1
|
Benedikt Brenner M, Wüst M, Kuentz M, Wagner KG. High loading of lipophilic compounds in mesoporous silica for improved solubility and dissolution performance. Int J Pharm 2024; 654:123946. [PMID: 38417728 DOI: 10.1016/j.ijpharm.2024.123946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
Loading poorly soluble active pharmaceutical ingredients (API) into mesoporous silica can enable API stabilization in non-crystalline form, which leads to improved dissolution. This is particularly beneficial for highly lipophilic APIs (log D7.4 > 8) as these drugs often exhibit limited solubility in dispersion forming carrier polymers, resulting in low drug load and reduced solid state stability. To overcome this challenge, we loaded the highly lipophilic natural products coenzyme Q10 (CoQ10) and astaxanthin (ASX), as well as the synthetic APIs probucol (PB) and lumefantrine (LU) into the mesoporous silica carriers Syloid® XDP 3050 and Silsol® 6035. All formulations were physically stable in their non-crystalline form and drug loads of up to 50 % were achieved. At increasing drug loads, a marked increase in equilibrium solubility of the active ingredients in biorelevant medium was detected, leading to improved performance during biorelevant biphasic dissolution studies (BiPHa + ). Particularly the natural products CoQ10 and ASX showed substantial benefits from being loaded into mesoporous carrier particles and clearly outperformed currently available commercial formulations. Performance differences between the model compounds could be explained by in silico calculations of the mixing enthalpy for drug and silica in combination with an experimental chromatographic method to estimate molecular interactions.
Collapse
Affiliation(s)
- Marvin Benedikt Brenner
- University of Bonn, Pharmaceutical Institute, Department of Pharmaceutics, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| | - Matthias Wüst
- University of Bonn, Institute of Nutritional and Food Sciences, Food Chemistry, Friedrich-Hirzebruch-Allee 7, 53115 Bonn, Germany
| | - Martin Kuentz
- University of Applied Sciences and Arts Northwestern Switzerland, Institute of Pharma Technology, Hofackerstr. 30, 4132 Muttenz, Switzerland
| | - Karl G Wagner
- University of Bonn, Pharmaceutical Institute, Department of Pharmaceutics, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany.
| |
Collapse
|
2
|
Brenner MB, Flory S, Wüst M, Frank J, Wagner K. Novel Biphasic In Vitro Dissolution Method Correctly Predicts the Oral Bioavailability of Curcumin in Humans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15632-15643. [PMID: 37824789 DOI: 10.1021/acs.jafc.3c04990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
In vitro dissolution methods correctly predicting in vivo bioavailability of compounds from complex mixtures are lacking. We therefore used data on the in vivo performance of bioavailability-improved curcumin formulations to implement an in vivo predictive dissolution method (BiPHa+). BiPHa+ was applied for the characterization of eight curcumin formulations previously studied in a strictly controlled pharmacokinetic human trial. During dissolution, the dissolved proportion of curcumin in the aqueous medium underwent a formulation-dependent reduction, whereas the proportion remained stable in the organic layer. Compared with conventional dissolution systems, BiPHa+ was superior in terms of in vivo-relevant formulation characterization. All formulations could be precisely categorized according to their bioavailability in humans. In vitro-in vivo relationships for each dissolution method were established, with BiPHa+ providing the highest degree of linearity (r2 = 0.9975). The BiPHa+ assay correctly predicted the bioavailability of curcuminoids from complex mixtures and provided mechanistic information about formulation-dependent release characteristics.
