1
|
Lee MS, Lee J, Pang M, Kim J, Cha H, Cheon B, Choi MK, Song IS, Lee HS. In Vitro Metabolism and Transport Characteristics of Zastaprazan. Pharmaceutics 2024; 16:799. [PMID: 38931920 PMCID: PMC11207335 DOI: 10.3390/pharmaceutics16060799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Zastaprazan (JP-1366), a novel potassium-competitive acid blocker, is a new drug for the treatment of erosive esophagitis. JP-1366 is highly metabolized in human, mouse, and dog hepatocytes but moderately metabolized in rat and monkey hepatocytes when estimated from the metabolic stability of this compound in hepatocyte suspension and when 18 phase I metabolites and 5 phase II metabolites [i.e., N-dearylation (M6), hydroxylation (M1, M19, M21), dihydroxylation (M7, M8, M14, M22), trihydroxylation (M13, M18), hydroxylation and reduction (M20), dihydroxylation and reduction (M9, M16), hydrolysis (M23), hydroxylation and glucuronidation (M11, M15), hydroxylation and sulfation (M17), dihydroxylation and sulfation (M10, M12), N-dearylation and hydroxylation (M3, M4), N-dearylation and dihydroxylation (M5), and N-dearylation and trihydroxylation (M2)] were identified from JP-1366 incubation with the hepatocytes from humans, mice, rats, dogs, and monkeys. Based on the cytochrome P450 (CYP) screening test and immune-inhibition analysis with CYP antibodies, CYP3A4 and CYP3A5 played major roles in the metabolism of JP-1366 to M1, M3, M4, M6, M8, M9, M13, M14, M16, M18, M19, M21, and M22. CYP1A2, 2C8, 2C9, 2C19, and 2D6 played minor roles in the metabolism of JP-1366. UDP-glucuronosyltransferase (UGT) 2B7 and UGT2B17 were responsible for the glucuronidation of M1 to M15. However, JP-1366 and active metabolite M1 were not substrates for drug transporters such as organic cation transporter (OCT) 1/2, organic anion transporter (OAT) 1/3, organic anion transporting polypeptide (OATP)1B1/1B3, multidrug and toxic compound extrusion (MATE)1/2K, P-glycoprotein (P-gp), and breast cancer-resistant protein (BCRP). Only M1 showed substrate specificity for P-gp. The findings indicated that drug-metabolizing enzymes, particularly CYP3A4/3A5, may have a significant role in determining the pharmacokinetics of zastaprazan while drug transporters may only have a small impact on the absorption, distribution, and excretion of this compound.
Collapse
Affiliation(s)
- Min Seo Lee
- College of Pharmacy and BK21 Four-Sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon 14662, Republic of Korea;
| | - Jihoon Lee
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Vessel-Organ Interaction Research Center (VOICE), Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Minyoung Pang
- College of Pharmacy, Dankook University, Cheonan 30019, Republic of Korea; (M.P.); (M.-K.C.)
| | - John Kim
- Onconic Therapeutics Inc., Seoul 06236, Republic of Korea; (J.K.); (H.C.); (B.C.)
| | - Hyunju Cha
- Onconic Therapeutics Inc., Seoul 06236, Republic of Korea; (J.K.); (H.C.); (B.C.)
| | - Banyoon Cheon
- Onconic Therapeutics Inc., Seoul 06236, Republic of Korea; (J.K.); (H.C.); (B.C.)
| | - Min-Koo Choi
- College of Pharmacy, Dankook University, Cheonan 30019, Republic of Korea; (M.P.); (M.-K.C.)
