1
|
Liu Y, Yan D, Chen R, Zhang Y, Wang C, Qian G. Recent insights and advances in gut microbiota's influence on host antiviral immunity. Front Microbiol 2025; 16:1536778. [PMID: 40083779 PMCID: PMC11903723 DOI: 10.3389/fmicb.2025.1536778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/17/2025] [Indexed: 03/16/2025] Open
Abstract
A diverse array of microbial organisms colonizes the human body, collectively known as symbiotic microbial communities. Among the various pathogen infections that hosts encounter, viral infections represent one of the most significant public health challenges worldwide. The gut microbiota is considered an important biological barrier against viral infections and may serve as a promising target for adjuvant antiviral therapy. However, the potential impact of symbiotic microbiota on viral infection remains relatively understudied. In this review, we discuss the specific regulatory mechanisms of gut microbiota in antiviral immunity, highlighting recent advances in how gut microbiota regulate the host immune response, produce immune-related molecules, and enhance the host's defense against viruses. Finally, we also discuss the antiviral potential of oral probiotics.
Collapse
Affiliation(s)
- Ying Liu
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Danying Yan
- Department of Infectious Diseases, The First Affiliated Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Ran Chen
- Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yingying Zhang
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Chuwen Wang
- Department of Infectious Diseases, The First Affiliated Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Guoqing Qian
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
- Department of Infectious Diseases, The First Affiliated Hospital, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
2
|
Chen Y, Cao Z, Lu S, Wang Z, Ma C, Zhang G, Chen M, Yang J, Ren Z, Xu J. Pediococcus pentosaceus MIANGUAN Enhances the Immune Response to Vaccination in Mice. Probiotics Antimicrob Proteins 2024; 16:1117-1129. [PMID: 38169032 DOI: 10.1007/s12602-023-10205-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2023] [Indexed: 01/05/2024]
Abstract
Increasing evidence shows that some probiotics can improve vaccine responses as adjuvants. This study aimed to evaluate the effect of Pediococcus pentosaceus MIANGUAN (PPM) on SARS-CoV-2 vaccine-elicited immune response in mice. Six-week-old female ICR mice were primed and boosted with SARS-CoV-2 vaccine intramuscularly at weeks 0 and 4, respectively. Mice were gavaged with PPM (5 × 109 CFU/mouse) or PBS (control) for 3 days immediately after boosting vaccination. Compared to the control, oral PPM administration resulted in significantly higher levels of RBD-specific IgG binding antibodies (> 2.3-fold) and RBD-specific IgG1 binding antibodies (> 4-fold) in the serum. Additionally, PPM-treated mice had higher titers of RBD-specific IgG binding antibodies (> 2.29-fold) and neutralization antibodies (> 1.6-fold) in the lung compared to the control mice. The transcriptional analyses showed that the B cell receptor (BCR) signaling pathway was upregulated in both splenocytes and BAL cells in the PPM group vs. the control group. In addition, the number of IFN-γ-producing splenocytes (mainly in CD4 + T cells as determined by flow cytometry) in response to restimulation of RBD peptides was significantly increased in the PPM group. RNA sequencing showed that the genes associated with T cell activation and maturation and MHC class II pathway (CD4, H2-DMa, H2-DMb1, H2-Oa, Ctss) were upregulated, suggesting that oral administration of PPM may enhance CD4 + T cell responses through MHC class II pathway. Furthermore, PPM administration could downregulate the expression level of proinflammatory genes. To conclude, oral administration of PPM could boost SARS-CoV-2 vaccine efficacy through enhancing the specific humoral and cellular immunity response and decrease the expression of inflammation pathways.
Collapse
Affiliation(s)
- Yulu Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, China
| | - Zhijie Cao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, China
| | - Simin Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, China
- Research Unite for Unknown Microbe, Chinese Academy of Medical Sciences, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Zhihuan Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, China
| | - Caiyun Ma
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, China
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Gui Zhang
- Infection Management Office, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Mengshan Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, China
- Institute of Public Health, Nankai University, Tianjin, 300071, China
| | - Jing Yang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, China
| | - Zhihong Ren
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, China.
| | - Jianguo Xu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, China.