Collapse
Affiliation(s)
- Marvin Benedikt Brenner
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Pharmaceutical Institute, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| | - Sandra Flory
- Department of Food Biofunctionality, University of Hohenheim, Institute of Nutritional Sciences, Garbenstr. 28, 70599 Stuttgart, Germany
| | - Matthias Wüst
- Food Chemistry, University of Bonn, Institute of Nutritional and Food Sciences, Friedrich-Hirzebruch-Allee 7, 53115 Bonn, Germany
| | - Jan Frank
- Department of Food Biofunctionality, University of Hohenheim, Institute of Nutritional Sciences, Garbenstr. 28, 70599 Stuttgart, Germany
| | - Karl Wagner
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Pharmaceutical Institute, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| |
Collapse
|
3
|
Incecayir T, Demir ME. In Vivo Relevance of a Biphasic In Vitro Dissolution Test for the Immediate Release Tablet Formulations of Lamotrigine. Pharmaceutics 2023; 15:2474. [PMID: 37896234 PMCID: PMC10610453 DOI: 10.3390/pharmaceutics15102474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/07/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Biphasic in vitro dissolution testing is an attractive approach to reflect on the interplay between drug dissolution and absorption for predicting the bioperformance of drug products. The purpose of this study was to investigate the in vivo relevance of a biphasic dissolution test for the immediate release (IR) formulations of a Biopharmaceutics Classification System (BCS) Class II drug, lamotrigine (LTG). The biphasic dissolution test was performed using USP apparatus II with the dual paddle modification. A level A in vitro-in vivo correlation (IVIVC) was constructed between the in vitro partition into the octanol and absorption data of the reference product. A good relation between in vitro data and absorption was obtained (r2 = 0.881). The one-compartment open model was introduced to predict the human plasma profiles of the test product. The generic product was found to be bioequivalent to the original product in terms of 80-125% bioequivalence (BE) criteria (85.9-107% for the area under the plasma concentration curve (AUC) and 82.7-97.6% for the peak plasma concentration (Cmax) with a 90% confidence interval (CI)). Overall, it was revealed that the biphasic dissolution test offers a promising ability to estimate the in vivo performance of IR formulations of LTG, providing considerable time and cost savings in the development of generic drug products.
Collapse
Affiliation(s)
- Tuba Incecayir
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | | |
Collapse
|
4
|
Denninger A, Becker T, Westedt U, Wagner KG. Advanced In Vivo Prediction by Introducing Biphasic Dissolution Data into PBPK Models. Pharmaceutics 2023; 15:1978. [PMID: 37514164 PMCID: PMC10386266 DOI: 10.3390/pharmaceutics15071978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Coupling biorelevant in vitro dissolution with in silico physiological-based pharmacokinetic (PBPK) tools represents a promising method to describe and predict the in vivo performance of drug candidates in formulation development including non-passive transport, prodrug activation, and first-pass metabolism. The objective of the present study was to assess the predictability of human pharmacokinetics by using biphasic dissolution results obtained with the previously established BiPHa+ assay and PBPK tools. For six commercial drug products, formulated by different enabling technologies, the respective organic partitioning profiles were processed with two PBPK in silico modeling tools, namely PK-Sim and GastroPlus®, similar to extended-release dissolution profiles. Thus, a mechanistic dissolution/precipitation model of the assessed drug products was not required. The developed elimination/distribution models were used to simulate the pharmacokinetics of the evaluated drug products and compared with available human data. In essence, an in vitro to in vivo extrapolation (IVIVE) was successfully developed. Organic partitioning profiles obtained from the BiPHa+ dissolution analysis enabled highly accurate predictions of the pharmacokinetic behavior of the investigated drug products. In addition, PBPK models of (pro-)drugs with pronounced first-pass metabolism enabled adjustment of the solely passive diffusion predicting organic partitioning profiles, and increased prediction accuracy further.
Collapse
Affiliation(s)
- Alexander Denninger
- Department of Pharmaceutical Technology, University of Bonn, Gerhard-Domagk-Strasse 3, 53121 Bonn, Germany
- Corden Pharma GmbH, Otto-Hahn-Strasse, 68723 Plankstadt, Germany
| | - Tim Becker
- Department of Pharmaceutical Technology, University of Bonn, Gerhard-Domagk-Strasse 3, 53121 Bonn, Germany
| | - Ulrich Westedt
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Karl G Wagner
- Department of Pharmaceutical Technology, University of Bonn, Gerhard-Domagk-Strasse 3, 53121 Bonn, Germany
| |
Collapse
|
5
|
Becker T, Krome AK, Vahdati S, Schiefer A, Pfarr K, Ehrens A, Aden T, Grosse M, Jansen R, Alt S, Hesterkamp T, Stadler M, Hübner MP, Kehraus S, König GM, Hoerauf A, Wagner KG. In Vitro-In Vivo Relationship in Mini-Scale-Enabling Formulations of Corallopyronin A. Pharmaceutics 2022; 14:1657. [PMID: 36015283 PMCID: PMC9414514 DOI: 10.3390/pharmaceutics14081657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
In vivo studies in mice provide a valuable model to test novel active pharmaceutical ingredients due to their low material need and the fact that mice are frequently used as a species for early efficacy models. However, preclinical in vitro evaluations of formulation principles in mice are still lacking. The development of novel in vitro and in silico models supported the preclinical formulation evaluation for the anti-infective corallopyronin A (CorA). To this end, CorA and solubility-enhanced amorphous solid dispersion formulations, comprising povidone or copovidone, were evaluated regarding biorelevant solubilities and dissolution in mouse-specific media. As an acidic compound, CorA and CorA-ASD formulations showed decreased solubilities in mice when compared with human-specific media. In biorelevant biphasic dissolution experiments CorA-povidone showed a three-fold higher fraction partitioned into the organic phase of the biphasic dissolution, when compared with CorA-copovidone. Bioavailabilities determined by pharmacokinetic studies in BALB/c mice correlated with the biphasic dissolution prediction and resulted in a Level C in vitro-in vivo correlation. In vitro cell experiments excluded intestinal efflux by P-glycoprotein or breast cancer resistance protein. By incorporating in vitro results into a physiologically based pharmacokinetic model, the plasma concentrations of CorA-ASD formulations were predicted and identified dissolution as the limiting factor for bioavailability.