| | - Im-Sook Song
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Vessel-Organ Interaction Research Center (VOICE), Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Hye Suk Lee
- College of Pharmacy and BK21 Four-Sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon 14662, Republic of Korea;
| |
Collapse
|
2
|
Kubatka P, Mazurakova A, Koklesova L, Kuruc T, Samec M, Kajo K, Kotorova K, Adamkov M, Smejkal K, Svajdlenka E, Dvorska D, Brany D, Baranovicova E, Sadlonova V, Mojzis J, Kello M. Salvia officinalis L. exerts oncostatic effects in rodent and in vitro models of breast carcinoma. Front Pharmacol 2024; 15:1216199. [PMID: 38464730 PMCID: PMC10921418 DOI: 10.3389/fphar.2024.1216199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 01/25/2024] [Indexed: 03/12/2024] Open
Abstract
Introduction: Based on extensive data from oncology research, the use of phytochemicals or plant-based nutraceuticals is considered an innovative tool for cancer management. This research aimed to analyze the oncostatic properties of Salvia officinalis L. [Lamiaceae; Salviae officinalis herba] using animal and in vitro models of breast carcinoma (BC). Methods: The effects of dietary administered S. officinalis in two concentrations (0.1%/SAL 0.1/and 1%/SAL 1/) were assessed in both syngeneic 4T1 mouse and chemically induced rat models of BC. The histopathological and molecular evaluations of rodent carcinoma specimens were performed after the autopsy. Besides, numerous in vitro analyses using two human cancer cell lines were performed. Results and Conclusion: The dominant metabolites found in S. officinalis propylene glycol extract (SPGE) were representatives of phenolics, specifically rosmarinic, protocatechuic, and salicylic acids. Furthermore, the occurrence of triterpenoids ursolic and oleanolic acid was proved in SPGE. In a mouse model, a non-significant tumor volume decrease after S. officinalis treatment was associated with a significant reduction in the mitotic activity index of 4T1 tumors by 37.5% (SAL 0.1) and 31.5% (SAL 1) vs. controls (set as a blank group with not applied salvia in the diet). In addition, salvia at higher doses significantly decreased necrosis/whole tumor area ratio by 46% when compared to control tumor samples. In a rat chemoprevention study, S. officinalis at a higher dose significantly lengthened the latency of tumors by 8.5 days and significantly improved the high/low-grade carcinomas ratio vs. controls in both doses. Analyses of the mechanisms of anticancer activities of S. officinalis included well-validated prognostic, predictive, and diagnostic biomarkers that are applied in both oncology practice and preclinical investigation. Our assessment in vivo revealed numerous significant changes after a comparison of treated vs. untreated cancer cells. In this regard, we found an overexpression in caspase-3, an increased Bax/Bcl-2 ratio, and a decrease in MDA, ALDH1, and EpCam expression. In addition, salvia reduced TGF-β serum levels in rats (decrease in IL-6 and TNF-α levels were with borderline significance). Evaluation of epigenetic modifications in rat cancer specimens in vivo revealed a decline in the lysine methylations of H3K4m3 and an increase in lysine acetylation in H4K16ac levels in treated groups. Salvia decreased the relative levels of oncogenic miR21 and tumor-suppressive miR145 (miR210, miR22, miR34a, and miR155 were not significantly altered). The methylation of ATM and PTEN promoters was decreased after S. officinalis treatment (PITX2, RASSF1, and TIMP3 promoters were not altered). Analyzing plasma metabolomics profile in tumor-bearing rats, we found reduced levels of ketoacids derived from BCAAs after salvia treatment. In vitro analyses revealed significant anti-cancer effects of SPGE extract in MCF-7 and MDA-MB-231 cell lines (cytotoxicity, caspase-3/-7, Bcl-2, Annexin V/PI, cell cycle, BrdU, and mitochondrial membrane potential). Our study demonstrates the significant chemopreventive and treatment effects of salvia haulm using animal or in vitro BC models.
Collapse
Affiliation(s)
- Peter Kubatka
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Alena Mazurakova
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Lenka Koklesova
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Tomas Kuruc
- Department of Pharmacology, Faculty of Medicine, P. J. Šafárik University, Košice, Slovakia
| | - Marek Samec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Karol Kajo
- Department of Pathology, St. Elisabeth Oncology Institute, Bratislava, Slovakia
| | - Klaudia Kotorova
- Department of Pharmacology, Faculty of Medicine, P. J. Šafárik University, Košice, Slovakia
| | - Marian Adamkov
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Karel Smejkal
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Brno, Czechia
| | - Emil Svajdlenka
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Brno, Czechia
| | - Dana Dvorska
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Dusan Brany
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Eva Baranovicova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Vladimira Sadlonova
- Department of Microbiology and Immunology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, P. J. Šafárik University, Košice, Slovakia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, P. J. Šafárik University, Košice, Slovakia
| |
Collapse
|
3
|
Lim CH, Song IS, Lee J, Lee MS, Cho YY, Lee JY, Kang HC, Lee HS. Toxicokinetics and tissue distribution of phalloidin in mice. Food Chem Toxicol 2023; 179:113994. [PMID: 37598851 DOI: 10.1016/j.fct.2023.113994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023]
Abstract
Phalloidin, a bicyclic heptapeptide found in Amanita mushroom, specifically binds to F-actin in the liver causing cholestatic hepatotoxicity. However, the toxicokinetics and tissue distribution properties of phalloidin as well as their underlying mechanisms have to be studied further. The area under the plasma concentration curve (AUC) of phalloidin increased in proportion to the doses (0.2, 0.4, and 0.8 mg/kg for intravenous injection and 2, 5, and 10 mg/kg for oral administration). Phalloidin exhibited dose-independent low volume of distribution (395.6-456.9 mL/kg) and clearance (21.4-25.5 mL/min/kg) and low oral bioavailability (2.4%-3.3%). This could be supported with its low absorptive permeability (0.23 ± 0.05 × 10-6 cm/s) in Caco-2 cells. The tissue-to-plasma AUC ratios of intravenously injected and orally administered phalloidin were the highest in the liver and intestines, respectively, and also high in the kidneys, suggesting that the liver, kidneys, and intestines could be susceptible to phalloidin exposure and that active transport via the hepatic and renal organic anion transporters (OATP1B1, OATP1B3, and OAT3) may contribute to the higher distribution of phalloidin in the liver and kidneys.
