1
|
Iram F, Aiman A, Vijh D, Shahid M, Choudhir G, Khan T, Alam D, Hassan MI, Islam A. Unraveling the catalase dynamics: Biophysical and computational insights into co-solutes driven stabilization under extreme pH conditions. Int J Biol Macromol 2025; 301:140467. [PMID: 39884626 DOI: 10.1016/j.ijbiomac.2025.140467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Catalase plays a vital role in eliminating toxic peroxides from the human body and the environment. The versatile applications of this enzyme extend across biotechnological industries and innovative bioremediation approaches. Nonetheless, ensuring enzyme stability is a challenging task. This study investigated the efficacy of co-solutes (glucose and dextran 70) as stabilizing agents for catalase under denaturing pH conditions by employing a combination of spectroscopic techniques (UV-visible, circular dichroism, and Trp fluorescence), calorimetric measurements (DSC and ITC), enzymatic assay, and in silico studies. The results of spectroscopic and thermal stability studies indicated that the co-solutes tend to stabilize catalase, even under extreme pH conditions. Molecular docking and ITC findings showed that glucose has a higher binding tendency to catalase than dextran 70. MD simulations further underscore reduced structural deviations (RMSF and RMSD), compact structure (Rg and SASA), and formation of H-bonds between catalase and co-solutes, complementing the in vitro observations. This study contributes to the understanding of enzyme stability under suboptimal pH conditions and paves the way for the development of more robust enzyme formulations suitable for a range of applications.
Collapse
Affiliation(s)
- Faiza Iram
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ayesha Aiman
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Deepanshi Vijh
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, Delhi 110078, India
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Gourav Choudhir
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Tanzeel Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Danish Alam
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
2
|
Martins Fraga R, Beretta M, Pinto JF, Spoerk M, Zupančič O, Pinto JT, Paudel A. Effect of processing and formulation factors on Catalase activity in tablets. Int J Pharm 2024; 664:124626. [PMID: 39208952 DOI: 10.1016/j.ijpharm.2024.124626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
The manufacturing of tablets containing biologics exposes the biologics to thermal and shear stresses, which are likely to induce structural changes (e.g., aggregation and denaturation), leading to the loss of their activity. Saccharides often act as stabilizers of proteins in formulations, yet their stabilizing ability throughout solid oral dosage processing, such as tableting, has been barely studied. This work aimed to investigate the effects of formulation and process (tableting and spray-drying) variables on catalase tablets containing dextran, mannitol, and trehalose as potential stabilizers. Non-spray-dried and spray-dried formulations were prepared and tableted (100, 200, and 400 MPa). The enzymatic activity, number of aggregates, reflecting protein aggregation and structure modifications were studied. A principal component analysis was performed to reveal underlying correlations. It was found that tableting and spray-drying had a notable negative effect on the activity and number of aggregates formed in catalase formulations. Overall, dextran and mannitol failed to preserve the catalase activity in any unit operation studied. On the other hand, trehalose was found to preserve the activity during spray-drying but not necessarily during tableting. The study demonstrated that formulation and process variables must be considered and optimized together to preserve the characteristics of catalase throughout processing.
Collapse
Affiliation(s)
- Rúben Martins Fraga
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Michela Beretta
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - João F Pinto
- iMed.UL - Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Martin Spoerk
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria; Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010 Graz, Austria
| | - Ožbej Zupančič
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Joana T Pinto
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria; Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010 Graz, Austria.
| |
Collapse
|
3
|
El Zein R, Ispas-Szabo P, Jafari M, Siaj M, Mateescu MA. Oxidation of Mesalamine under Phenoloxidase- or Peroxidase-like Enzyme Catalysis. Molecules 2023; 28:8105. [PMID: 38138595 PMCID: PMC10871084 DOI: 10.3390/molecules28248105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/20/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Mesalamine, also called 5-ASA (5-aminosalicylic acid), is a largely used anti-inflammatory agent and is a main choice to treat Ulcerative Colitis. This report is aimed to investigate enzymatic processes involved in the oxidation of mesalamine to better understand some of its side-effects. Oxidation with oxygen (catalyzed by ceruloplasmin) or with hydrogen peroxide (catalyzed by peroxidase or hemoglobin) showed that these oxidases, despite their different mechanisms of oxidation, could recognize mesalamine as a substrate and trigger its oxidation to a corresponding quinone-imine. These enzymes were chosen because they may recognize hydroquinone (a p-diphenol) as substrate and oxidize it to p-benzoquinone and that mesalamine, as a p-aminophenol, presents some similarities with hydroquinone. The UV-Vis kinetics, FTIR and 1H NMR supported the hypothesis of oxidizing mesalamine. Furthermore, mass spectrometry suggested the quinone-imine as reaction product. Without enzymes, the oxidation process was very slow (days and weeks), but it was markedly accelerated with the oxidases, particularly with peroxidase. Cyclic voltammetry supported the hypothesis of the oxidative process and allowed a ranking of susceptibility to oxidizing mesalamine in comparison with other oxidizable drug molecules with related structures. The susceptibility to oxidation was higher for mesalamine, in comparison with Tylenol (acetaminophen) and with aspirin (salicylic acid).
