that the achieved plasma concentrations were found to be often far below the determined IC50 values in vitro. On the other hand demonstrated therapeutic effects suggest a necessity of rethinking our pharmacokinetic understanding. In this light this review discusses the value of plasma levels as pharmacokinetic surrogates in comparison to the more informative value of tissue concentrations. Furthermore the need for new methodological approaches is addressed like the application of combinatorial approaches for identifying and pharmacokinetic investigations of active multi-components. Also the physiological relevance of exemplary in vitro assays and absorption studies in cell-line based models is discussed. All these topics should be ideally considered to avoid inaccurate predictions for the efficacy of herbal components in vivo and to unlock the "black box" of herbal mixtures.
Collapse
Affiliation(s)
- Mona Abdel-Tawab
- Central Laboratory of German Pharmacists, Carl-Mannich-Str. 20, 65760 Eschborn, Germany; ; Tel.: +49-6196-937-955
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| |
Collapse
|
32
|
López-Yerena A, Vallverdú-Queralt A, Jáuregui O, Garcia-Sala X, Lamuela-Raventós RM, Escribano-Ferrer E. Tissue Distribution of Oleocanthal and Its Metabolites after Oral Ingestion in Rats. Antioxidants (Basel) 2021; 10:688. [PMID: 33925686 PMCID: PMC8146289 DOI: 10.3390/antiox10050688] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 12/11/2022] Open
Abstract
Claims for the potential health benefits of oleocanthal (OLC), a dietary phenolic compound found in olive oil, are based mainly on in vitro studies. Little is known about the tissue availability of OLC, which is rapidly metabolized after ingestion. In this study, the distribution of OLC and its metabolites in rat plasma and tissues (stomach, intestine, liver, kidney, spleen, lungs, heart, brain, thyroid and skin) at 1, 2 and 4.5 h after the acute intake of a refined olive oil containing 0.3 mg/mL of OLC was examined by LC-ESI-LTQ-Orbitrap-MS. OLC was only detected in the stomach and intestine samples. Moreover, at 2 and 4.5 h, the concentration in the stomach decreased by 36% and 74%, respectively, and in the intestine by 16% and 33%, respectively. Ten OLC metabolites arising from phase I and phase II reactions were identified. The metabolites were widely distributed in rat tissues, and the most important metabolizing organs were the small intestine and liver. The two main circulating metabolites were the conjugates OLC + OH + CH3 and OLC + H2O + glucuronic acid, which may significantly contribute to the beneficial health effects associated with the regular consumption of extra virgin olive oil. However, more studies are necessary to determine the concentrations and molecular structures of OLC metabolites in human plasma and tissues when consumed with the presence of other phenolic compunds present in EVOO.
Collapse
Affiliation(s)
- Anallely López-Yerena
- Department of Nutrition, Food Science and Gastronomy XaRTA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (A.V.-Q.); (R.M.L.-R.)
| | - Anna Vallverdú-Queralt
- Department of Nutrition, Food Science and Gastronomy XaRTA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (A.V.-Q.); (R.M.L.-R.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Olga Jáuregui
- Scientific and Technological Center of University of Barcelona (CCiTUB), 08028 Barcelona, Spain;
| | - Xavier Garcia-Sala
- Biopharmaceutics and Pharmacokinetics Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Institute of Nanoscience and Nanotechnology (IN2UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain;
| | - Rosa M. Lamuela-Raventós
- Department of Nutrition, Food Science and Gastronomy XaRTA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (A.V.-Q.); (R.M.L.-R.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Elvira Escribano-Ferrer
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Biopharmaceutics and Pharmacokinetics Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Institute of Nanoscience and Nanotechnology (IN2UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain;
- Pharmaceutical Nanotechnology Group I+D+I Associated Unit to CSIC, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
33
|
Dragon Fruits as a Reservoir of Natural Polyphenolics with Chemopreventive Properties. Molecules 2021; 26:molecules26082158. [PMID: 33918584 PMCID: PMC8070077 DOI: 10.3390/molecules26082158] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 12/30/2022] Open
Abstract
Dragon fruits are a valued source of bioactive compounds with high potential to become a functional food. The aim of the study was to evaluate and compare the chemopreventive potential and chemical composition of fruits harvested in Thailand and Israel. The amount of different compounds in water and methanol extracts and antioxidant activity was investigated. Moreover, cytotoxic activity against cancer and normal cells of skin, prostate, and gastrointestinal origin was performed, accompanied by anti-inflammatory assay based on NO production in RAW 264.7 macrophage model. Additionally, the quenching properties of polyphenols from fruits were determined by the interaction of the main drug carrier in blood human serum (HSA). The chemometric analysis was used to reveal the relationships between the determined parameters. Dragon fruits harvested in Israel revealed higher antioxidant properties and total content of polyphenols and betacyanins when compared to those from Thailand. The examined fruits of both origins showed significant cytotoxic activity toward colon and prostate cancer cells, with no toxic effect on normal cells, but also no anti-inflammatory effect. Moreover, a high binding ability to HSA was observed for water extracts of dragon fruits. All these predestine dragon fruits are the candidates for the attractive and chemopreventive elements of daily diet.
Collapse
|