Collapse
Affiliation(s)
- Chang Ho Lim
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| | - Im-Sook Song
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Vessel-Organ Interaction Research Center (VOICE), Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Jihoon Lee
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Vessel-Organ Interaction Research Center (VOICE), Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Min Seo Lee
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| | - Yong-Yeon Cho
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| | - Joo Young Lee
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| | - Han Chang Kang
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| | - Hye Suk Lee
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| |
Collapse
|
4
|
Pharmacokinetic modulation of substrate drugs via the inhibition of drug-metabolizing enzymes and transporters using pharmaceutical excipients. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00606-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
5
|
Li H, Meng X, Sheng H, Feng S, Chen Y, Sheng D, Sai L, Wang Y, Chen M, Wo Y, Feng S, Baharvand H, Gao Y, Li Y, Chen J. NIR-II live imaging study on the degradation pattern of collagen in the mouse model. Regen Biomater 2022; 10:rbac102. [PMID: 36683755 PMCID: PMC9847529 DOI: 10.1093/rb/rbac102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/05/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
The degradation of collagen in different body parts is a critical point for designing collagen-based biomedical products. Here, three kinds of collagens labeled by second near-infrared (NIR-II) quantum dots (QDs), including collagen with low crosslinking degree (LC), middle crosslinking degree (MC) and high crosslinking degree (HC), were injected into the subcutaneous tissue, muscle and joints of the mouse model, respectively, in order to investigate the in vivo degradation pattern of collagen by NIR-II live imaging. The results of NIR-II imaging indicated that all tested collagens could be fully degraded after 35 days in the subcutaneous tissue, muscle and joints of the mouse model. However, the average degradation rate of subcutaneous tissue (k = 0.13) and muscle (k = 0.23) was slower than that of the joints (shoulder: k = 0.42, knee: k = 0.55). Specifically, the degradation rate of HC (k = 0.13) was slower than LC (k = 0.30) in muscle, while HC showed the fastest degradation rate in the shoulder and knee joints. In summary, NIR-II imaging could precisely identify the in vivo degradation rate of collagen. Moreover, the degradation rate of collagen was more closely related to the implanted body parts rather than the crosslinking degree of collagen, which was slower in the subcutaneous tissue and muscle compared to the joints in the mouse model.
Collapse
Affiliation(s)
| | | | | | - Sijia Feng
- Department of Sports Medicine, Sports Medicine Institute of Fudan University, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yuzhou Chen
- Department of Sports Medicine, Sports Medicine Institute of Fudan University, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Dandan Sheng
- Department of Sports Medicine, Sports Medicine Institute of Fudan University, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Liman Sai
- Department of Physics, Shanghai Normal University, Shanghai 200234, China
| | - Yueming Wang
- Department of Anatomy and Physiology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Mo Chen
- Department of Sports Medicine, Sports Medicine Institute of Fudan University, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yan Wo
- Department of Anatomy and Physiology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Shaoqing Feng
- Department of Plastic and Reconstructive Surgery, School of Medicine, Shanghai Jiao Tong University, Shanghai Ninth People’s Hospital, Shanghai 200011, China
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran,Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran 1461968151, Iran
| | - Yanglai Gao
- Correspondence address. E-mail: (Y.G.); (Y.L.); (J.C.)
| | - Yunxia Li
- Correspondence address. E-mail: (Y.G.); (Y.L.); (J.C.)
| | - Jun Chen
- Correspondence address. E-mail: (Y.G.); (Y.L.); (J.C.)
| |
Collapse
|
6
|
Oral Pharmacokinetics of Hydroxycinnamic Acids: An Updated Review. Pharmaceutics 2022; 14:pharmaceutics14122663. [PMID: 36559157 PMCID: PMC9784852 DOI: 10.3390/pharmaceutics14122663] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Hydroxycinnamic acids (HCAs) such as caffeic acid (CA), chlorogenic acid (CGA), coumaric acid (COA) isomers, ferulic acid (FA) and rosmarinic acid (RA) are natural phenolic acids with widespread distribution in vegetal foods and well-documented pharmacological activities. However, the low bioavailability of HCAs impairs their administration by the oral route. The present review addresses new findings and important factors/obstacles for their oral administration, which were unexplored in the reviews published a decade ago concerning the bioavailability of phenolic acids. Based on this, the article aims to perform an updated review of the water solubility and gastrointestinal stability of HCAs, as well as describe their oral absorption, distribution, metabolism and excretion (ADME) processes by in vitro, ex vivo, in situ and in vivo methods.