Collapse
Affiliation(s)
| | | | | | | | - Mircea Alexandru Mateescu
- Department of Chemistry and Center CERMO-FC, Université du Québec à Montréal, Downtown Branch, P.O. Box 8888, Montréal, QC H3C 3P8, Canada; (R.E.Z.); (P.I.-S.); (M.J.); (M.S.)
| |
Collapse
|
4
|
Adam H, Gopinath SCB, Md Arshad MK, Adam T, Parmin NA, Husein I, Hashim U. An update on pathogenesis and clinical scenario for Parkinson's disease: diagnosis and treatment. 3 Biotech 2023; 13:142. [PMID: 37124989 PMCID: PMC10134733 DOI: 10.1007/s13205-023-03553-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
In severe cases, Parkinson's disease causes uncontrolled movements known as motor symptoms such as dystonia, rigidity, bradykinesia, and tremors. Parkinson's disease also causes non-motor symptoms such as insomnia, constipation, depression and hysteria. Disruption of dopaminergic and non-dopaminergic neural networks in the substantia nigra pars compacta is a major cause of motor symptoms in Parkinson's disease. Furthermore, due to the difficulty of clinical diagnosis of Parkinson's disease, it is often misdiagnosed, highlighting the need for better methods of detection. Treatment of Parkinson's disease is also complicated due to the difficulties of medications passing across the blood-brain barrier. Moreover, the conventional methods fail to solve the aforementioned issues. As a result, new methods are needed to detect and treat Parkinson's disease. Improved diagnosis and treatment of Parkinson's disease can help avoid some of its devastating symptoms. This review explores how nanotechnology platforms, such as nanobiosensors and nanomedicine, have improved Parkinson's disease detection and treatment. Nanobiosensors integrate science and engineering principles to detect Parkinson's disease. The main advantages are their low cost, portability, and quick and precise analysis. Moreover, nanotechnology can transport medications in the form of nanoparticles across the blood-brain barrier. However, because nanobiosensors are a novel technology, their use in biological systems is limited. Nanobiosensors have the potential to disrupt cell metabolism and homeostasis, changing cellular molecular profiles and making it difficult to distinguish sensor-induced artifacts from fundamental biological phenomena. In the treatment of Parkinson's disease, nanoparticles, on the other hand, produce neurotoxicity, which is a challenge in the treatment of Parkinson's disease. Techniques must be developed to distinguish sensor-induced artifacts from fundamental biological phenomena and to reduce the neurotoxicity caused by nanoparticles.
Collapse
Affiliation(s)
- Hussaini Adam
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, 01000 Perlis, Malaysia
| | - Subash C. B. Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, 01000 Perlis, Malaysia
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, 02600 Perlis, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Pauh Campus, Arau, 02600 Perlis, Malaysia
| | - M. K. Md Arshad
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, 01000 Perlis, Malaysia
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Pauh Campus, Arau, 02600 Perlis, Malaysia
| | - Tijjani Adam
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, 01000 Perlis, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Pauh Campus, Arau, 02600 Perlis, Malaysia
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Pauh Campus, Arau, 02600 Perlis, Malaysia
| | - N. A. Parmin
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, 01000 Perlis, Malaysia
| | - Irzaman Husein
- Department of Physics, Faculty of Mathematics and Natural Sciences, IPB University, Bogor-Indonesia, Indonesia
| | - Uda Hashim
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, 01000 Perlis, Malaysia
| |
Collapse
|
5
|
Ab'lah N, Yusuf CYL, Rojsitthisak P, Wong TW. Reinvention of starch for oral drug delivery system design. Int J Biol Macromol 2023; 241:124506. [PMID: 37085071 DOI: 10.1016/j.ijbiomac.2023.124506] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/01/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
Starch is a polysaccharide with varying amylose-to-amylopectin ratios as a function of its biological sources. It is characterized by low shear stress resistance, poor aqueous/organic solubility and gastrointestinal digestibility which limit its ease of processing and functionality display as an oral drug delivery vehicle. Modulation of starch composition through genetic engineering primarily alters amylose-to-amylopectin ratio. Greater molecular properties changes require chemical and enzymatic modifications of starch. Acetylation reduces water solubility and enzymatic digestibility of starch. Carboxymethylation turns starch acid-insoluble and aggregative at low pHs. The summative effects are sustaining drug release in the upper gut. Acid-insoluble carboxymethylated starch can be aminated to provide an ionic character essential for hydrogel formation which further reduces its drug release. Ionic starch can coacervate with oppositely charged starch, non-starch polyelectrolyte or drug into insoluble, controlled-release complexes. Enzymatically debranched and resistant starch has a small molecular size which confers chain aggregation into a helical hydrogel network that traps the drug molecules, protecting them from biodegradation. The modified starch has been used to modulate the intestinal/colon-specific or controlled systemic delivery of oral small molecule drugs and macromolecular therapeutics. This review highlights synthesis aspects of starch and starch derivatives, and their outcomes and challenges of applications in oral drug delivery.