- Institute of Public Health, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
3
|
Zhang T, Lv Y, Zhao Y, Yang J, Qian B, Zhu Y, Zhao W, Zhu M. Changes in intestinal flora of mice induced by rEg.P29 epitope peptide vaccines. Immun Inflamm Dis 2023; 11:e1082. [PMID: 38018604 PMCID: PMC10664826 DOI: 10.1002/iid3.1082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/30/2023] Open
Abstract
OBJECTIVE Cystic echinococcosis (CE), a zoonotic parasitic disease caused by Echinococcus granulosus, remains a public health and socioeconomic issue worldwide, making its prevention and treatment of vital importance. The aim of this study was to investigate changes in the intestinal microbiota of mice immunized with three peptide vaccines based on the recombinant antigen of E. granulosus, P29 (rEg.P29), with the hope of providing more valuable information for the development of vaccines against CE. METHODS Three peptide vaccines, rEg.P29T , rEg.P29B , and rEg.P29T + B , were prepared based on rEg.P29, and a subcutaneous immunization model was established. The intestinal floras of mice in the different immunization groups were analyzed by 16 S rRNA gene sequencing. RESULTS The intestinal microbiota analysis at both immunization time points revealed that Firmicutes, Bacteroidota, and Verrucomicrobiota were the predominant flora at the phylum level, while at the genus level, Akkermansia, unclassified_Muribaculaceae, Lachnospiraceae_NK4A136_group, and uncultured_rumen bacterium were the dominant genera. Some probiotics in the intestines of mice were significantly increased after immunization with the peptide vaccines, such as Lactobacillus_taiwanensis, Lactobacillus_reuteri, Lachnospiraceae_NK4A136_group, Bacteroides_acidifaciens, and so forth. Meanwhile, some harmful or conditionally pathogenic bacteria were decreased, such as Turicibacter sanguinis, Desulfovibrio_fairfieldensis, Clostridium_sp, and so forth, most of which are associated with inflammatory or infectious diseases. Kyoto Encyclopaedia of Genes and Genomes enrichment analysis revealed that the differential flora were enriched in multiple metabolic pathways, primarily biological systems, human diseases, metabolism, cellular processes, and environmental information processing. CONCLUSION In this study, we comprehensively analyzed and compared changes in the intestinal microbiota of mice immunized with three peptide vaccines as well as their related metabolic pathways, providing a theoretical background for the development of novel vaccines against E. granulosus.
Collapse
Affiliation(s)
- Tingting Zhang
- School of Clinical MedicineNingxia Medical UniversityYinchuanChina
- Key Laboratory of Common Infectious Disease Prevention and Control in NingxiaYinchuanChina
| | - Yongxue Lv
- Key Laboratory of Common Infectious Disease Prevention and Control in NingxiaYinchuanChina
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
| | - Yinqi Zhao
- Key Laboratory of Common Infectious Disease Prevention and Control in NingxiaYinchuanChina
- Science and Technology Center of Ningxia Medical UniversityYinchuanChina
| | - Jihui Yang
- Key Laboratory of Common Infectious Disease Prevention and Control in NingxiaYinchuanChina
- Science and Technology Center of Ningxia Medical UniversityYinchuanChina
| | - Bingshuo Qian
- General Hospital of Ningxia Medical UniversityYinchuanChina
| | - Yazhou Zhu
- Key Laboratory of Common Infectious Disease Prevention and Control in NingxiaYinchuanChina
| | - Wei Zhao
- Key Laboratory of Common Infectious Disease Prevention and Control in NingxiaYinchuanChina
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
| | - Mingxing Zhu
- Key Laboratory of Common Infectious Disease Prevention and Control in NingxiaYinchuanChina
- Science and Technology Center of Ningxia Medical UniversityYinchuanChina
| |
Collapse
|
4
|
Jordan A, Carding SR, Hall LJ. The early-life gut microbiome and vaccine efficacy. THE LANCET. MICROBE 2022; 3:e787-e794. [PMID: 36088916 DOI: 10.1016/s2666-5247(22)00185-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 12/24/2022]
Abstract
Vaccines are one of the greatest successes of public health, preventing millions of cases of disease and death in children each year. However, the efficacy of many vaccines can vary greatly between infants from geographically and socioeconomically distinct locations. Differences in the composition of the intestinal microbiome have emerged as one of the main factors that can account for variations in immunisation outcomes. In this Review, we assess the influence of the gut microbiota upon early life immunity, focusing on two important members of the microbiota with health-promoting and immunomodulatory properties: Bifidobacterium and Bacteroides. Additionally, we discuss their immune stimulatory microbial properties, interactions with the host, and their effect on vaccine responses and efficacy in infants. We also provide an overview of current microbiota-based approaches to enhance vaccine outcomes, and describe novel microbe-derived components that could lead to safer, more effective vaccines and vaccine adjuvants.