Collapse
Affiliation(s)
- Tim Becker
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
| | - Anna K. Krome
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg–Campus 1, 53127 Bonn, Germany
| | - Sahel Vahdati
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| | - Andrea Schiefer
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg–Campus 1, 53127 Bonn, Germany
| | - Kenneth Pfarr
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg–Campus 1, 53127 Bonn, Germany
| | - Alexandra Ehrens
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg–Campus 1, 53127 Bonn, Germany
| | - Tilman Aden
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg–Campus 1, 53127 Bonn, Germany
| | - Miriam Grosse
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Rolf Jansen
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Silke Alt
- Translational Project Management Office (TPMO), German Center for Infection Research (DZIF), Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Thomas Hesterkamp
- Translational Project Management Office (TPMO), German Center for Infection Research (DZIF), Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Marc P. Hübner
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg–Campus 1, 53127 Bonn, Germany
| | - Stefan Kehraus
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
- Institute for Pharmaceutical Biology, University of Bonn, Nußallee 6, 53115 Bonn, Germany
| | - Gabriele M. König
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
- Institute for Pharmaceutical Biology, University of Bonn, Nußallee 6, 53115 Bonn, Germany
| | - Achim Hoerauf
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg–Campus 1, 53127 Bonn, Germany
| | - Karl G. Wagner
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
| |
Collapse
|
6
|
López Mármol Á, Denninger A, Touzet A, Dauer K, Becker T, Pöstges F, Pellequer Y, Lamprecht A, Wagner KG. The relevance of supersaturation and solubilization in the gastrointestinal tract for oral bioavailability: An in vitro vs. in vivo approach. Int J Pharm 2021; 603:120648. [PMID: 33915180 DOI: 10.1016/j.ijpharm.2021.120648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 01/19/2023]
Abstract
The influence of supersaturation and solubilization on oral absorption was assessed independently from the dissolution process for the non-formulated model drugs celecoxib and telmisartan. In vitro, physicochemical characterization and biphasic dissolution were used to characterize the supersaturation and solubilization effects of three water soluble polymers (copovidone, methylcellulose and Soluplus®) on the drugs. While celecoxib precipitated in a crystalline form resulting in pronounced stabilization of supersaturation, telmisartan precipitated as a highly energetic amorphous form and the potential of the polymers to enhance its solubility was subsequently, limited. In vivo, for the crystalline precipitating celecoxib, supersaturation and solubilization increased its oral bioavailability up to 10-fold. On the contrary, the amorphous precipitating telmisartan did not benefit from the limited stabilization in terms of oral exposure. Amongst all investigated in vitro tests the biphasic dissolution test was the most predictive in relation to supersaturation. However, for the potential micellar solubilization and the respective impact in the aqueous/organic interface, prediction accuracy of the biphasic dissolution test was limited in combination with Soluplus®. Despite the hetergeneous micellar distribution in vitro and permeation in vivo, the biphasic approach could clearly show the supersaturation potential on bioavailability (BA) for celecoxib on the one hand and the inferiority of supersaturation on BA for telmisartan.
Collapse
Affiliation(s)
- Álvaro López Mármol
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| | - Alexander Denninger
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| | - Antoine Touzet
- PEPITE EA4267, University of Bourgogne Franche-Comté, 19 Rue Ambroise Paré, 25030 Besançon Cedex, France
| | - Katharina Dauer
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| | - Tim Becker
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| | - Florian Pöstges
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| | - Yann Pellequer
- PEPITE EA4267, University of Bourgogne Franche-Comté, 19 Rue Ambroise Paré, 25030 Besançon Cedex, France
| | - Alf Lamprecht
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany; PEPITE EA4267, University of Bourgogne Franche-Comté, 19 Rue Ambroise Paré, 25030 Besançon Cedex, France
| | - Karl G Wagner
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany.
| |
Collapse
|