Collapse
Affiliation(s)
- NorulNazilah Ab'lah
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam 42300, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam 42300, Selangor, Malaysia; Centre of Foundation Studies, Universiti Teknologi MARA Selangor, Dengkil 43800, Dengkil, Malaysia
| | - Chong Yu Lok Yusuf
- Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA, Jasin, 77300, Merlimau, Melaka, Malaysia
| | - Pornchai Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, 10330 Bangkok, Thailand; Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 10330 Bangkok, Thailand
| | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam 42300, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam 42300, Selangor, Malaysia; Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
6
|
Noori F, Megoura M, Labelle MA, Mateescu MA, Azzouz A. Synthesis of Metal-Loaded Carboxylated Biopolymers with Antibacterial Activity through Metal Subnanoparticle Incorporation. Antibiotics (Basel) 2022; 11:antibiotics11040439. [PMID: 35453191 PMCID: PMC9031093 DOI: 10.3390/antibiotics11040439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 01/25/2023] Open
Abstract
Carboxymethyl starch (CMS) and carboxymethyl cellulose (CMC) loaded by highly dispersed metal subnanoparticles (MSNPs) showed antibacterial activity against E. coli and B. subtilis strains. Copper and silver were found to act in both cationic and zero-valence forms. The antibacterial activity depends on the metal species content but only up to a certain level. Silver cation (Ag+) showed higher antibacterial activity as compared to Ag0, which was, however, more effective than Cu0, due to weaker retention. The number of carboxyl groups of the biopolymers was found to govern the material dispersion in aqueous media, the metal retention strength and dispersion in the host-matrices. Cation and metal retention in both biopolymers was found to involve interactions with the oxygen atoms of both hydroxyl and carboxyl groups. There exists a ternary interdependence between the Zeta potential (ZP), pH induced by the biocidal agent and its particle size (PS). This interdependence is a key factor in the exchange processes with the surrounding species, including bacteria. Clay mineral incorporation was found to mitigate material dispersion, due to detrimental competitive clay:polymer interaction. This knowledge advancement opens promising prospects for manufacturing metal-loaded materials for biomedical applications.
Collapse
Affiliation(s)
- Farzaneh Noori
- Nanoqam, Department of Chemistry, Faculty of Sciences, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada; (F.N.); (M.M.); (M.-A.L.)
| | - Meriem Megoura
- Nanoqam, Department of Chemistry, Faculty of Sciences, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada; (F.N.); (M.M.); (M.-A.L.)
| | - Marc-André Labelle
- Nanoqam, Department of Chemistry, Faculty of Sciences, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada; (F.N.); (M.M.); (M.-A.L.)
| | - Mircea Alexandru Mateescu
- Nanoqam, Department of Chemistry, Faculty of Sciences, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada; (F.N.); (M.M.); (M.-A.L.)
- Correspondence: (M.A.M.); (A.A.); Tel.: +1-514-987-4319 (M.A.M.); +1-514-987-3000 (ext. 4119) (A.A.); Fax: +1-514-987-4054 (M.A.M. & A.A.)
| | - Abdelkrim Azzouz
- Nanoqam, Department of Chemistry, Faculty of Sciences, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada; (F.N.); (M.M.); (M.-A.L.)
- École de Technologie Supérieure, Montreal, QC H3C 1K3, Canada
- Correspondence: (M.A.M.); (A.A.); Tel.: +1-514-987-4319 (M.A.M.); +1-514-987-3000 (ext. 4119) (A.A.); Fax: +1-514-987-4054 (M.A.M. & A.A.)
| |
Collapse
|