Collapse
Affiliation(s)
- Anne Jordan
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Simon R Carding
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK; Norwich Medical School, University of East Anglia, Norwich, UK
| | - Lindsay J Hall
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK; Norwich Medical School, University of East Anglia, Norwich, UK; Intestinal Microbiome, School of Life Sciences, ZIEL Institute for Food & Health, Technical University of Munich, Munich, Germany.
| |
Collapse
|
5
|
Chen J, Vitetta L, Henson JD, Hall S. The intestinal microbiota and improving the efficacy of COVID-19 vaccinations. J Funct Foods 2021; 87:104850. [PMID: 34777578 PMCID: PMC8578005 DOI: 10.1016/j.jff.2021.104850] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/31/2021] [Accepted: 11/06/2021] [Indexed: 02/07/2023] Open
Abstract
Most COVID-19 cases are mild or asymptomatic and recover well, suggesting that effective immune responses ensue, which successfully eliminate SARS-CoV-2 viruses. However, a small proportion of patients develop severe COVID-19 with pathological immune responses. This indicates that a strong immune system balanced with anti-inflammatory mechanisms is critical for the recovery from SARS-CoV-2 infections. Many vaccines against SARS-CoV-2 have now been developed for eliciting effective immune responses to protect from SARS-CoV-2 infections or reduce the severity of the disease if infected. Although uncommon, serious morbidity and mortality have resulted from both COVID-19 vaccine adverse reactions and lack of efficacy, and further improvement of efficacy and prevention of adverse effects are urgently warranted. Many factors could affect efficacy of these vaccines to achieve optimal immune responses. Dysregulation of the gut microbiota (gut dysbiosis) could be an important risk factor as the gut microbiota is associated with the development and maintenance of an effective immune system response. In this narrative review, we discuss the immune responses to SARS-CoV-2, how COVID-19 vaccines elicit protective immune responses, gut dysbiosis involvement in inefficacy and adverse effects of COVID-19 vaccines and the modulation of the gut microbiota by functional foods to improve COVID-19 vaccine immunisations.
Collapse
Affiliation(s)
- Jiezhong Chen
- Medlab Clinical, Department of Research, Sydney 2015, Australia
| | - Luis Vitetta
- Medlab Clinical, Department of Research, Sydney 2015, Australia.,The University of Sydney, Faculty of Medicine and Health, Sydney 2006, Australia
| | - Jeremy D Henson
- Medlab Clinical, Department of Research, Sydney 2015, Australia.,The University of New South Wales, Faculty of Medicine, Prince of Wales Clinical School, Sydney, Australia
| | - Sean Hall
- Medlab Clinical, Department of Research, Sydney 2015, Australia
| |
Collapse
|
6
|
Peroni DG, Morelli L. Probiotics as Adjuvants in Vaccine Strategy: Is There More Room for Improvement? Vaccines (Basel) 2021; 9:811. [PMID: 34451936 PMCID: PMC8402414 DOI: 10.3390/vaccines9080811] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND It has been recognized that microbiota plays a key role in shaping immune system maturation and activity. Since probiotic administration influences the microbiota composition and acts as a biological response modifier, the efficacy of an adjuvant for boosting vaccine-specific immunity is investigated. METHODS A review of the literature was performed, starting from the mechanisms to laboratory and clinical evidence. RESULTS The mechanisms, and in vitro and animal models provide biological plausibility for microbiota use. Probiotics have been investigated as adjuvants in farm conditions and as models to understand their potential in human vaccinations with promising results. In human studies, although probiotics were effective in ameliorating seroconversion to vaccines for influenza, rotavirus and other micro-organisms, the results for clinical use are still controversial, especially in particular settings, such as during the last trimester of pregnancy. CONCLUSION Although this topic remains controversial, the use of probiotics as adjuvant factors in vaccination represents a strategic key for different applications. The available data are deeply influenced by heterogeneity among studies in terms of strains, timing and duration of administration, and patients. Although these do not allow us to draw definitive conclusions, probiotics as adjuvants in vaccination should be considered in future studies, especially in the elderly and in children, where vaccine effectiveness and duration of immunization really matter.
Collapse
Affiliation(s)
- Diego Giampietro Peroni
- Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa, 56126 Pisa, Italy
| | - Lorenzo Morelli
- Department for Sustainable Food Process–DiSTAS, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy;
| |
Collapse
|