Collapse
|
7
|
Lu JL, Zeng XS, Zhou X, Yang JL, Ren LL, Long XY, Wang FQ, Olaleye OE, Tian NN, Zhu YX, Dong JJ, Jia WW, Li C. Molecular Basis Underlying Hepatobiliary and Renal Excretion of Phenolic Acids of Salvia miltiorrhiza Roots (Danshen). Front Pharmacol 2022; 13:911982. [PMID: 35620286 PMCID: PMC9127186 DOI: 10.3389/fphar.2022.911982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Phenolic acids are cardiovascular constituents (originating from the Chinese medicinal herb Salvia miltiorrhiza root/Danshen) of DanHong and many other Danshen-containing injections. Our earlier pharmacokinetic investigation of DanHong suggested that hepatic and/or renal uptake of the Danshen compounds was the crucial steps in their systemic elimination. This investigation was designed to survey the molecular basis underlying hepatobiliary and renal excretion of the Danshen compounds, i.e., protocatechuic acid, tanshinol, rosmarinic acid, salvianolic acid D, salvianolic acid A, lithospermic acid, and salvianolic acid B. A large battery of human hepatic and renal transporters were screened for transporting the Danshen compounds and then characterized for the uptake kinetics and also compared with associated rat transporters. The samples were analyzed by liquid chromatography/mass spectrometry. Because the Danshen phenolic acids are of poor or fairly good membrane permeability, their elimination via the liver or kidneys necessitates transporter-mediated hepatic or renal uptake from blood. Several human transporters were found to mediate hepatic and/or renal uptake of the Danshen compounds in a compound-molecular-mass-related manner. Lithospermic acid and salvianolic acid B (both >500 Da) underwent systemic elimination, initiated by organic anion-transporting polypeptide (OATP)1B1/OATP1B3-mediated hepatic uptake. Rosmarinic acid and salvianolic acids D (350–450 Da) underwent systemic elimination, initiated by OATP1B1/OATP1B3/organic anion transporter (OAT)2-mediated hepatic uptake and by OAT1/OAT2-mediated renal uptake. Protocatechuic acid and tanshinol (both <200 Da) underwent systemic elimination, initiated by OAT1/OAT2-mediated renal uptake and OAT2-mediated hepatic uptake. A similar scenario was observed with the rat orthologs. The investigation findings advance our understanding of the disposition of the Danshen phenolic acids and could facilitate pharmacokinetic research on other Danshen-containing injections.
Collapse
Affiliation(s)
- Jun-Lan Lu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xue-Shan Zeng
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xin Zhou
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jun-Ling Yang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Ling-Ling Ren
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Xin-Yu Long
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Feng-Qing Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Olajide E Olaleye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Nan-Nan Tian
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ya-Xuan Zhu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jia-Jia Dong
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei-Wei Jia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chuan Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Toxicokinetics of β-Amanitin in Mice and In Vitro Drug-Drug Interaction Potential. Pharmaceutics 2022; 14:pharmaceutics14040774. [PMID: 35456608 PMCID: PMC9030691 DOI: 10.3390/pharmaceutics14040774] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 01/01/2023] Open
Abstract
The toxicokinetics of β-amanitin, a toxic bicyclic octapeptide present abundantly in Amanitaceae mushrooms, was evaluated in mice after intravenous (iv) and oral administration. The area under plasma concentration curves (AUC) following iv injection increased in proportion to doses of 0.2, 0.4, and 0.8 mg/kg. β-amanitin disappeared rapidly from plasma with a half-life of 18.3−33.6 min, and 52.3% of the iv dose was recovered as a parent form. After oral administration, the AUC again increased in proportion with doses of 2, 5, and 10 mg/kg. Absolute bioavailability was 7.3−9.4%, which resulted in 72.4% of fecal recovery from orally administered β-amanitin. Tissue-to-plasma AUC ratios of orally administered β-amanitin were the highest in the intestine and stomach. It also readily distributed to kidney > spleen > lung > liver ≈ heart. Distribution to intestines, kidneys, and the liver is in agreement with previously reported target organs after acute amatoxin poisoning. In addition, β-amanitin weakly or negligibly inhibited major cytochrome P450 and 5′-diphospho-glucuronosyltransferase activities in human liver microsomes and suppressed drug transport functions in mammalian cells that overexpress transporters, suggesting the remote drug interaction potentials caused by β-amanitin exposure.
Collapse
|
9
|
Technological strategies applied for rosmarinic acid delivery through different routes – A review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Park R, Choi WG, Lee MS, Cho YY, Lee JY, Kang HC, Sohn CH, Song IS, Lee HS. Pharmacokinetics of α-amanitin in mice using liquid chromatography-high resolution mass spectrometry and in vitro drug-drug interaction potentials. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:821-835. [PMID: 34187333 DOI: 10.1080/15287394.2021.1944942] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The aim of this study was to determine pharmacokinetics of α-amanitin, a toxic bicyclic octapeptide isolated from the poisonous mushrooms, following intravenous (iv) or oral (po) administration in mice using a newly developed and validated liquid chromatography-high resolution mass spectrometry. The iv injected α-amanitin disappeared rapidly from the plasma with high a clearance rate (26.9-30.4 ml/min/kg) at 0.1, 0.2, or 0.4 mg/kg doses, which was consistent with a rapid and a major excretion of α-amanitin via the renal route (32.6%). After the po administration of α-amanitin at doses of 2, 5, or 10 mg/kg to mice, the absolute bioavailability of α-amanitin was 3.5-4.8%. Due to this low bioavailability, 72.5% of the po administered α-amanitin was recovered from the feces. When α-amanitin is administered po, the tissue to plasma area under the curve ratio was higher in stomach > large intestine > small intestine > lung ~ kidneys > liver but not detected in brain, heart, and spleen. The high distribution of α-amanitin to intestine, kidneys, and liver is in agreement with the previously reported major intoxicated organs following acute α-amanitin exposure. In addition, α-amanitin weakly or negligibly inhibited cytochrome P450 and 5'-diphospho-glucuronosyltransferase enzymes activity in human liver microsomes as well as major drug transport functions in mammalian cells overexpressing transporters. Data suggested remote drug interaction potential may be associated with α-amanitin exposure.
Collapse
Affiliation(s)
- Ria Park
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Won-Gu Choi
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Min Seo Lee
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Yong-Yeon Cho
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Joo Young Lee
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Han Chang Kang
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Chang Hwan Sohn
- Department of Emergency Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| | - Im-Sook Song
- Kyungpook National University, Daegu, Republic of Korea
| | - Hye Suk Lee
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, Republic of Korea
| |
Collapse
|
11
|
Suroowan S, Abdallah HH, Mahomoodally MF. Herb-drug interactions and toxicity: Underscoring potential mechanisms and forecasting clinically relevant interactions induced by common phytoconstituents via data mining and computational approaches. Food Chem Toxicol 2021; 156:112432. [PMID: 34293424 DOI: 10.1016/j.fct.2021.112432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/28/2021] [Accepted: 07/17/2021] [Indexed: 01/05/2023]
Abstract
Herbals in the form of medicine are employed extensively around the world. Herbal and conventional medicine combination is a potentially dangerous practice mainly in comorbid, hepato insufficient and frail patients leading to perilous herb-drug interactions (HDI) and toxicity. This study features potential HDI of 15 globally famous plant species through data mining and computational methods. Several plant species were found to mimic warfarin. Phytochemicals from M. charantia induced hypoglycemica. M. chamomila and G. biloba possessed anticoagulant activities. S. hispanica reduces postprandial glycemia. R. officinalis has been reported to inhibit the efflux of anticancer substrates while A. sativum can boost the clearance of anticancer agents. P. ginseng can alter blood coagulation. A cross link of the biological and in silico data revealed that a plethora of herbal metabolites such as ursolic and rosmarinic acid among others are possible/probable inhibitors of specific CYP450 enzymes. Consequently, plant species/metabolites with a given pharmacological property/metabolizing enzyme should not be mixed with drugs having the same pharmacological property/metabolizing enzyme. Even if combined with drugs, herbal medicines must be used at low doses for a short period of time and under the supervision of a healthcare professional to avoid potential adverse and toxic effects.
Collapse
Affiliation(s)
- Shanoo Suroowan
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius
| | - Hassan Hadi Abdallah
- Department of Chemistry, College of Education, Salahaddin University-Erbil, Erbīl, Iraq
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius.
| |
Collapse
|